Search results for: thermal bridging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3649

Search results for: thermal bridging

169 Applicability of Polyisobutylene-Based Polyurethane Structures in Biomedical Disciplines: Some Calcification and Protein Adsorption Studies

Authors: Nihan Nugay, Nur Cicek Kekec, Kalman Toth, Turgut Nugay, Joseph P. Kennedy

Abstract:

In recent years, polyurethane structures are paving the way for elastomer usage in biology, human medicine, and biomedical application areas. Polyurethanes having a combination of high oxidative and hydrolytic stability and excellent mechanical properties are focused due to enhancing the usage of PUs especially for implantable medical device application such as cardiac-assist. Currently, unique polyurethanes consisting of polyisobutylenes as soft segments and conventional hard segments, named as PIB-based PUs, are developed with precise NCO/OH stoichiometry (∽1.05) for obtaining PIB-based PUs with enhanced properties (i.e., tensile stress increased from ∽11 to ∽26 MPa and elongation from ∽350 to ∽500%). Static and dynamic mechanical properties were optimized by examining stress-strain graphs, self-organization and crystallinity (XRD) traces, rheological (DMA, creep) profiles and thermal (TGA, DSC) responses. Annealing procedure was applied for PIB-based PUs. Annealed PIB-based PU shows ∽26 MPa tensile strength, ∽500% elongation, and ∽77 Microshore hardness with excellent hydrolytic and oxidative stability. The surface characters of them were examined with AFM and contact angle measurements. Annealed PIB-based PU exhibits the higher segregation of individual segments and surface hydrophobicity thus annealing significantly enhances hydrolytic and oxidative stability by shielding carbamate bonds by inert PIB chains. According to improved surface and microstructure characters, greater efforts are focused on analyzing protein adsorption and calcification profiles. In biomedical applications especially for cardiological implantations, protein adsorption inclination on polymeric heart valves is undesirable hence protein adsorption from blood serum is followed by platelet adhesion and subsequent thrombus formation. The protein adsorption character of PIB-based PU examines by applying Bradford assay in fibrinogen and bovine serum albumin solutions. Like protein adsorption, calcium deposition on heart valves is very harmful because vascular calcification has been proposed activation of osteogenic mechanism in the vascular wall, loss of inhibitory factors, enhance bone turnover and irregularities in mineral metabolism. The calcium deposition on films are characterized by incubating samples in simulated body fluid solution and examining SEM images and XPS profiles. PIB-based PUs are significantly more resistant to hydrolytic-oxidative degradation, protein adsorption and calcium deposition than ElastEonTM E2A, a commercially available PDMS-based PU, widely used for biomedical applications.

Keywords: biomedical application, calcification, polyisobutylene, polyurethane, protein adsorption

Procedia PDF Downloads 232
168 Stability Study of Hydrogel Based on Sodium Alginate/Poly (Vinyl Alcohol) with Aloe Vera Extract for Wound Dressing Application

Authors: Klaudia Pluta, Katarzyna Bialik-Wąs, Dagmara Malina, Mateusz Barczewski

Abstract:

Hydrogel networks, due to their unique properties, are highly attractive materials for wound dressing. The three-dimensional structure of hydrogels provides tissues with optimal moisture, which supports the wound healing process. Moreover, a characteristic feature of hydrogels is their absorption properties which allow for the absorption of wound exudates. For the fabrication of biomedical hydrogels, a combination of natural polymers ensuring biocompatibility and synthetic ones that provide adequate mechanical strength are often used. Sodium alginate (SA) is one of the polymers widely used in wound dressing materials because it exhibits excellent biocompatibility and biodegradability. However, due to poor strength properties, often alginate-based hydrogel materials are enhanced by the addition of another polymer such as poly(vinyl alcohol) (PVA). This paper is concentrated on the preparation methods of sodium alginate/polyvinyl alcohol hydrogel system incorporating Aloe vera extract and glycerin for wound healing material with particular focus on the role of their composition on structure, thermal properties, and stability. Briefly, the hydrogel preparation is based on the chemical cross-linking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and ammonium persulfate as an initiator. In vitro degradation tests of SA/PVA/AV hydrogels were carried out in Phosphate-Buffered Saline (pH – 7.4) as well as in distilled water. Hydrogel samples were firstly cut into half-gram pieces (in triplicate) and immersed in immersion fluid. Then, all specimens were incubated at 37°C and then the pH and conductivity values were measurements at time intervals. The post-incubation fluids were analyzed using SEC/GPC to check the content of oligomers. The separation was carried out at 35°C on a poly(hydroxy methacrylate) column (dimensions 300 x 8 mm). 0.1M NaCl solution, whose flow rate was 0.65 ml/min, was used as the mobile phase. Three injections with a volume of 50 µl were made for each sample. The thermogravimetric data of the prepared hydrogels were collected using a Netzsch TG 209 F1 Libra apparatus. The samples with masses of about 10 mg were weighed separately in Al2O3 crucibles and then were heated from 30°C to 900°C with a scanning rate of 10 °C∙min−1 under a nitrogen atmosphere. Based on the conducted research, a fast and simple method was developed to produce potential wound dressing material containing sodium alginate, poly(vinyl alcohol) and Aloe vera extract. As a result, transparent and flexible SA/PVA/AV hydrogels were obtained. The degradation experiments indicated that most of the samples immersed in PBS as well as in distilled water were not degraded throughout the whole incubation time.

Keywords: hydrogels, wound dressings, sodium alginate, poly(vinyl alcohol)

Procedia PDF Downloads 138
167 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 193
166 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films

Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya

Abstract:

Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.

Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film

Procedia PDF Downloads 339
165 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 124
164 Poly(ε-Caprolactone)-Based Bilayered Scaffolds Prepared by Electrospinning for Tissue Engineering of Small-Diameter Vascular Grafts

Authors: Mohammed Fayez Al Rez

Abstract:

Nowadays, there is an unmet clinical need for new small-diameter vascular grafts to overcome the drawbacks of traditional methods used for treatment of widespread cardiovascular diseases. Vascular tissue engineering (VTE) is a promising approach that can be utilized to develop viable vascular grafts by in vitro seeding of functional cells onto a scaffold allowing them to attach, proliferate and differentiate. To achieve this purpose, the scaffold should provide cells with the initial necessary extracellular matrix environment and structure until being able to reconstruct the required vascular tissue. Therefore, producing scaffolds with suitable features is crucial for guiding cells properly to develop the desired tissue-engineered vascular grafts for clinical applications. The main objective of this work is fabrication and characterization of tubular small-diameter ( < 6 mm) bilayered scaffolds for VTE. The scaffolds were prepared via mixing electrospinning approach of biodegradable poly(ε-caprolactone) (PCL) polymer – due to its favorable physicochemical properties – to mimic the natural environment-extracellular matrix. Firstly, tubular nanofibrous construct with inner diameter of 3, 4 or 5 mm was electrospun as inner layer, and secondly, microfibrous construct was electrospun as outer layer directly on the first produced inner layer. To improve the biological properties of PCL, a group of the electrospun scaffolds was immersed in type-1 collagen solution. The morphology and structure of the resulting fibrous scaffolds were investigated by scanning electron microscope. The electrospun nanofibrous inner layer contained fibers measuring 219±35 nm in diameter, while the electrospun microfibrous outer layer contained fibers measuring 1011 ± 150 nm. Furthermore, mechanical, thermal and physical tests were conducted with both electrospun bilayered scaffold types where revealed improved properties. Biological investigations using endothelial, smooth muscle and fibroblast cell line showed good biocompatibility of both tested electrospun scaffolds. Better attachment and proliferation were obviously found when cells were cultured on the scaffolds immersed with collagen due to increasing the hydrophilicity of the PCL. The easy, inexpensive and versatile electrospinning approach used in this work was able to successfully produce double layered tubular elastic structures containing both nanofibers and microfibers to imitate the native vascular structure. The PCL – as a suitable and approved biomaterial for many biomedical and tissue engineering applications – can ensure favorable mechanical properties of scaffolds used for VTE. The VTE approach using electrospun bilayered scaffolds offers optimal solutions and holds significant promises for treatment of many cardiovascular diseases.

Keywords: electrospinning, poly(ε-caprolactone) (PCL), tissue-engineered vascular graft, tubular bilayered scaffolds, vascular cells

Procedia PDF Downloads 266
163 Carbonyl Iron Particles Modified with Pyrrole-Based Polymer and Electric and Magnetic Performance of Their Composites

Authors: Miroslav Mrlik, Marketa Ilcikova, Martin Cvek, Josef Osicka, Michal Sedlacik, Vladimir Pavlinek, Jaroslav Mosnacek

Abstract:

Magnetorheological elastomers (MREs) are a unique type of materials consisting of two components, magnetic filler, and elastomeric matrix. Their properties can be tailored upon application of an external magnetic field strength. In this case, the change of the viscoelastic properties (viscoelastic moduli, complex viscosity) are influenced by two crucial factors. The first one is magnetic performance of the particles and the second one is off-state stiffness of the elastomeric matrix. The former factor strongly depends on the intended applications; however general rule is that higher magnetic performance of the particles provides higher MR performance of the MRE. Since magnetic particles possess low stability properties against temperature and acidic environment, several methods how to improve these drawbacks have been developed. In the most cases, the preparation of the core-shell structures was employed as a suitable method for preservation of the magnetic particles against thermal and chemical oxidations. However, if the shell material is not single-layer substance, but polymer material, the magnetic performance is significantly suppressed, due to the in situ polymerization technique, when it is very difficult to control the polymerization rate and the polymer shell is too thick. The second factor is the off-state stiffness of the elastomeric matrix. Since the MR effectivity is calculated as the relative value of the elastic modulus upon magnetic field application divided by elastic modulus in the absence of the external field, also the tuneability of the cross-linking reaction is highly desired. Therefore, this study is focused on the controllable modification of magnetic particles using a novel monomeric system based on 2-(1H-pyrrol-1-yl)ethyl methacrylate. In this case, the short polymer chains of different chain lengths and low polydispersity index will be prepared, and thus tailorable stability properties can be achieved. Since the relatively thin polymer chains will be grafted on the surface of magnetic particles, their magnetic performance will be affected only slightly. Furthermore, also the cross-linking density will be affected, due to the presence of the short polymer chains. From the application point of view, such MREs can be utilized for, magneto-resistors, piezoresistors or pressure sensors especially, when the conducting shell on the magnetic particles will be created. Therefore, the selection of the pyrrole-based monomer is very crucial and controllably thin layer of conducting polymer can be prepared. Finally, such composite particle consisting of magnetic core and conducting shell dispersed in elastomeric matrix can find also the utilization in shielding application of electromagnetic waves.

Keywords: atom transfer radical polymerization, core-shell, particle modification, electromagnetic waves shielding

Procedia PDF Downloads 181
162 Numerical Investigation of Flow Boiling within Micro-Channels in the Slug-Plug Flow Regime

Authors: Anastasios Georgoulas, Manolia Andredaki, Marco Marengo

Abstract:

The present paper investigates the hydrodynamics and heat transfer characteristics of slug-plug flows under saturated flow boiling conditions within circular micro-channels. Numerical simulations are carried out, using an enhanced version of the open-source CFD-based solver ‘interFoam’ of OpenFOAM CFD Toolbox. The proposed user-defined solver is based in the Volume Of Fluid (VOF) method for interface advection, and the mentioned enhancements include the implementation of a smoothing process for spurious current reduction, the coupling with heat transfer and phase change as well as the incorporation of conjugate heat transfer to account for transient solid conduction. In all of the considered cases in the present paper, a single phase simulation is initially conducted until a quasi-steady state is reached with respect to the hydrodynamic and thermal boundary layer development. Then, a predefined and constant frequency of successive vapour bubbles is patched upstream at a certain distance from the channel inlet. The proposed numerical simulation set-up can capture the main hydrodynamic and heat transfer characteristics of slug-plug flow regimes within circular micro-channels. In more detail, the present investigation is focused on exploring the interaction between subsequent vapour slugs with respect to their generation frequency, the hydrodynamic characteristics of the liquid film between the generated vapour slugs and the channel wall as well as of the liquid plug between two subsequent vapour slugs. The proposed investigation is carried out for the 3 different working fluids and three different values of applied heat flux in the heated part of the considered microchannel. The post-processing and analysis of the results indicate that the dynamics of the evolving bubbles in each case are influenced by both the upstream and downstream bubbles in the generated sequence. In each case a slip velocity between the vapour bubbles and the liquid slugs is evident. In most cases interfacial waves appear close to the bubble tail that significantly reduce the liquid film thickness. Finally, in accordance with previous investigations vortices that are identified in the liquid slugs between two subsequent vapour bubbles can significantly enhance the convection heat transfer between the liquid regions and the heated channel walls. The overall results of the present investigation can be used to enhance the present understanding by providing better insight of the complex, underpinned heat transfer mechanisms in saturated boiling within micro-channels in the slug-plug flow regime.

Keywords: slug-plug flow regime, micro-channels, VOF method, OpenFOAM

Procedia PDF Downloads 241
161 A Review on Agricultural Landscapes as a Habitat of Rodents

Authors: Nadeem Munawar, Tariq Mahmood, Paula Rivadeneira, Ali Akhter

Abstract:

In this paper, we review on rodent species which are common inhabitants of agricultural landscapes where they are an important prey source for a wide variety of avian, reptilian, and mammalian predators. Agricultural fields are surrounded by fallow land, which provide suitable sites for shelter and breeding for rodents, while shrubs, grasses, annual weeds and forbs may provide supplementary food. The assemblage of rodent’s fauna in the cropland habitats including cropped fields, meadows and adjacent field structures like hedgerows, woodland and field margins fluctuates seasonally. The mature agricultural crops provides good source of food and shelter to the rodents and these factors along with favorable climatic factors/season facilitate breeding activities of these rodent species. Changes in vegetation height and vegetative cover affect two important aspects of a rodent’s life: food and shelter. In addition, during non-crop period vegetation can be important for building nests above or below ground and it provides thermal protection for rodents from heat and cold. The review revealed that rodents form a very diverse group of mammals, ranging from tiny pigmy mice to big capybaras, from arboreal flying squirrels to subterranean mole rats, from opportunistic omnivores (e.g. Norway rats) to specialist feeders (e.g. the North African fat sand rats that feed on a single family of plants only). It is therefore no surprise that some species thrive well under the conditions that are found in agricultural fields. The review on the population dynamics of the rodent species indicated that they are agricultural pests probably due to the heterogeneous landscape and to the high rotativity of vegetable crop cultivation. They also cause damage to various crops, directly and indirectly, by gnawing, spoilage, contamination and hoarding activities, besides this behavior they have also significance importance in agricultural habitat. The burrowing activities of rodents alter the soil properties around their burrows which improve its aeration, infiltration, increase the water holding capacity and thus encourage plant growth. These properties are beneficial for the soil because they affect absorption of phosphorus, absorption zinc, copper, other nutrients and the uptake of water and thus rodents are known as indicator species in agricultural fields. Our review suggests that wide crop field’s borders, particularly those contiguous to various cropland fields, should be understood as priority sites for nesting, feeding, and cover for the rodent’s fauna. The goal of this review paper is to provide a comprehensive synthesis of understanding regarding rodent habitat and biodiversity in agricultural landscapes.

Keywords: agricultural landscapes, food, indicator species, shelter

Procedia PDF Downloads 137
160 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood

Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi

Abstract:

Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.

Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls

Procedia PDF Downloads 38
159 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 35
158 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses

Authors: André Jesus, Yanjie Zhu, Irwanda Laory

Abstract:

Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.

Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process

Procedia PDF Downloads 302
157 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites

Authors: B. Yaman, G. Acikbas, N. Calis Acikbas

Abstract:

Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.

Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties

Procedia PDF Downloads 177
156 Time-Domain Nuclear Magnetic Resonance as a Potential Analytical Tool to Assess Thermisation in Ewe's Milk

Authors: Alessandra Pardu, Elena Curti, Marco Caredda, Alessio Dedola, Margherita Addis, Massimo Pes, Antonio Pirisi, Tonina Roggio, Sergio Uzzau, Roberto Anedda

Abstract:

Some of the artisanal cheeses products of European Countries certificated as PDO (Protected Designation of Origin) are made from raw milk. To recognise potential frauds (e.g. pasteurisation or thermisation of milk aimed at raw milk cheese production), the alkaline phosphatase (ALP) assay is currently applied only for pasteurisation, although it is known to have notable limitations for the validation of ALP enzymatic state in nonbovine milk. It is known that frauds considerably impact on customers and certificating institutions, sometimes resulting in a damage of the product image and potential economic losses for cheesemaking producers. Robust, validated, and univocal analytical methods are therefore needed to allow Food Control and Security Organisms, to recognise a potential fraud. In an attempt to develop a new reliable method to overcome this issue, Time-Domain Nuclear Magnetic Resonance (TD-NMR) spectroscopy has been applied in the described work. Daily fresh milk was analysed raw (680.00 µL in each 10-mm NMR glass tube) at least in triplicate. Thermally treated samples were also produced, by putting each NMR tube of fresh raw milk in water pre-heated at temperatures from 68°C up to 72°C and for up to 3 min, with continuous agitation, and quench-cooled to 25°C in a water and ice solution. Raw and thermally treated samples were analysed in terms of 1H T2 transverse relaxation times with a CPMG sequence (Recycle Delay: 6 s, interpulse spacing: 0.05 ms, 8000 data points) and quasi-continuous distributions of T2 relaxation times were obtained by CONTIN analysis. In line with previous data collected by high field NMR techniques, a decrease in the spin-spin relaxation constant T2 of the predominant 1H population was detected in heat-treated milk as compared to raw milk. The decrease of T2 parameter is consistent with changes in chemical exchange and diffusive phenomena, likely associated to changes in milk protein (i.e. whey proteins and casein) arrangement promoted by heat treatment. Furthermore, experimental data suggest that molecular alterations are strictly dependent on the specific heat treatment conditions (temperature/time). Such molecular variations in milk, which are likely transferred to cheese during cheesemaking, highlight the possibility to extend the TD-NMR technique directly on cheese to develop a method for assessing a fraud related to the use of a milk thermal treatment in PDO raw milk cheese. Results suggest that TDNMR assays might pave a new way to the detailed characterisation of heat treatments of milk.

Keywords: cheese fraud, milk, pasteurisation, TD-NMR

Procedia PDF Downloads 212
155 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 286
154 Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip

Authors: Renée M. Ripken, Johannes G. E. Gardeniers, Séverine Le Gac

Abstract:

Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass.

Keywords: biomass conversion, high pressure and high temperature microfluidics, multiphase, phase diagrams, superheating

Procedia PDF Downloads 192
153 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency

Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko

Abstract:

Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.

Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching

Procedia PDF Downloads 107
152 Fructose-Aided Cross-Linked Enzyme Aggregates of Laccase: An Insight on Its Chemical and Physical Properties

Authors: Bipasa Dey, Varsha Panwar, Tanmay Dutta

Abstract:

Laccase, a multicopper oxidase (EC 1.10.3.2) have been at the forefront as a superior industrial biocatalyst. They are versatile in terms of bestowing sustainable and ecological catalytic reactions such as polymerisation, xenobiotic degradation and bioremediation of phenolic and non-phenolic compounds. Regardless of the wide biotechnological applications, the critical limiting factors viz. reusability, retrieval, and storage stability still prevail. This can cause an impediment in their applicability. Crosslinked enzyme aggregates (CLEAs) have emerged as a promising technique that rehabilitates these essential facets, albeit at the expense of their enzymatic activity. The carrier free crosslinking method prevails over the carrier-bound immobilisation in conferring high productivity, low production cost owing to the absence of additional carrier and circumvent any non-catalytic ballast which could dilute the volumetric activity. To the best of our knowledge, the ε-amino group of lysyl residue is speculated as the best choice for forming Schiff’s base with glutaraldehyde. Despite being most preferrable, excess glutaraldehyde can bring about disproportionate and undesirable crosslinking within the catalytic site and hence could deliver undesirable catalytic losses. Moreover, the surface distribution of lysine residues in Trametes versicolor laccase is significantly less. Thus, to mitigate the adverse effect of glutaraldehyde in conjunction with scaling down the degradation or catalytic loss of the enzyme, crosslinking with inert substances like gelatine, collagen, Bovine serum albumin (BSA) or excess lysine is practiced. Analogous to these molecules, sugars have been well known as a protein stabiliser. It helps to retain the structural integrity, specifically secondary structure of the protein during aggregation by changing the solvent properties. They are comprehended to avert protein denaturation or enzyme deactivation during precipitation. We prepared crosslinked enzyme aggregates (CLEAs) of laccase from T. versicolor with the aid of sugars. The sugar CLEAs were compared with the classic BSA and glutaraldehyde laccase CLEAs concerning physico-chemical properties. The activity recovery for the fructose CLEAs were found to be ~20% higher than the non-sugar CLEA. Moreover, the 𝐾𝑐𝑎𝑡𝐾𝑚⁄ values of the CLEAs were two and three-fold higher than BSA-CLEA and GACLEA, respectively. The half-life (t1/2) deciphered by sugar-CLEA was higher than the t1/2 of GA-CLEAs and free enzyme, portraying more thermal stability. Besides, it demonstrated extraordinarily high pH stability, which was analogous to BSA-CLEA. The promising attributes of increased storage stability and recyclability (>80%) gives more edge to the sugar-CLEAs over conventional CLEAs of their corresponding free enzyme. Thus, sugar-CLEA prevails in furnishing the rudimentary properties required for a biocatalyst and holds many prospects.

Keywords: cross-linked enzyme aggregates, laccase immobilization, enzyme reusability, enzyme stability

Procedia PDF Downloads 55
151 Arc Plasma Application for Solid Waste Processing

Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).

Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator

Procedia PDF Downloads 226
150 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu

Abstract:

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

Keywords: photodetection, p-type doping, multilayers, MoS₂

Procedia PDF Downloads 79
149 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting

Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva

Abstract:

The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.

Keywords: dipole antenna, double-band, high efficiency, rectenna

Procedia PDF Downloads 92
148 Synthesis of Belite Cements at Low Temperature from Silica Fume and Natural Commercial Zeolite

Authors: Tatiana L. Avalos-Rendon, Elias A. Pasten Chelala, Carlos J. Mendoza EScobedo, Ignacio A. Figueroa, Victor H. Lara, Luis M. Palacios-Romero

Abstract:

The cement industry is facing cost increments in energy supply, requirements for reduction of CO₂, and insufficient supply of raw materials of good quality. According to all these environmental issues, cement industry must change its consumption patterns and reduce CO₂ emissions to the atmosphere. This can be achieved by generating environmental consciousness, which encourages the use of industrial by-products and/or recycling for the production of cement, as well as alternate, environment-friendly methods of synthesis which reduce CO₂. Calcination is the conventional method for the obtainment of Portland cement clinker. This method consists of grinding and mixing of raw materials (limestone, clay, etc.) in an adequate dosage. Resulting mix has a clinkerization temperature of 1450 °C so that the formation of the main component occur: alite (Ca₃SiO₅, C₃S). Considering that the energy required to produce C₃S is 1810 kJ kg -1, calcination method for the obtainment of clinker represents two major disadvantages: long thermal treatment and elevated temperatures of synthesis, both of which cause high emissions of carbon dioxide (CO₂) to the atmosphere. Belite Portland clinker is characterized by having a low content of calcium oxide (CaO), causing the presence of alite to diminish and favoring the formation of belite (β-Ca₂SiO₄, C₂S), so production of clinker requires a reduced energy consumption (1350 kJ kg-1), releasing less CO₂ to the atmosphere. Conventionally, β-Ca₂SiO₄ is synthetized by the calcination of calcium carbonate (CaCO₃) and silicon dioxide (SiO₂) through the reaction in solid state at temperatures greater than 1300 °C. Resulting belite shows low hydraulic reactivity. Therefore, this study concerns a new simple modified combustion method for the synthesis of two belite cements at low temperatures (1000 °C). Silica fume, as subproduct of metallurgic industry and commercial natural zeolite were utilized as raw materials. These are considered low-cost materials and were utilized with no additional purification process. Belite cements properties were characterized by XRD, SEM, EDS and BET techniques. Hydration capacity of belite cements was calculated while the mechanical strength was determined in ordinary Portland cement specimens (PC) with a 10% partial replacement of the belite cements obtained. Results showed belite cements presented relatively high surface áreas, at early ages mechanical strengths similar to those of alite cement and comparable to strengths of belite cements obtained by different synthesis methods. Cements obtained in this work present good hydraulic reactivity properties.

Keywords: belite, silica fume, zeolite, hydraulic reactivity

Procedia PDF Downloads 326
147 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus

Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai

Abstract:

Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.

Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method

Procedia PDF Downloads 311
146 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 219
145 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 224
144 Gender Differences In Pain Assessment: A Daily Activities Perspective

Authors: Hui-mei Huang, Huei-Jiun Cheng

Abstract:

Introduction Many patients are aware of the health benefits associated with an active lifestyle, but they are often hindered from engaging in physical activity due to the presence of pain. The majority of patients experience pain, which can fluctuate over time and is influenced by various factors, including gender. Gender differences in clinical pain and pain-related conditions are widely recognized. Existing literature strongly supports the notion that men and women exhibit distinct responses to pain. Previous studies conducted in Taiwan have highlighted gender differences in pain assessment, but only a limited number of studies have investigated the gender-related factors that influence pain during daily activities. The objective of this study was to examine gender differences in pain assessment among inpatients in Taiwan and investigate whether gender and surgical procedures are factors that impact the daily activities of pain. Method In this study, a prospective and structured questionnaire survey method was utilized, employing intentional sampling to gather data from inpatients admitted to a medical center in central Taiwan. The research period covered in this study is from October 1, 2019, to June 30, 2020. In this study, participants who were hospitalized within 48 hours were requested to self-assess their pain using the Numeric Rating Scale (NRS) and indicate the impact of pain on their activities. The data were analyzed to explore the potential influence of gender and surgical procedures on daily activities affected by pain. Result A total of 722 cases were included in the study, with the mean age of the subjects is 54.38 years old (SD=16.3), and the range varied from 18 to 93 years old. Among the subjects, 48.23% (n=348) were male, and 62.3% (n=450) of them had received more than 12 years of education., and 56.9% (n=411) underwent surgery. The results indicated that regardless of whether the participants underwent surgery or not, females experienced higher perceived severe pain intensity than males (t=2.248, P < .05). However, in surgical patients, there was no significant difference in gender (t=1.75, P > .05). Regarding the impact of pain on daily activities when pain intensity reached 7 , male subjects experienced a 5-point effect on their daily activities (AUC=0.84, 95% CI 0.79-0.89, P <0.01), while female subjects experienced a 7-point effect (AUC=0.88, 95% CI 0.80-0.87, P <0.01). Discussion Some studies suggest that women experience painful stimuli as more intense than men, this difference has been observed in various types of experimental pain, including mechanical and thermal stimuli. Our study reached the same conclusion, female patients exhibited greater intensity of pain. According to the research findings, The research findings highlight the significant impact of gender on individuals' response to intense pain (NRS>7) during their daily activities, with men showing a higher pain tolerance. The higher pain tolerance often observed in men may be attributed to societal conditioning, which encourages them to conceal outward expressions of pain. Further research in this area could help provide a more comprehensive understanding of the topic in Taiwan.

Keywords: pain assessment, gender, surgery, activities of daily living

Procedia PDF Downloads 39
143 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

Authors: Liliia N. Butymova, Vladimir Ya Modorskii

Abstract:

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Keywords: aeroelasticity, labyrinth packings, oscillation phase shift, vibration

Procedia PDF Downloads 263
142 Utilization of Fly Ash Amended Sewage Sludge as Sustainable Building Material

Authors: Kaling Taki, Rohit Gahlot, Manish Kumar

Abstract:

Disposal of Sewage Sludge (SS) is a big issue especially in developing nation like India, where there is no control in the dynamicity of SS produced. The present research work demonstrates the potential application of SS amended with varying percentage (0-100%) of Fly Ash (FA) for brick manufacturing as an alternative of SS management. SS samples were collected from Jaspur sewage treatment plant (Ahmedabad, India) and subjected to different preconditioning treatments: (i) atmospheric drying (ii) pulverization (iii) heat treatment in oven (110°C, moisture removal) and muffle furnace (440°C, organic content removal). Geotechnical parameters of the SS were obtained as liquid limit (52%), plastic limit (24%), shrinkage limit (10%), plasticity index (28%), differential free swell index (DFSI, 47%), silt (68%), clay (27%), organic content (5%), optimum moisture content (OMC, 20%), maximum dry density (MDD, 1.55gm/cc), specific gravity (2.66), swell pressure (57kPa) and unconfined compressive strength (UCS, 207kPa). For FA liquid limit, plastic limit and specific gravity was 44%, 0% and 2.2 respectively. Initially, for brick casting pulverized SS sample was heat treated in a muffle furnace around 440℃ (5 hours) for removal of organic matter. Later, mixing of SS, FA and water by weight ratio was done at OMC. 7*7*7 cm3 sample mold was used for casting bricks at MDD. Brick samples were then first dried in room temperature for 24 hours, then in oven at 100℃ (24 hours) and finally firing in muffle furnace for 1000℃ (10 hours). The fired brick samples were then cured for 3 days according to Indian Standards (IS) common burnt clay building bricks- specification (5th revision). The Compressive strength of brick samples (0, 10, 20, 30, 40, 50 ,60, 70, 80, 90, 100%) of FA were 0.45, 0.76, 1.89, 1.83, 4.02, 3.74, 3.42, 3.19, 2.87, 0.78 and 4.95MPa when evaluated through compressive testing machine (CTM) for a stress rate of 14MPa/min. The highest strength was obtained at 40% FA mixture i.e. 4.02MPa which is much higher than the pure SS brick sample. According to IS 1077: 1992 this combination gives strength more than 3.5 MPa and can be utilized as common building bricks. The loss in weight after firing was much higher than the oven treatment, this might be due to degradation temperature higher than 100℃. The thermal conductivity of the fired brick was obtained as 0.44Wm-1K-1, indicating better insulation properties than other reported studies. TCLP (Toxicity characteristic leaching procedure) test of Cr, Cu, Co, Fe and Ni in raw SS was found as 69, 70, 21, 39502 and 47 mg/kg. The study positively concludes that SS and FA at optimum ratio can be utilized as common building bricks such as partitioning wall and other small strength requirement works. The uniqueness of the work is it emphasizes on utilization of FA for stabilizing SS as construction material as a replacement of natural clay as reported in existing studies.

Keywords: Compressive strength, Curing, Fly Ash, Sewage Sludge.

Procedia PDF Downloads 82
141 Study of Isoprene Emissions in Biogenic ad Anthropogenic Environment in Urban Atmosphere of Delhi: The Capital City of India

Authors: Prabhat Kashyap, Krishan Kumar

Abstract:

Delhi, the capital of India, is one of the most populated and polluted city among the world. In terms of air quality, Delhi’s air is degrading day by day & becomes worst of any major city in the world. The role of biogenic volatile organic compounds (BVOCs) is not much studied in cities like Delhi as a culprit for degraded air quality. They not only play a critical role in rural areas but also determine the atmospheric chemistry of urban areas as well. Particularly, Isoprene (2-methyl 1,3-butadiene, C5H8) is the single largest emitted compound among other BVOCs globally, that influence the tropospheric ozone chemistry in urban environment as the ozone forming potential of isoprene is very high. It is mainly emitted by vegetation & a small but significant portion is also released by vehicular exhaust of petrol operated vehicles. This study investigates the spatial and temporal variations of quantitative measurements of isoprene emissions along with different traffic tracers in 2 different seasons (post-monsoon & winter) at four different locations of Delhi. For the quantification of anthropogenic and biogenic isoprene, two sites from traffic intersections (Punjabi Bagh & CRRI) and two sites from vegetative locations (JNU & Yamuna Biodiversity Park) were selected in the vicinity of isoprene emitting tree species like Ficus religiosa, Dalbergia sissoo, Eucalyptus species etc. The concentrations of traffic tracers like benzene, toluene were also determined & their robust ratios with isoprene were used to differentiate anthropogenic isoprene with biogenic portion at each site. The ozone forming potential (OFP) of all selected species along with isoprene was also estimated. For collection of intra-day samples (3 times a day) in each season, a pre-conditioned fenceline monitoring (FLM) carbopack X thermal desorption tubes were used and further analysis was done with Gas chromatography attached with mass spectrometry (GC-MS). The results of the study proposed that the ambient air isoprene is always higher in post-monsoon season as compared to winter season at all the sites because of high temperature & intense sunlight. The maximum isoprene emission flux was always observed during afternoon hours in both seasons at all sites. The maximum isoprene concentration was found to be 13.95 ppbv at Biodiversity Park during afternoon time in post monsoon season while the lower concentration was observed as low as 0.07 ppbv at the same location during morning hours in winter season. OFP of isoprene at vegetation sites is very high during post-monsoon because of high concentrations. However, OFP for other traffic tracers were high during winter seasons & at traffic locations. Furthermore, high correlation between isoprene emissions with traffic volume at traffic sites revealed that a noteworthy share of its emission also originates from road traffic.

Keywords: biogenic VOCs, isoprene emission, anthropogenic isoprene, urban vegetation

Procedia PDF Downloads 97
140 A Robust Stretchable Bio Micro-Electromechanical Systems Technology for High-Strain in vitro Cellular Studies

Authors: Tiffany Baetens, Sophie Halliez, Luc Buée, Emiliano Pallecchi, Vincent Thomy, Steve Arscott

Abstract:

We demonstrate here a viable stretchable bio-microelectromechanical systems (BioMEMS) technology for use with biological studies concerned with the effect of high mechanical strains on living cells. An example of this is traumatic brain injury (TBI) where neurons are damaged with physical force to the brain during, e.g., accidents and sports. Robust, miniaturized integrated systems are needed by biologists to be able to study the effect of TBI on neuron cells in vitro. The major challenges in this area are (i) to develop micro, and nanofabrication processes which are based on stretchable substrates and to (ii) create systems which are robust and performant at very high mechanical strain values—sometimes as high as 100%. At the time of writing, such processes and systems were rapidly evolving subject of research and development. The BioMEMS which we present here is composed of an elastomer substrate (low Young’s modulus ~1 MPa) onto which is patterned robust electrodes and insulators. The patterning of the thin films is achieved using standard photolithography techniques directly on the elastomer substrate—thus making the process generic and applicable to many materials’ in based systems. The chosen elastomer used is commercial ‘Sylgard 184’ polydimethylsiloxane (PDMS). It is spin-coated onto a silicon wafer. Multistep ultra-violet based photolithography involving commercial photoresists are then used to pattern robust thin film metallic electrodes (chromium/gold) and insulating layers (parylene) on the top of the PDMS substrate. The thin film metals are deposited using thermal evaporation and shaped using lift-off techniques The BioMEMS has been characterized mechanically using an in-house strain-applicator tool. The system is composed of 12 electrodes with one reference electrode transversally-orientated to the uniaxial longitudinal straining of the system. The electrical resistance of the electrodes is observed to remain very stable with applied strain—with a resistivity approaching that of evaporated gold—up to an interline strain of ~50%. The mechanical characterization revealed some interesting original properties of such stretchable BioMEMS. For example, a Poisson effect induced electrical ‘self-healing’ of cracking was identified. Biocompatibility of the commercial photoresist has been studied and is conclusive. We will present the results of the BioMEMS, which has also characterized living cells with a commercial Multi Electrode Array (MEA) characterization tool (Multi Channel Systems, USA). The BioMEMS enables the cells to be strained up to 50% and then characterized electrically and optically.

Keywords: BioMEMS, elastomer, electrical impedance measurements of living cells, high mechanical strain, microfabrication, stretchable systems, thin films, traumatic brain injury

Procedia PDF Downloads 124