Search results for: testing methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16931

Search results for: testing methods

16901 End To End Process to Automate Batch Application

Authors: Nagmani Lnu

Abstract:

Often, Quality Engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a Batch Application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a Batch application from a Financial Industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in Test Creation and Test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process.

Keywords: batch testing, batch test automation, batch test strategy, payments testing, payments settlement testing

Procedia PDF Downloads 25
16900 Analysis of the Annual Proficiency Testing Procedure for Intermediate Reference Laboratories Conducted by the National Reference Laboratory from 2013 to 2017

Authors: Reena K., Mamatha H. G., Somshekarayya, P. Kumar

Abstract:

Objectives: The annual proficiency testing of intermediate reference laboratories is conducted by the National Reference Laboratory (NRL) to assess the efficiency of the laboratories to correctly identify Mycobacterium tuberculosis and to determine its drug susceptibility pattern. The proficiency testing results from 2013 to 2017 were analyzed to determine laboratories that were consistent in reporting quality results and those that had difficulty in doing so. Methods: A panel of twenty cultures were sent out to each of these laboratories. The laboratories were expected to grow the cultures in their own laboratories, set up drug susceptibly testing by all the methods they were certified for and report the results within the stipulated time period. The turnaround time for reporting results, specificity, sensitivity positive and negative predictive values and efficiency of the laboratory in identifying the cultures were analyzed. Results: Most of the laboratories had reported their results within the stipulated time period. However, there was enormous delay in reporting results from few of the laboratories. This was mainly due to improper functioning of the biosafety level III laboratory. Only 40% of the laboratories had 100% efficiency in solid culture using Lowenstein Jensen medium. This was expected as a solid culture, and drug susceptibility testing is not used for diagnosing drug resistance. Rapid molecular methods such as Line probe assay and Genexpert are used to determine drug resistance. Automated liquid culture system such as the Mycobacterial growth indicator tube is used to determine prognosis of the patient while on treatment. It was observed that 90% of the laboratories had achieved 100% in the liquid culture method. Almost all laboratories had achieved 100% efficiency in the line probe assay method which is the method of choice for determining drug-resistant tuberculosis. Conclusion: Since the liquid culture and line probe assay technologies are routinely used for the detection of drug-resistant tuberculosis the laboratories exhibited higher level of efficiency as compared to solid culture and drug susceptibility testing which are rarely used. The infrastructure of the laboratory should be maintained properly so that samples can be processed safely and results could be declared on time.

Keywords: annual proficiency testing, drug susceptibility testing, intermediate reference laboratory, national reference laboratory

Procedia PDF Downloads 163
16899 Factors Affecting the Readiness in the License Examination Testing of Nursing Students

Authors: Suwannee Sroisong, Angkhana Ruenkon, Ronnaphop Eimtab

Abstract:

The purpose of this study was twofold: First, to examine the relationship of the Readiness on the License Examination Testing (RLET) with factors namely achieved motivation, attitude on testing, self-perception, perception in testing among the nursing students at Baromarajonani College of Nursing, Buddhachinaraj, Thailand (BCNB); and secondly, to investigate the factors affecting the RLET of the nursing students. All data were collected from a set of 214 questionnaires of nursing students, second semester and in academic year 2010, at BCNB. As a set of variables in the questionnaire, it consisted of factors of readiness in testing, achieved motivation, attitude on testing, self-perception, and perception in testing. The following statistics were analyzed: frequency, percentage, means, standard deviation, and Stepwise-multiple regression correlation. Research results were as follows: 1) For the relationship among following factors, namely achieved motivation, attitude on testing, self-perception, perception in testing, there were positive correlation coefficients between .324 to .560 at the .05 level of significance; and 2) One crucial factor affecting the RLET of nursing students, namely achieved motivation, was found. The achieved motivation factor could explain the variance or predict the RLET of nursing students at 31.40 percent and at the .05 level of significance.

Keywords: readiness, nursing, license examination testing, Thailand

Procedia PDF Downloads 374
16898 Solubility Measurements in the Context of Nanoregulation

Authors: Ratna Tantra

Abstract:

From a risk assessment point of view, solubility is a property that has been identified as being important. If nanomaterial is completely soluble, then its disposal can be treated much in the same way as ‘ordinary’ chemicals, which subsequently will simplify testing and characterization regimes. The measurement of solubility has been highlighted as important in a pan-European project, Framework Programme (FP) 7 NANoREG. Some of the project outputs surrounding this topic will be presented here, in which there are two parts. First, a review on existing methods capable of measuring nanomaterial solubility will be discussed. Second, a case study will be presented based on using colorimetry methods to quantify dissolve zinc from ZnO nanomaterial upon exposure to digestive juices. The main findings are as follows: a) there is no universal method for nanomaterial solubility testing. The method chosen will be dependent on sample type and nano-specific application/scenario. b) The colorimetry results show a positive correlation between particle concentration and amount of [Zn2+] released; this was expected c) results indicate complete dissolution of the ZnO nanomaterial, as a result of the digestion protocol but only a fraction existing as free ions. Finally, what differentiates the F7 NANoREG project over other projects is the need for participating research laboratories to follow a set of defined protocols, necessary to establish quality control and assurance. The methods and results associated with mandatory testing that carried out by all partners in NANoREG will be discussed.

Keywords: nanomaterials, nanotoxicology, solubility, zinc oxide

Procedia PDF Downloads 311
16897 Non-Destructive Testing of Selective Laser Melting Products

Authors: Luca Collini, Michele Antolotti, Diego Schiavi

Abstract:

At present, complex geometries within production time shrinkage, rapidly increasing demand, and high-quality standard requirement make the non-destructive (ND) control of additively manufactured components indispensable means. On the other hand, a technology gap and the lack of standards regulating the methods and the acceptance criteria indicate the NDT of these components a stimulating field to be still fully explored. Up to date, penetrant testing, acoustic wave, tomography, radiography, and semi-automated ultrasound methods have been tested on metal powder based products so far. External defects, distortion, surface porosity, roughness, texture, internal porosity, and inclusions are the typical defects in the focus of testing. Detection of density and layers compactness are also been tried on stainless steels by the ultrasonic scattering method. In this work, the authors want to present and discuss the radiographic and the ultrasound ND testing on additively manufactured Ti₆Al₄V and inconel parts obtained by the selective laser melting (SLM) technology. In order to test the possibilities given by the radiographic method, both X-Rays and γ-Rays are tried on a set of specifically designed specimens realized by the SLM. The specimens contain a family of defectology, which represent the most commonly found, as cracks and lack of fusion. The tests are also applied to real parts of various complexity and thickness. A set of practical indications and of acceptance criteria is finally drawn.

Keywords: non-destructive testing, selective laser melting, radiography, UT method

Procedia PDF Downloads 113
16896 Navigating Cyber Attacks with Quantum Computing: Leveraging Vulnerabilities and Forensics for Advanced Penetration Testing in Cybersecurity

Authors: Sayor Ajfar Aaron, Ashif Newaz, Sajjat Hossain Abir, Mushfiqur Rahman

Abstract:

This paper examines the transformative potential of quantum computing in the field of cybersecurity, with a focus on advanced penetration testing and forensics. It explores how quantum technologies can be leveraged to identify and exploit vulnerabilities more efficiently than traditional methods and how they can enhance the forensic analysis of cyber-attacks. Through theoretical analysis and practical simulations, this study highlights the enhanced capabilities of quantum algorithms in detecting and responding to sophisticated cyber threats, providing a pathway for developing more resilient cybersecurity infrastructures.

Keywords: cybersecurity, cyber forensics, penetration testing, quantum computing

Procedia PDF Downloads 14
16895 Bivariate Analyses of Factors That May Influence HIV Testing among Women Living in the Democratic Republic of the Congo

Authors: Danielle A. Walker, Kyle L. Johnson, Patrick J. Fox, Jacen S. Moore

Abstract:

The HIV Continuum of Care has become a universal model to provide context for the process of HIV testing, linkage to care, treatment, and viral suppression. HIV testing is the first step in moving toward community viral suppression. Countries with a lower socioeconomic status experience the lowest rates of testing and access to care. The Democratic Republic of the Congo is located in the heart of sub-Saharan Africa, where testing and access to care are low and women experience higher HIV prevalence compared to men. In the Democratic Republic of the Congo there is only a 21.6% HIV testing rate among women. Because a critical gap exists between a woman’s risk of contracting HIV and the decision to be tested, this study was conducted to obtain a better understanding of the relationship between factors that could influence HIV testing among women. The datasets analyzed were from the 2013-14 Democratic Republic of the Congo Demographic and Health Survey Program. The data was subset for women with an age range of 18-49 years. All missing cases were removed and one variable was recoded. The total sample size analyzed was 14,982 women. The results showed that there did not seem to be a difference in HIV testing by mean age. Out of 11 religious categories (Catholic, Protestant, Armee de salut, Kimbanguiste, Other Christians, Muslim, Bundu dia kongo, Vuvamu, Animist, no religion, and other), those who identified as Other Christians had the highest testing rate of 25.9% and those identified as Vuvamu had a 0% testing rate (p<0.001). There was a significant difference in testing by religion. Only 0.7% of women surveyed identified as having no religious affiliation. This suggests partnerships with key community and religious leaders could be a tool to increase testing. Over 60% of women who had never been tested for HIV did not know where to be tested. This highlights the need to educate communities on where testing facilities can be located. Almost 80% of women who believed HIV could be transmitted by supernatural means and/or witchcraft had never been tested before (p=0.08). Cultural beliefs could influence risk perception and testing decisions. Consequently, misconceptions need to be considered when implementing HIV testing and prevention programs. Location by province, years of education, and wealth index were also analyzed to control for socioeconomic status. Kinshasa had the highest testing rate of 54.2% of women living there, and both Equateur and Kasai-Occidental had less than a 10% testing rate (p<0.001). As the education level increased up to 12 years, testing increased (p<0.001). Women within the highest quintile of the wealth index had a 56.1% testing rate, and women within the lowest quintile had a 6.5% testing rate (p<0.001). This study concludes that further research is needed to identify culturally competent methods to increase HIV education programs, build partnerships with key community leaders, and improve knowledge on access to care.

Keywords: Democratic Republic of the Congo, cultural beliefs, education, HIV testing

Procedia PDF Downloads 266
16894 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 195
16893 The Effect of Program Type on Mutation Testing: Comparative Study

Authors: B. Falah, N. E. Abakouy

Abstract:

Due to its high computational cost, mutation testing has been neglected by researchers. Recently, many cost and mutants’ reduction techniques have been developed, improved, and experimented, but few of them has relied the possibility of reducing the cost of mutation testing on the program type of the application under test. This paper is a comparative study between four operators’ selection techniques (mutants sampling, class level operators, method level operators, and all operators’ selection) based on the program code type of each application under test. It aims at finding an alternative approach to reveal the effect of code type on mutation testing score. The result of our experiment shows that the program code type can affect the mutation score and that the programs using polymorphism are best suited to be tested with mutation testing.

Keywords: equivalent mutant, killed mutant, mutation score, mutation testing, program code type, software testing

Procedia PDF Downloads 527
16892 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 170
16891 The Complexity of Testing Cryptographic Devices on Input Faults

Authors: Alisher Ikramov, Gayrat Juraev

Abstract:

The production of logic devices faces the occurrence of faults during manufacturing. This work analyses the complexity of testing a special type of logic device on inverse, adhesion, and constant input faults. The focus of this work is on devices that implement cryptographic functions. The complexity values for the general case faults and for some frequently occurring subsets were determined and proved in this work. For a special case, when the length of the text block is equal to the length of the key block, the complexity of testing is proven to be asymptotically half the complexity of testing all logic devices on the same types of input faults.

Keywords: complexity, cryptographic devices, input faults, testing

Procedia PDF Downloads 195
16890 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology

Authors: Richard Ji

Abstract:

Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.

Keywords: nondestructive testing, pavement moduli backcalculation, finite element method, concrete pavements

Procedia PDF Downloads 138
16889 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods

Authors: W. Swiderski

Abstract:

Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.

Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation

Procedia PDF Downloads 232
16888 Performance of Visual Inspection Using Acetic Acid for Cervical Cancer Screening as Compared to HPV DNA Testingin Ethiopia: A Comparative Cross-Sectional Study

Authors: Agajie Likie Bogale, Tilahun Teklehaymanot, Getnet Mitike Kassie, Girmay Medhin, Jemal Haidar Ali, Nega Berhe Belay

Abstract:

Objectives: The aim of this study is to evaluate the performance of visual inspection using acetic acid compared with HPV DNA testing among women living with HIV in Ethiopia. Methods: Acomparative cross-sectional study was conducted to address the aforementioned objective. Data were collected from January to October 2021 to compare the performance of these two screening modalities. Trained clinicians collected cervical specimens and immediately applied acetic acid for visual inspection. The HPV DNA testing was done using Abbott m2000rt/SP by trained laboratory professionals in accredited laboratories. A total of 578 HIV positive women with age 25-49 years were included. Results: Test positivity was 8.9% using VIA and 23.3% using HPV DNA test. The sensitivity and specificity of the VIA test were 19.2% and 95.1%, respectively, while the positive and negative predictive values of the VIA test were 54.4% and 79.4%, respectively. The strength of agreement between the two screening methods was poor (k=0.184), and the area under the curve was 0.572. The burden of genetic distribution of high risk HPV16 was 3.8%, and mixed HPV16& other HR HPV was 1.9%. Other high risk HPV types were predominant in this study (15.7%). Conclusion: The high positivity result using HPV DNA testing compared with VIA, and low sensitivity of VIA are indicating that the implementation of HPV DNA testing as the primary screening strategy is likely to reduce cervical cancer cases and deaths of women in the country.

Keywords: cervical cancer screening, HPV DNA, VIA, Ethiopia

Procedia PDF Downloads 104
16887 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: frequency response function, impact testing, modal analysis, oblique angle, oblique impact

Procedia PDF Downloads 471
16886 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA

Authors: Catelyn Coyle, Helena Kwakwa

Abstract:

Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.

Keywords: HCV, routine testing, linkage to care, community health centers

Procedia PDF Downloads 335
16885 Development of a New Device for Bending Fatigue Testing

Authors: B. Mokhtarnia, M. Layeghi

Abstract:

This work presented an original bending fatigue-testing setup for fatigue characterization of composite materials. A three-point quasi-static setup was introduced that was capable of applying stress control load in different loading waveforms, frequencies, and stress ratios. This setup was equipped with computerized measuring instruments to evaluate fatigue damage mechanisms. A detailed description of its different parts and working features was given, and dynamic analysis was done to verify the functional accuracy of the device. Feasibility was validated successfully by conducting experimental fatigue tests.

Keywords: bending fatigue, quasi-static testing setup, experimental fatigue testing, composites

Procedia PDF Downloads 89
16884 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms

Authors: Arslan Ellahi, Syed Amjad Hussain

Abstract:

Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.

Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation

Procedia PDF Downloads 160
16883 The Legal Regulation of Direct-to-Consumer Genetic Testing In South Africa

Authors: Amy Gooden

Abstract:

Despite its prevalence, direct-to-consumer genetic testing (DTC-GT) remains under-investigated in South Africa (SA), and the issue of regulation is yet to be examined. Therefore, this research maps the current legal landscape relating to DTC-GT in SA through a legal analysis of the extant law relevant to the industry and the issues associated therewith – with the intention of determining if and how DTC-GT is legally governed. This research analyses: whether consumers are legally permitted to collect their saliva; whether DTC-GT are medical devices; licensing, registering, and advertising; importing and exporting; and genetic research conducted by companies.

Keywords: direct-to-consumer genetic testing, genetic testing, health, law, regulation, South Africa

Procedia PDF Downloads 111
16882 Correlation of Material Mechanical Characteristics Obtained by Means of Standardized and Miniature Test Specimens

Authors: Vaclav Mentl, P. Zlabek, J. Volak

Abstract:

New methods of mechanical testing were developed recently that are based on making use of miniature test specimens (e.g. Small Punch Test). The most important advantage of these method is the nearly non-destructive withdrawal of test material and small size of test specimen what is interesting in cases of remaining lifetime assessment when a sufficient volume of the representative material cannot be withdrawn of the component in question. In opposite, the most important disadvantage of such methods stems from the necessity to correlate test results with the results of standardised test procedures and to build up a database of material data in service. The correlations among the miniature test specimen data and the results of standardised tests are necessary. The paper describes the results of fatigue tests performed on miniature tests specimens in comparison with traditional fatigue tests for several steels applied in power producing industry. Special miniature test specimens fixtures were designed and manufactured for the purposes of fatigue testing at the Zwick/Roell 10HPF5100 testing machine. The miniature test specimens were produced of the traditional test specimens. Seven different steels were fatigue loaded (R = 0.1) at room temperature.

Keywords: mechanical properties, miniature test specimens, correlations, small punch test, micro-tensile test, mini-charpy impact test

Procedia PDF Downloads 508
16881 Concrete-Wall-Climbing Testing Robot

Authors: S. Tokuomi, K. Mori, Y. Tsuruzono

Abstract:

A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.

Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method

Procedia PDF Downloads 628
16880 Computer Aided Assembly Attributes Retrieval Methods for Automated Assembly Sequence Generation

Authors: M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, B. B. V. L. Deepak

Abstract:

Achieving an appropriate assembly sequence needs deep verification for its physical feasibility. For this purpose, industrial engineers use several assembly predicates; namely, liaison, geometric feasibility, stability and mechanical feasibility. However, testing an assembly sequence for these predicates requires huge assembly information. Extracting such assembly information from an assembled product is a time consuming and highly skillful task with complex reasoning methods. In this paper, computer aided methods are proposed to extract all the necessary assembly information from computer aided design (CAD) environment in order to perform the assembly sequence planning efficiently. These methods use preliminary capabilities of three-dimensional solid modelling and assembly modelling methods used in CAD software considering equilibrium laws of physical bodies.

Keywords: assembly automation, assembly attributes, assembly, CAD

Procedia PDF Downloads 275
16879 Charging-Vacuum Helium Mass Spectrometer Leak Detection Technology in the Application of Space Products Leak Testing and Error Control

Authors: Jijun Shi, Lichen Sun, Jianchao Zhao, Lizhi Sun, Enjun Liu, Chongwu Guo

Abstract:

Because of the consistency of pressure direction, more short cycle, and high sensitivity, Charging-Vacuum helium mass spectrometer leak testing technology is the most popular leak testing technology for the seal testing of the spacecraft parts, especially the small and medium size ones. Usually, auxiliary pump was used, and the minimum detectable leak rate could reach 5E-9Pa•m3/s, even better on certain occasions. Relative error is more important when evaluating the results. How to choose the reference leak, the background level of helium, and record formats would affect the leak rate tested. In the linearity range of leak testing system, it would reduce 10% relative error if the reference leak with larger leak rate was used, and the relative error would reduce obviously if the background of helium was low efficiently, the record format of decimal was used, and the more stable data were recorded.

Keywords: leak testing, spacecraft parts, relative error, error control

Procedia PDF Downloads 429
16878 Effective Learning and Testing Methods in School-Aged Children

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi

Abstract:

When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.

Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning

Procedia PDF Downloads 174
16877 A Novel Approach to Design of EDDR Architecture for High Speed Motion Estimation Testing Applications

Authors: T. Gangadhararao, K. Krishna Kishore

Abstract:

Motion Estimation (ME) plays a critical role in a video coder, testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient (RQ) code, to embed into ME for video coding testing applications. An error in processing Elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and timing penalty.

Keywords: area overhead, data recovery, error detection, motion estimation, reliability, residue-and-quotient (RQ) code

Procedia PDF Downloads 404
16876 Features of Testing of the Neuronetwork Converter Biometrics-Code with Correlation Communications between Bits of the Output Code

Authors: B. S. Akhmetov, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin, K. Mukapil, S. D. Tolybayev

Abstract:

The article examines the testing of the neural network converter of biometrics code. Determined the main reasons that prevented the use adopted in the works of foreign researchers classical a Binomial Law when describing distribution of measures of Hamming "Alien" codes-responses.

Keywords: biometrics, testing, neural network, converter of biometrics-code, Hamming's measure

Procedia PDF Downloads 1114
16875 Kinematic Behavior of Geogrid Reinforcements during Earthquakes

Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim

Abstract:

Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.

Keywords: geogrid, soil, interface, cyclic loading, pullout, large scale testing

Procedia PDF Downloads 594
16874 Controlled Shock Response Spectrum Test on Spacecraft Subsystem Using Electrodynamic Shaker

Authors: M. Madheswaran, A. R. Prashant, S. Ramakrishna, V. Ramesh Naidu, P. Govindan, P. Aravindakshan

Abstract:

Shock Response spectrum (SRS) tests are one of the tests that are conducted on some critical systems of spacecraft as part of environmental testing. The SRS tests are conducted to simulate the pyro shocks that occur during launch phases as well as during deployment of spacecraft appendages. Some of the methods to carryout SRS tests are pyro technique method, impact hammer method, drop shock method and using electro dynamic shakers. The pyro technique, impact hammer and drop shock methods are open loop tests, whereas SRS testing using electrodynamic shaker is a controlled closed loop test. SRS testing using electrodynamic shaker offers various advantages such as simple test set up, better controllability and repeatability. However, it is important to devise a a proper test methodology so that safety of the electro dynamic shaker and that of test specimen are not compromised. This paper discusses the challenges that are involved in conducting SRS tests, shaker validation and the necessary precautions to be considered. Approach involved in choosing various test parameters like synthesis waveform, spectrum convergence level, etc., are discussed. A case study of SRS test conducted on an optical payload of Indian Geo stationary spacecraft is presented.

Keywords: maxi-max spectrum, SRS (shock response spectrum), SDOf (single degree of freedom), wavelet synthesis

Procedia PDF Downloads 330
16873 Factors Determining Intention to Pursue Genetic Testing for People in Taiwan

Authors: Ju-Chun Chien

Abstract:

The Ottawa Charter for Health Promotion proposed that the role of health services should shift the focus from cure to prevention. Nowadays, besides having physical examinations, people could also conduct genetic tests to provide important information for diagnosing, treating, and/or preventing illnesses. However, because of the incompletion of the Chinese Genetic Database, people in Taiwan were still unfamiliar with genetic testing. The purposes of the present study were to: (1) Figure out people’s attitudes towards genetic testing. (2) Examine factors that influence people’s intention to pursue genetic testing by means of the Health Belief Model (HBM). A pilot study was conducted on 249 Taiwanese in 2017 to test the feasibility of the self-developed instrument. The reliability and construct validity of scores on the self-developed questionnaire revealed that this HBM-based questionnaire with 40 items was a well-developed instrument. A total of 542 participants were recruited and the valid participants were 535 (99%) between the ages of 20 and 86. Descriptive statistics, one-way ANOVA, two-way contingency table analysis, Pearson’s correlation, and stepwise multiple regression analysis were used in this study. The main results were that only 32 participants (6%) had already undergone genetic testing; moreover, their attitude towards genetic testing was more positive than those who did not have the experience. Compared with people who never underwent genetic tests, those who had gone for genetic testing had higher self-efficacy, greater intention to pursue genetic testing, had academic majors in health-related fields, had chronic and genetic diseases, possessed Catastrophic Illness Cards, and all of them had heard about genetic testing. The variables that best predicted people’s intention to pursue genetic testing were cues to action, self-efficacy, and perceived benefits (the three variables all correlated with one another positively at high magnitudes). To sum up, the HBM could be effective in designing and identifying the needs and priorities of the target population to pursue genetic testing.

Keywords: genetic testing, knowledge of GT, people in Taiwan, the health belief model

Procedia PDF Downloads 288
16872 A Comparative Study between FEM and Meshless Methods

Authors: Jay N. Vyas, Sachin Daxini

Abstract:

Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.

Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods

Procedia PDF Downloads 365