Search results for: teaching-learning based optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29016

Search results for: teaching-learning based optimization

28746 SOUL Framework in Theology and Islamic Philosophy

Authors: Khan Shahid, Shahid Zakia

Abstract:

This article explores the fields of Theology and Islamic Philosophy in alignment with the SOUL (Sincere act, Optimization efforts, Ultimate goal, Law compliance) framework. It examines their historical development and demonstrates how embracing sincerity, optimization, ultimate goals, and law compliance enhances these disciplines within the Islamic context. By emphasizing the importance of Sincere acts, Optimization efforts, Ultimate goal, and Law compliance, this article provides a framework for enriching Theology and Islamic Philosophy.

Keywords: SOUL framework, Theology, Islamic Philosophy, Sincerity act, Optimization effort, Ultimate goal, Law compliance

Procedia PDF Downloads 58
28745 Execution Time Optimization of Workflow Network with Activity Lead-Time

Authors: Xiaoping Qiu, Binci You, Yue Hu

Abstract:

The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.

Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network

Procedia PDF Downloads 148
28744 A Conjugate Gradient Method for Large Scale Unconstrained Optimization

Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami

Abstract:

Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.

Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence

Procedia PDF Downloads 386
28743 Networked Implementation of Milling Stability Optimization with Bayesian Learning

Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher

Abstract:

Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.

Keywords: machining stability, machine learning, sensor, optimization

Procedia PDF Downloads 179
28742 Estimation of Fuel Cost Function Characteristics Using Cuckoo Search

Authors: M. R. Al-Rashidi, K. M. El-Naggar, M. F. Al-Hajri

Abstract:

The fuel cost function describes the electric power generation-cost relationship in thermal plants, hence, it sheds light on economical aspects of power industry. Different models have been proposed to describe this relationship with the quadratic function model being the most popular one. Parameters of second order fuel cost function are estimated in this paper using cuckoo search algorithm. It is a new population based meta-heuristic optimization technique that has been used in this study primarily as an accurate estimation tool. Its main features are flexibility, simplicity, and effectiveness when compared to other estimation techniques. The parameter estimation problem is formulated as an optimization one with the goal being minimizing the error associated with the estimated parameters. A case study is considered in this paper to illustrate cuckoo search promising potential as a valuable estimation and optimization technique.

Keywords: cuckoo search, parameters estimation, fuel cost function, economic dispatch

Procedia PDF Downloads 549
28741 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.

Keywords: design constraints, ETABS, linear static analysis, MATLAB, RC shear wall-frame structures, structural optimization

Procedia PDF Downloads 230
28740 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: load forecasting, artificial neural network, particle swarm optimization

Procedia PDF Downloads 146
28739 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability

Procedia PDF Downloads 522
28738 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms

Authors: Abdul Rehman, Bo Liu

Abstract:

Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.

Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization

Procedia PDF Downloads 203
28737 Comparison of ANFIS Update Methods Using Genetic Algorithm, Particle Swarm Optimization, and Artificial Bee Colony

Authors: Michael R. Phangtriastu, Herriyandi Herriyandi, Diaz D. Santika

Abstract:

This paper presents a comparison of the implementation of metaheuristic algorithms to train the antecedent parameters and consequence parameters in the adaptive network-based fuzzy inference system (ANFIS). The algorithms compared are genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC). The objective of this paper is to benchmark well-known metaheuristic algorithms. The algorithms are applied to several data set with different nature. The combinations of the algorithms' parameters are tested. In all algorithms, a different number of populations are tested. In PSO, combinations of velocity are tested. In ABC, a different number of limit abandonment are tested. Experiments find out that ABC is more reliable than other algorithms, ABC manages to get better mean square error (MSE) than other algorithms in all data set.

Keywords: ANFIS, artificial bee colony, genetic algorithm, metaheuristic algorithm, particle swarm optimization

Procedia PDF Downloads 318
28736 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection

Authors: Jiayuan Wu. Lu Hu

Abstract:

With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.

Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm

Procedia PDF Downloads 103
28735 Optimization of the Mechanical Performance of Fused Filament Fabrication Parts

Authors: Iván Rivet, Narges Dialami, Miguel Cervera, Michele Chiumenti

Abstract:

Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator.

Keywords: additive manufacturing, optimization, printing direction, mechanical performance, voxelization

Procedia PDF Downloads 32
28734 An Ant Colony Optimization Approach for the Pollution Routing Problem

Authors: P. Parthiban, Sonu Rajak, N. Kannan, R. Dhanalakshmi

Abstract:

This paper deals with the Vehicle Routing Problem (VRP) with environmental considerations which is called Pollution Routing Problem (PRP). The objective is to minimize the operational and environmental costs. It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. In this context, we presented an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the PRP. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage a SOA is run on the resulting VRPTW solutions. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm is able to provide good solutions.

Keywords: ant colony optimization, CO2 emissions, combinatorial optimization, speed optimization, vehicle routing

Procedia PDF Downloads 293
28733 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 81
28732 Pilot Scale Deproteinization Study on Fish Scale Using Response Surface Methodology

Authors: Fatima Bellali, Mariem Kharroubi

Abstract:

Fish scale wastes are one of the main sources of production of value-added products such as collagen. The main aim of this study is to investigate the optimization conditions of the sardine scale deproteinization using response surface methodology (RSM) on a pilot scale. In order to look for the optimal conditions, a Box–Behnken-based design of experiment (DOE) method was carried out. The model predicted values of product coal ash content were in good agreement with the experiment values (R2 = 0.9813). Finally, model-based optimization was carried out to identify the operating parameters (reaction time=4h and the solid-liquid ratio= 1/10) and to obtain the lowest collagen content.

Keywords: pilot scale, Plackett and Burman design, fish waste, deproteinization

Procedia PDF Downloads 123
28731 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 83
28730 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy

Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar

Abstract:

Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.

Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization

Procedia PDF Downloads 59
28729 Iterative Dynamic Programming for 4D Flight Trajectory Optimization

Authors: Kawser Ahmed, K. Bousson, Milca F. Coelho

Abstract:

4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution.

Keywords: 4D waypoint navigation, iterative dynamic programming, obstacle avoidance, trajectory optimization

Procedia PDF Downloads 132
28728 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.

Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor

Procedia PDF Downloads 104
28727 First Investigation on CZTS Electron affinity and Thickness Optimization using SILVACO-Atlas 2D Simulation

Authors: Zeineb Seboui, Samar Dabbabi

Abstract:

In this paper, we study the performance of Cu₂ZnSnS₄ (CZTS) based solar cell. In our knowledge, it is for the first time that the FTO/ZnO:Co/CZTS structure is simulated using the SILVACO-Atlas 2D simulation. Cu₂ZnSnS₄ (CZTS), ZnO:Co and FTO (SnO₂:F) layers have been deposited on glass substrates by the spray pyrolysis technique. The extracted physical properties, such as thickness and optical parameters of CZTS layer, are considered to create a new input data of CZTS based solar cell. The optimization of CZTS electron affinity and thickness is performed to have the best FTO/ZnO: Co/CZTS efficiency. The use of CZTS absorber layer with 3.99 eV electron affinity and 3.2 µm in thickness leads to the higher efficiency of 16.86 %, which is very important in the development of new technologies and new solar cell devices.

Keywords: CZTS solar cell, characterization, electron affinity, thickness, SILVACO-atlas 2D simulation

Procedia PDF Downloads 53
28726 Fault Location Identification in High Voltage Transmission Lines

Authors: Khaled M. El Naggar

Abstract:

This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.

Keywords: optimization, estimation, faults, measurement, high voltage, simulated annealing

Procedia PDF Downloads 372
28725 Optimization of Operational Parameters and Design of an Electrochlorination System to Produce Naclo

Authors: Pablo Ignacio Hernández Arango, Niels Lindemeyer

Abstract:

Chlorine, as Sodium Hypochlorite (NaClO) solution in water, is an effective, worldwide spread, and economical substance to eliminate germs in the water. The disinfection potential of chlorine lies in its ability to degrade the outer surfaces of bacterial cells and viruses. This contribution reports the main parameters of the brine electrolysis for the production of NaClO, which is afterward used for the disinfection of water either for drinking or recreative uses. Herein, the system design was simulated, optimized, build, and tested based on titanium electrodes. The process optimization considers the whole process, from the salt (NaCl) dilution tank in order to maximize its operation time util the electrolysis itself in order to maximize the chlorine production reducing the energy and raw material (salt and water) consumption. One novel idea behind this optimization process is the modification of the flow pattern inside the electrochemical reactors. The increasing turbulence and residence time impact positively the operations figures. The operational parameters, which are defined in this study were compared and benchmarked with the parameters of actual commercial systems in order to validate the pertinency of those results.

Keywords: electrolysis, water disinfection, sodium hypochlorite, process optimization

Procedia PDF Downloads 96
28724 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces

Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli

Abstract:

In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.

Keywords: weak efficient, algebraic interior, vector closure, linear space

Procedia PDF Downloads 197
28723 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 580
28722 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis

Procedia PDF Downloads 203
28721 Fault Diagnosis of Manufacturing Systems Using AntTreeStoch with Parameter Optimization by ACO

Authors: Ouahab Kadri, Leila Hayet Mouss

Abstract:

In this paper, we present three diagnostic modules for complex and dynamic systems. These modules are based on three ant colony algorithms, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. We chose these algorithms for their simplicity and their wide application range. However, we cannot use these algorithms in their basement forms as they have several limitations. To use these algorithms in a diagnostic system, we have proposed three variants. We have tested these algorithms on datasets issued from two industrial systems, which are clinkering system and pasteurization system.

Keywords: ant colony algorithms, complex and dynamic systems, diagnosis, classification, optimization

Procedia PDF Downloads 267
28720 Optimization of Heterojunction Solar Cell Using AMPS-1D

Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui

Abstract:

Photo voltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP/GaAs configuration for p/ n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.

Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction

Procedia PDF Downloads 380
28719 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm

Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei

Abstract:

This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.

Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network

Procedia PDF Downloads 629
28718 Linear Array Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Taguchi Method

Authors: Amara Prakasa Rao, N. V. S. N. Sarma

Abstract:

This paper describes the synthesis of linear array geometry with minimum sidelobe level and null control using the Taguchi method. Based on the concept of the orthogonal array, Taguchi method effectively reduces the number of tests required in an optimization process. Taguchi method has been successfully applied in many fields such as mechanical, chemical engineering, power electronics, etc. Compared to other evolutionary methods such as genetic algorithms, simulated annealing and particle swarm optimization, the Taguchi method is much easier to understand and implement. It requires less computational/iteration processing to optimize the problem. Different cases are considered to illustrate the performance of this technique. Simulation results show that this method outperforms the other evolution algorithms (like GA, PSO) for smart antenna systems design.

Keywords: array factor, beamforming, null placement, optimization method, orthogonal array, Taguchi method, smart antenna system

Procedia PDF Downloads 362
28717 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand

Authors: Leila Jafari, Viliam Makis

Abstract:

In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.

Keywords: condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand

Procedia PDF Downloads 443