Search results for: storm tide map
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 257

Search results for: storm tide map

17 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa

Authors: Ayanda P. Deliwe, Storm B. Watson

Abstract:

The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.

Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources

Procedia PDF Downloads 45
16 Measuring Organizational Resiliency for Flood Response in Thailand

Authors: Sudha Arlikatti, Laura Siebeneck, Simon A. Andrew

Abstract:

The objective of this research is to measure organizational resiliency through five attributes namely, rapidity, redundancy, resourcefulness, and robustness and to provide recommendations for resiliency building in flood risk communities. The research was conducted in Thailand following the severe floods of 2011 triggered by Tropical Storm Nock-ten. The floods lasted over eight months starting in June 2011 affecting 65 of the country’s 76 provinces and over 12 million people. Funding from a US National Science Foundation grant was used to collect ephemeral data in rural (Ayutthaya), suburban (Pathum Thani), and urban (Bangkok) provinces of Thailand. Semi-structured face-to-face interviews were conducted in Thai with 44 contacts from public, private, and non-profit organizations including universities, schools, automobile companies, vendors, tourist agencies, monks from temples, faith based organizations, and government agencies. Multiple triangulations were used to analyze the data by identifying selective themes from the qualitative data, validated with quantitative data and news media reports. This helped to obtain a more comprehensive view of how organizations in different geographic settings varied in their understanding of what enhanced or hindered their resilience and consequently their speed and capacities to respond. The findings suggest that the urban province of Bangkok scored highest in resourcefulness, rapidity of response, robustness, and ability to rebound. This is not surprising considering that it is the country’s capital and the seat of government, economic, military and tourism sectors. However, contrary to expectations all 44 respondents noted that the rural province of Ayutthaya was the fastest to recover amongst the three. Its organizations scored high on redundancy and rapidity of response due to the strength of social networks, a flood disaster sub-culture due to annual flooding, and the help provided by monks from and faith based organizations. Organizations in the suburban community of Pathum Thani scored lowest on rapidity of response and resourcefulness due to limited and ambiguous warnings, lack of prior flood experience and controversies that government flood protection works like sandbagging favored the capital city of Bangkok over them. Such a micro-level examination of organizational resilience in rural, suburban and urban areas in a country through mixed methods studies has its merits in getting a nuanced understanding of the importance of disaster subcultures and religious norms for resilience. This can help refocus attention on the strengths of social networks and social capital, for flood mitigation.

Keywords: disaster subculture, flood response, organizational resilience, Thailand floods, religious beliefs and response, social capital and disasters

Procedia PDF Downloads 124
15 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands

Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé

Abstract:

The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.

Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis

Procedia PDF Downloads 128
14 Liquid Waste Management in Cluster Development

Authors: Abheyjit Singh, Kulwant Singh

Abstract:

There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.

Keywords: collection, treatment, utilization, economic

Procedia PDF Downloads 41
13 i-Plastic: Surface and Water Column Microplastics From the Coastal North Eastern Atlantic (Portugal)

Authors: Beatriz Rebocho, Elisabete Valente, Carla Palma, Andreia Guilherme, Filipa Bessa, Paula Sobral

Abstract:

The global accumulation of plastic in the oceans is a growing problem. Plastic is transported from its source to the oceans via rivers, which are considered the main route for plastic particles from land-based sources to the ocean. These plastics undergo physical and chemical degradation resulting in microplastics. The i-Plastic project aims to understand and predict the dispersion, accumulation and impacts of microplastics (5 mm to 1 µm) and nano plastics (below 1 µm) in marine environments from the tropical and temperate land-ocean interface to the open ocean under distinct flow and climate regimes. Seasonal monitoring of the fluxes of microplastics was carried out in (three) coastal areas in Brazil, Portugal and Spain. The present work shows the first results of in-situ seasonal monitoring and mapping of microplastics in ocean waters between Ovar and Vieira de Leiria (Portugal), in which 43 surface water samples and 43 water column samples were collected in contrasting seasons (spring and autumn). The spring and autumn surface water samples were collected with a 300 µm and 150 µm pore neuston net, respectively. In both campaigns, water column samples were collected using a conical mesh with a 150 µm pore. The experimental procedure comprises the following steps: i) sieving by a metal sieve; ii) digestion with potassium hydroxide to remove the organic matter original from the sample matrix. After a filtration step, the content is retained on a membrane and observed under a stereomicroscope, and physical and chemical characterization (type, color, size, and polymer composition) of the microparticles is performed. Results showed that 84% and 88% of the surface water and water column samples were contaminated with microplastics, respectively. Surface water samples collected during the spring campaign averaged 0.35 MP.m-3, while surface water samples collected during autumn recorded 0.39 MP.m-3. Water column samples from the spring campaign had an average of 1.46 MP.m-3, while those from the autumn recorded 2.54 MP.m-3. In the spring, all microplastics found were fibers, predominantly black and blue. In autumn, the dominant particles found in the surface waters were fibers, while in the water column, fragments were dominant. In spring, the average size of surface water particles was 888 μm, while in the water column was 1063 μm. In autumn, the average size of surface and water column microplastics was 1333 μm and 1393 μm, respectively. The main polymers identified by Attenuated Total Reflectance (ATR) and micro-ATR Fourier Transform Infrared (FTIR) spectroscopy from all samples were low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The significant difference between the microplastic concentration in the water column between the two campaigns could be due to the remixing of the water masses that occurred that week due to the occurrence of a storm. This work presents preliminary results since the i-Plastic project is still in progress. These results will contribute to the understanding of the spatial and temporal dispersion and accumulation of microplastics in this marine environment.

Keywords: microplastics, Portugal, Atlantic Ocean, water column, surface water

Procedia PDF Downloads 49
12 Comparative Assessment of Rainwater Management Alternatives for Dhaka City: Case Study of North South University

Authors: S. M. Islam, Wasi Uddin, Nazmun Nahar

Abstract:

Dhaka, the capital of Bangladesh, faces two contrasting problems; excess of water during monsoon season and scarcity of water during dry season. The first problem occurs due to rapid urbanization and mismanagement of rainwater whereas the second problem is related to climate change and increasing urban population. Inadequate drainage system also worsens the overall water management scenario in Dhaka city. Dhaka has a population density of 115,000 people per square miles. This results in a 2.5 billion liter water demand every day, 87% of which is fulfilled by groundwater. Over dependency on groundwater has resulted in more than 200 feet drop in the last 50 years and continues to decline at a rate of 9 feet per year. Considering the gravity of the problem, it is high time that practitioners, academicians and policymakers consider different water management practices and look into their cumulative impacts at different scales. The present study assesses different rainwater management options for North South University of Bangladesh and recommends the most feasible and sustainable rainwater management measure. North South University currently accommodates over 20,000 students, faculty members, and administrative staffs. To fulfill the water demand, there are two deep tube wells, which bring up approximately 150,000 liter of water every hour. The annual water demand is approximately 103 million liters. Dhaka receives approximately 1800 mm of rainfall every year. For the current study, two academic buildings and one administrative building consist of 4924 square meters of rooftop area was selected as catchment area. Both rainwater harvesting and groundwater recharge options were analyzed separately. It was estimated that by rainwater harvesting, annually a total of 7.2 million liters of water can be reused which is approximately 7% of the total annual water usage. In the monsoon, rainwater harvesting fulfills 12.2% of the monthly water demand. The approximate cost of the rainwater harvesting system is estimated to be 940975 bdt (USD 11500). For direct groundwater recharge, a system comprises of one de-siltation tank, two recharge tanks and one siltation tank were designed that requires approximately 532788 bdt (USD 6500). The payback period is approximately 7 years and 4 months for the groundwater recharge system whereas the payback period for rainwater harvesting option is approximately 12 years and 4 months. Based on the cost-benefit analysis, the present study finds the groundwater recharge system to be most suitable for North South University. The present study also demonstrates that if only one institution like North South University can add up a substantial amount of water to the aquifer, bringing other institutions in the network has the potential to create significant cumulative impact on replenishing the declining groundwater level of Dhaka city. As an additional benefit, it also prevents large amount of water being discharged into the storm sewers which results in severe flooding in Dhaka city during monsoon.

Keywords: Dhaka, groundwater, harvesting, rainwater, recharge

Procedia PDF Downloads 97
11 Student Experiences in Online Doctoral Programs: A Critical Review of the Literature

Authors: Nicole A. Alford

Abstract:

The study of online graduate education started just 30 years ago, with the first online graduate program in the 1990s. Institutions are looking for ways to increase retention and support the needs of students with the rapid expansion of online higher education due to the global pandemic. Online education provides access and opportunities to those who otherwise would be unable to pursue an advanced degree for logistical reasons. Thus, the objective of the critical literature review is to survey current research of student experiences given the expanding role of online doctoral programs. The guiding research questions are: What are the personal, professional, and student life practices of graduate students who enrolled in a fully online university doctoral program or course? and How do graduate students who enrolled in a fully online doctoral program or course describe the factors that contributed to their continued study? The systematic literature review was conducted employing a variety of databases to locate articles using key Boolean terms and synonyms within three categories of the e-learning, doctoral education, and student perspectives. Inclusion criteria for the literature review consisted of empirical peer-reviewed studies with original data sources that focused on doctoral programs and courses within a fully online environment and centered around student experiences. A total of 16 articles were selected based on the inclusion criteria and systemically analyzed through coding using the Boote and Beile criteria. Major findings suggest that doctoral students face stressors related to social and emotional wellbeing in the online environment. A lack of social connection, isolation, and burnout were the main challenges experienced by students. Students found support from their colleagues, advisors, and faculty to persist. Communities and cohorts of online doctoral students were found to guard against these challenges. Moreover, in the methods section of the articles, there was a lack of specificity related to student demographics, general student information, and insufficient detail about the online doctoral program. Additionally, descriptions regarding the experiences of cohorts and communities in the online environment were vague and not easily replicable with the given details. This literature review reveals that doctoral students face social and emotional challenges related to isolation and the rigor of the academic process and lean on others for support to continue in their studies. Given the lack of current knowledge about online doctoral students, it proves to be a challenge to identify effective practices and create high-retention doctoral programs in online environments. The paucity of information combined with the dramatic transition to e-learning due to the global pandemic can provide a perfect storm for attrition in these programs. Several higher education institutions have transitioned graduate studies online, thus providing an opportunity for further exploration. Given the new necessity of online learning, this work provides insight into examining current practices in online doctoral programs that have moved to this modality during the pandemic. The significance of the literature review provides a springboard for research into online doctoral programs as the solution to continue advanced education amongst a global pandemic.

Keywords: e-learning, experiences, higher education, literature review

Procedia PDF Downloads 93
10 Development of a Conceptual Framework for Supply Chain Management Strategies Maximizing Resilience in Volatile Business Environments: A Case of Ventilator Challenge UK

Authors: Elena Selezneva

Abstract:

Over the last two decades, an unprecedented growth in uncertainty and volatility in all aspects of the business environment has caused major global supply chain disruptions and malfunctions. The effects of one failed company in a supply chain can ripple up and down the chain, causing a number of entities or an entire supply chain to collapse. The complicating factor is that an increasingly unstable and unpredictable business environment fuels the growing complexity of global supply chain networks. That makes supply chain operations extremely unpredictable and hard to manage with the established methods and strategies. It has caused the premature demise of many companies around the globe as they could not withstand or adapt to the storm of change. Solutions to this problem are not easy to come by. There is a lack of new empirically tested theories and practically viable supply chain resilience strategies. The mainstream organizational approach to managing supply chain resilience is rooted in well-established theories developed in the 1960-1980s. However, their effectiveness is questionable in currently extremely volatile business environments. The systems thinking approach offers an alternative view of supply chain resilience. Still, it is very much in the development stage. The aim of this explorative research is to investigate supply chain management strategies that are successful in taming complexity in volatile business environments and creating resilience in supply chains. The design of this research methodology was guided by an interpretivist paradigm. A literature review informed the selection of the systems thinking approach to supply chain resilience. Therefore, an explorative single case study of Ventilator Challenge UK was selected as a case study for its extremely resilient performance of its supply chain during a period of national crisis. Ventilator Challenge UK is intensive care ventilators supply project for the NHS. It ran for 3.5 months and finished in 2020. The participants moved on with their lives, and most of them are not employed by the same organizations anymore. Therefore, the study data includes documents, historical interviews, live interviews with participants, and social media postings. The data analysis was accomplished in two stages. First, data were thematically analyzed. In the second stage, pattern matching and pattern identification were used to identify themes that formed the findings of the research. The findings from the Ventilator Challenge UK case study supply management practices demonstrated all the features of an adaptive dynamic system. They cover all the elements of supply chain and employ an entire arsenal of adaptive dynamic system strategies enabling supply chain resilience. Also, it is not a simple sum of parts and strategies. Bonding elements and connections between the components of a supply chain and its environment enabled the amplification of resilience in the form of systemic emergence. Enablers are categorized into three subsystems: supply chain central strategy, supply chain operations, and supply chain communications. Together, these subsystems and their interconnections form the resilient supply chain system framework conceptualized by the author.

Keywords: enablers of supply chain resilience, supply chain resilience strategies, systemic approach in supply chain management, resilient supply chain system framework, ventilator challenge UK

Procedia PDF Downloads 55
9 How Obesity Sparks the Immune System and Lessons from the COVID-19 Pandemic

Authors: Husham Bayazed

Abstract:

Purpose of Presentation: Obesity and overweight are among the biggest health challenges of the 21st century, according to the WHO. Obviously, obese individuals suffer different courses of disease – from infections and allergies to cancer- and even respond differently to some treatment options. Of note, obesity often seems to predispose and triggers several secondary diseases such as diabetes, arteriosclerosis, or heart attacks. Since decades it seems that immunological signals gear inflammatory processes among obese individuals with the aforementioned conditions. This review aims to shed light how obesity sparks or rewire the immune system and predisposes to such unpleasant health outcomes. Moreover, lessons from the Covid-19 pandemic ascertain that people living with pre-existing conditions such as obesity can develop severe acute respiratory syndrome (SARS), which needs to be elucidated how obesity and its adjuvant inflammatory process distortion contribute to enhancing severe COVID-19 consequences. Recent Findings: In recent clinical studies, obesity was linked to alter and sparks the immune system in different ways. Adipose tissue (AT) is considered as a secondary immune organ, which is a reservoir of tissue-resident of different immune cells with mediator release, making it a secondary immune organ. Adipocytes per se secrete several pro-inflammatory cytokines (IL-6, IL-4, MCP-1, and TNF-α ) involved in activation of macrophages resulting in chronic low-grade inflammation. The correlation between obesity and T cells dysregulation is pivotal in rewiring the immune system. Of note, autophagy occurrence in adipose tissues further rewire the immune system due to flush and outburst of leptin and adiponectin, which are cytokines and influencing pro-inflammatory immune functions. These immune alterations among obese individuals are collectively incriminated in triggering several metabolic disorders and playing role in increasing cancers incidence and susceptibility to different infections. During COVID-19 pandemic, it was verified that patients with pre-existing obesity being at greater risk of suffering severe and fatal clinical outcomes. Beside obese people suffer from increased airway resistance and reduced lung volume, ACE2 expression in adipose tissue seems to be high and even higher than that in lungs, which spike infection incidence. In essence, obesity with pre-existence of pro-inflammatory cytokines such as LI-6 is a risk factor for cytokine storm and coagulopathy among COVID-19 patients. Summary: It is well documented that obesity is associated with chronic systemic low-grade inflammation, which sparks and alter different pillars of the immune system and triggers different metabolic disorders, and increases susceptibility of infections and cancer incidence. The pre-existing chronic inflammation in obese patients with the augmented inflammatory response against the viral infection seems to increase the susceptibility of these patients to developing severe COVID-19. Although the new weight loss drugs and bariatric surgery are considered as breakthrough news for obesity treatment, but preventing is easier than treating it once it has taken hold. However, obesity and immune system link new insights dispute the role of immunotherapy and regulating immune cells treating diet-induced obesity.

Keywords: immunity, metabolic disorders, cancer, COVID-19

Procedia PDF Downloads 46
8 Microplastic Concentrations and Fluxes in Urban Compartments: A Systemic Approach at the Scale of the Paris Megacity

Authors: Rachid Dris, Robin Treilles, Max Beaurepaire, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Johnny Gasperi, Bruno Tassin

Abstract:

Microplastic sources and fluxes in urban catchments are only poorly studied. Most often, the approaches taken focus on a single source and only carry out a description of the contamination levels and type (shape, size, polymers). In order to gain an improved knowledge of microplastic inputs at urban scales, estimating and comparing various fluxes is necessary. The Laboratoire Eau, Environnement et Systèmes Urbains (LEESU), the Laboratoire Eau Environnement (LEE) and the SIAAP (Service public de l’assainissement francilien) initiated several projects to investigate different urban sources and flows of microplastics. A systemic approach is undertaken at the scale of Paris Megacity, and several compartments are considered, including atmospheric fallout, wastewater treatments plants, runoff and combined sewer overflows. These investigations are carried out within the Limnoplast and OPUR projects. Atmospheric fallout was sampled during consecutive periods ranging from 2 to 3 weeks with a stainless-steel funnel. Both wet and dry periods were considered. Different treatment steps were sampled in 2 wastewater treatment plants (Seine-Amont for activated sludge and Seine-Centre for biofiltration) of the SIAAP, including sludge samples. Microplastics were also investigated in combined sewer overflows as well as in stormwater at the outlet suburban catchment (Sucy-en-Brie, France) during four rain events. Samples are treated using hydroperoxide digestion (H₂O₂ 30 %) in order to reduce organic material. Microplastics are then extracted from the samples with a density separation step using NaI (d=1.6 g.cm⁻³). Samples are filtered on metallic filters with a porosity of 14 µm between steps to separate them from the solutions (H₂O₂ and NaI). The last filtration was carried out on alumina filters. Infrared mapping analysis (using a micro-FTIR with an MCT detector) is performed on each alumina filter. The resulting maps are analyzed using a microplastic analysis software simple, developed by Aalborg University, Denmark and Alfred Wegener Institute, Germany. Blanks were systematically carried out to consider sample contamination. This presentation aims at synthesizing the data found in the various projects. In order to carry out a systemic approach and compare the various inputs, all the data were converted into annual microplastic fluxes (number of microplastics per year), and extrapolated to the Parisian agglomeration. PP, PE and alkyd are the most prevalent polymers found in storm water samples. Rain intensity and microplastic concentrations did not show any clear correlation. Considering the runoff volumes and the impervious surface area of the studied catchment, a flux of 4*107–9*107 MPs.yr⁻¹.ha⁻¹ was estimated. Samples of wastewater treatment plants and atmospheric fallout are currently being analyzed in order to finalize this assessment. The representativeness of such samplings and uncertainties related to the extrapolations will be discussed and gaps in knowledge will be identified. The data provided by such an approach will help to prioritize future research as well as policy efforts.

Keywords: microplastics, atmosphere, wastewater, urban runoff, Paris megacity, urban waters

Procedia PDF Downloads 157
7 Sea Level Rise and Sediment Supply Explain Large-Scale Patterns of Saltmarsh Expansion and Erosion

Authors: Cai J. T. Ladd, Mollie F. Duggan-Edwards, Tjeerd J. Bouma, Jordi F. Pages, Martin W. Skov

Abstract:

Salt marshes are valued for their role in coastal flood protection, carbon storage, and for supporting biodiverse ecosystems. As a biogeomorphic landscape, marshes evolve through the complex interactions between sea level rise, sediment supply and wave/current forcing, as well as and socio-economic factors. Climate change and direct human modification could lead to a global decline marsh extent if left unchecked. Whilst the processes of saltmarsh erosion and expansion are well understood, empirical evidence on the key drivers of long-term lateral marsh dynamics is lacking. In a GIS, saltmarsh areal extent in 25 estuaries across Great Britain was calculated from historical maps and aerial photographs, at intervals of approximately 30 years between 1846 and 2016. Data on the key perceived drivers of lateral marsh change (namely sea level rise rates, suspended sediment concentration, bedload sediment flux rates, and frequency of both river flood and storm events) were collated from national monitoring centres. Continuous datasets did not extend beyond 1970, therefore predictor variables that best explained rate change of marsh extent between 1970 and 2016 was calculated using a Partial Least Squares Regression model. Information about the spread of Spartina anglica (an invasive marsh plant responsible for marsh expansion around the globe) and coastal engineering works that may have impacted on marsh extent, were also recorded from historical documents and their impacts assessed on long-term, large-scale marsh extent change. Results showed that salt marshes in the northern regions of Great Britain expanded an average of 2.0 ha/yr, whilst marshes in the south eroded an average of -5.3 ha/yr. Spartina invasion and coastal engineering works could not explain these trends since a trend of either expansion or erosion preceded these events. Results from the Partial Least Squares Regression model indicated that the rate of relative sea level rise (RSLR) and availability of suspended sediment concentration (SSC) best explained the patterns of marsh change. RSLR increased from 1.6 to 2.8 mm/yr, as SSC decreased from 404.2 to 78.56 mg/l along the north-to-south gradient of Great Britain, resulting in the shift from marsh expansion to erosion. Regional differences in RSLR and SSC are due to isostatic rebound since deglaciation, and tidal amplitudes respectively. Marshes exposed to low RSLR and high SSC likely leads to sediment accumulation at the coast suitable for colonisation by marsh plants and thus lateral expansion. In contrast, high RSLR with are likely not offset deposition under low SSC, thus average water depth at the marsh edge increases, allowing larger wind-waves to trigger marsh erosion. Current global declines in sediment flux to the coast are likely to diminish the resilience of salt marshes to RSLR. Monitoring and managing suspended sediment supply is not common-place, but may be critical to mitigating coastal impacts from climate change.

Keywords: lateral saltmarsh dynamics, sea level rise, sediment supply, wave forcing

Procedia PDF Downloads 105
6 Future Research on the Resilience of Tehran’s Urban Areas Against Pandemic Crises Horizon 2050

Authors: Farzaneh Sasanpour, Saeed Amini Varaki

Abstract:

Resilience is an important goal for cities as urban areas face an increasing range of challenges in the 21st century; therefore, according to the characteristics of risks, adopting an approach that responds to sensitive conditions in the risk management process is the resilience of cities. In the meantime, most of the resilience assessments have dealt with natural hazards and less attention has been paid to pandemics.In the covid-19 pandemic, the country of Iran and especially the metropolis of Tehran, was not immune from the crisis caused by its effects and consequences and faced many challenges. One of the methods that can increase the resilience of Tehran's metropolis against possible crises in the future is future studies. This research is practical in terms of type. The general pattern of the research will be descriptive-analytical and from the point of view that it is trying to communicate between the components and provide urban resilience indicators with pandemic crises and explain the scenarios, its future studies method is exploratory. In order to extract and determine the key factors and driving forces effective on the resilience of Tehran's urban areas against pandemic crises (Covid-19), the method of structural analysis of mutual effects and Micmac software was used. Therefore, the primary factors and variables affecting the resilience of Tehran's urban areas were set in 5 main factors, including physical-infrastructural (transportation, spatial and physical organization, streets and roads, multi-purpose development) with 39 variables based on mutual effects analysis. Finally, key factors and variables in five main areas, including managerial-institutional with five variables; Technology (intelligence) with 3 variables; economic with 2 variables; socio-cultural with 3 variables; and physical infrastructure, were categorized with 7 variables. These factors and variables have been used as key factors and effective driving forces on the resilience of Tehran's urban areas against pandemic crises (Covid-19), in explaining and developing scenarios. In order to develop the scenarios for the resilience of Tehran's urban areas against pandemic crises (Covid-19), intuitive logic, scenario planning as one of the future research methods and the Global Business Network (GBN) model were used. Finally, four scenarios have been drawn and selected with a creative method using the metaphor of weather conditions, which is indicative of the general outline of the conditions of the metropolis of Tehran in that situation. Therefore, the scenarios of Tehran metropolis were obtained in the form of four scenarios: 1- solar scenario (optimal governance and management leading in smart technology) 2- cloud scenario (optimal governance and management following in intelligent technology) 3- dark scenario (optimal governance and management Unfavorable leader in intelligence technology) 4- Storm scenario (unfavorable governance and management of follower in intelligence technology). The solar scenario shows the best situation and the stormy scenario shows the worst situation for the Tehran metropolis. According to the findings obtained in this research, city managers can, in order to achieve a better tomorrow for the metropolis of Tehran, in all the factors and components of urban resilience against pandemic crises by using future research methods, a coherent picture with the long-term horizon of 2050, from the path Provide urban resilience movement and platforms for upgrading and increasing the capacity to deal with the crisis. To create the necessary platforms for the realization, development and evolution of the urban areas of Tehran in a way that guarantees long-term balance and stability in all dimensions and levels.

Keywords: future research, resilience, crisis, pandemic, covid-19, Tehran

Procedia PDF Downloads 42
5 Religion and Risk: Unmasking Noah's Narratives in the Pacific Islands

Authors: A. Kolendo

Abstract:

Pacific Islands are one of the most vulnerable areas to climate change. Sea level rise and accelerating storm surge continuously threaten the communities' habitats on low-lying atolls. With scientific predictions of encroaching tides on their land, the Islanders have been informed about the need for future relocation planning. However, some communities oppose such retreat strategies through the reasoning that comprehends current climatic changes through the lenses of the biblical ark of Noah. This parable states God's promise never to flood the Earth again and never deprive people of their land and habitats. Several interpretations of this parable emerged in Oceania, prompting either climate action or denial. Resistance to relocation planning expressed through Christian thoughts led religion to be perceived as a barrier to dialogue between the Islanders and scientists. Since climate change concerns natural processes, the attitudes towards environmental stewardship prompt the communities' responses to it; some Christian teachings indicate humanity's responsibility over the environment, whereas others ascertain the people's dominion, which prompts resistance and sometimes denial. With church denominations and their various environmental standpoints, competing responses to climate change emerged in Oceania. Before miss-ionization, traditional knowledge had guided the environmental sphere, influencing current Christian teachings. Each atoll characterizes a distinctive manner of traditional knowledge; however, the unique relationship with nature unites all islands. The interconnectedness between the land, sea and people indicates the integrity between the communities and their environments. Such a factor influences the comprehension of Noah's story in the context of climate change that threatens their habitats. Pacific Islanders experience climate change through the slow disappearance of their homelands. However, the Western world perceives it as a global issue that will affect the population in the long-term perspective. Therefore, the Islanders seek to comprehend this global phenomenon in a local context that reads climate change as the Great Deluge. Accordingly, the safety measures that this parable promotes compensate for the danger of climate change. The rainbow covenant gives hope in God's promise never to flood the Earth again. At the same time, Noah's survival relates to the Islanders' current situation. Since these communities have the lowest carbon emissions rate, their contribution to anthropogenic climate change is scarce. Therefore, the lack of environmental sin would contextualize them as contemporary Noah with the ultimate survival of sea level rise. This study aims to defy religion constituting a barrier through secondary data analysis from a risk compensation perspective. Instead, religion is portrayed as a source of knowledge that enables comprehension of the communities' situation. By demonstrating that the Pacific Islanders utilize Noah's story as a vessel for coping with the danger of climate change, the study argues that religion provides safety measures that compensate for the future projections of land's disappearance. The purpose is to build a bridge between religious communities and scientific bodies and ultimately bring an understanding of two diverse perspectives. By addressing the practical challenges of interdisciplinary research with faith-based systems, this study uplifts the voices of communities and portrays their experiences expressed through Christian thoughts.

Keywords: Christianity, climate change, existential threat, Pacific Islands, story of Noah

Procedia PDF Downloads 58
4 Smart Laboratory for Clean Rivers in India - An Indo-Danish Collaboration

Authors: Nikhilesh Singh, Shishir Gaur, Anitha K. Sharma

Abstract:

Climate change and anthropogenic stress have severely affected ecosystems all over the globe. Indian rivers are under immense pressure, facing challenges like pollution, encroachment, extreme fluctuation in the flow regime, local ignorance and lack of coordination between stakeholders. To counter all these issues a holistic river rejuvenation plan is needed that tests, innovates and implements sustainable solutions in the river space for sustainable river management. Smart Laboratory for Clean Rivers (SLCR) an Indo-Danish collaboration project, provides a living lab setup that brings all the stakeholders (government agencies, academic and industrial partners and locals) together to engage, learn, co-creating and experiment for a clean and sustainable river that last for ages. Just like every mega project requires piloting, SLCR has opted for a small catchment of the Varuna River, located in the Middle Ganga Basin in India. Considering the integrated approach of river rejuvenation, SLCR embraces various techniques and upgrades for rejuvenation. Likely, maintaining flow in the channel in the lean period, Managed Aquifer Recharge (MAR) is a proven technology. In SLCR, Floa-TEM high-resolution lithological data is used in MAR models to have better decision-making for MAR structures nearby of the river to enhance the river aquifer exchanges. Furthermore, the concerns of quality in the river are a big issue. A city like Varanasi which is located in the last stretch of the river, generates almost 260 MLD of domestic waste in the catchment. The existing STP system is working at full efficiency. Instead of installing a new STP for the future, SLCR is upgrading those STPs with an IoT-based system that optimizes according to the nutrient load and energy consumption. SLCR also advocate nature-based solutions like a reed bed for the drains having less flow. In search of micropollutants, SLCR uses fingerprint analysis involves employing advanced techniques like chromatography and mass spectrometry to create unique chemical profiles. However, rejuvenation attempts cannot be possible without involving the entire catchment. A holistic water management plan that includes storm management, water harvesting structure to efficiently manage the flow of water in the catchment and installation of several buffer zones to restrict pollutants entering into the river. Similarly, carbon (emission and sequestration) is also an important parameter for the catchment. By adopting eco-friendly practices, a ripple effect positively influences the catchment's water dynamics and aids in the revival of river systems. SLCR has adopted 4 villages to make them carbon-neutral and water-positive. Moreover, for the 24×7 monitoring of the river and the catchment, robust IoT devices are going to be installed to observe, river and groundwater quality, groundwater level, river discharge and carbon emission in the catchment and ultimately provide fuel for the data analytics. In its completion, SLCR will provide a river restoration manual, which will strategise the detailed plan and way of implementation for stakeholders. Lastly, the entire process is planned in such a way that will be managed by local administrations and stakeholders equipped with capacity-building activity. This holistic approach makes SLCR unique in the field of river rejuvenation.

Keywords: sustainable management, holistic approach, living lab, integrated river management

Procedia PDF Downloads 23
3 Stakeholder Engagement to Address Urban Health Systems Gaps for Migrants

Authors: A. Chandra, M. Arthur, L. Mize, A. Pomeroy-Stevens

Abstract:

Background: Lower and middle-income countries (LMICs) in Asia face rapid urbanization resulting in both economic opportunities (the urban advantage) and emerging health challenges. Urban health risks are magnified in informal settlements and include infectious disease outbreaks, inadequate access to health services, and poor air quality. Over the coming years, urban spaces in Asia will face accelerating public health risks related to migration, climate change, and environmental health. These challenges are complex and require multi-sectoral and multi-stakeholder solutions. The Building Health Cities (BHC) program is funded by the United States Agency for International Development (USAID) to work with smart city initiatives in the Asia region. BHC approaches urban health challenges by addressing policies, planning, and services through a health equity lens, with a particular focus on informal settlements and migrant communities. The program works to develop data-driven decision-making, build inclusivity through stakeholder engagement, and facilitate the uptake of appropriate technology. Methodology: The BHC program has partnered with the smart city initiatives of Indore in India, Makassar in Indonesia, and Da Nang in Vietnam. Implementing partners support municipalities to improve health delivery and equity using two key approaches: political economy analysis and participatory systems mapping. Political economy analyses evaluate barriers to collective action, including corruption, security, accountability, and incentives. Systems mapping evaluates community health challenges using a cross-sectoral approach, analyzing the impact of economic, environmental, transport, security, health system, and built environment factors. The mapping exercise draws on the experience and expertise of a diverse cohort of stakeholders, including government officials, municipal service providers, and civil society organizations. Results: Systems mapping and political economy analyses identified significant barriers for health care in migrant populations. In Makassar, migrants are unable to obtain the necessary card that entitles them to subsidized health services. This finding is being used to engage with municipal governments to mitigate the barriers that limit migrant enrollment in the public social health insurance scheme. In Indore, the project identified poor drainage of storm and wastewater in migrant settlements as a cause of poor health. Unsafe and inadequate infrastructure placed residents of these settlements at risk for both waterborne diseases and injuries. The program also evaluated the capacity of urban primary health centers serving migrant communities, identifying challenges related to their hours of service and shortages of health workers. In Da Nang, the systems mapping process has only recently begun, with the formal partnership launched in December 2019. Conclusion: This paper explores lessons learned from BHC’s systems mapping, political economy analyses, and stakeholder engagement approaches. The paper shares progress related to the health of migrants in informal settlements. Case studies feature barriers identified and mitigating steps, including governance actions, taken by local stakeholders in partner cities. The paper includes an update on ongoing progress from Indore and Makassar and experience from the first six months of program implementation from Da Nang.

Keywords: informal settlements, migration, stakeholder engagement mapping, urban health

Procedia PDF Downloads 85
2 Coastal Foodscapes as Nature-Based Coastal Regeneration Systems

Authors: Gulce Kanturer Yasar, Hayriye Esbah Tuncay

Abstract:

Cultivated food production systems have coexisted harmoniously with nature for thousands of years through ancient techniques. Based on this experience, experimentation, and discovery, these culturally embedded methods have evolved to sustain food production, restore ecosystems, and harmoniously adapt to nature. In this era, as we seek solutions to food security challenges, enhancing and repairing our food production systems is crucial, making them more resilient to future disasters without harming the ecosystem. Instead of unsustainable conventional systems with ongoing destructive effects, we must investigate innovative and restorative production systems that integrate ancient wisdom and technology. Whether we consider agricultural fields, pastures, forests, coastal wetland ecosystems, or lagoons, it is crucial to harness the potential of these natural resources in addressing future global challenges, fostering both socio-economic resilience and ecological sustainability through strategic organization for food production. When thoughtfully designed and managed, marine-based food production has the potential to function as a living infrastructure system that addresses social and environmental challenges despite its known adverse impacts on the environment and local economies. These areas are also stages of daily life, vibrant hubs where local culture is produced and shared, contributing to the distinctive rural character of coastal settlements and exhibiting numerous spatial expressions of public nature. When we consider the history of humanity, indigenous communities have engaged in these sustainable production practices that provide goods for food, trade, culture, and the environment for many ages. Ecosystem restoration and socio-economic resilience can be achieved by combining production techniques based on ecological knowledge developed by indigenous societies with modern technologies. Coastal lagoons are highly productive coastal features that provide various natural services and societal values. They are especially vulnerable to severe physical, ecological, and social impacts of changing, challenging global conditions because of their placement within the coastal landscape. Coastal lagoons are crucial in sustaining fisheries productivity, providing storm protection, supporting tourism, and offering other natural services that hold significant value for society. Although there is considerable literature on the physical and ecological dimensions of lagoons, much less literature focuses on their economic and social values. This study will discuss the possibilities of coastal lagoons to achieve both ecologically sustainable and socio-economically resilient while maintaining their productivity by combining local techniques and modern technologies. The case study will present Turkey’s traditional aquaculture method, "Dalyans," predominantly operated by small-scale farmers in coastal lagoons. Due to human, ecological, and economic factors, dalyans are losing their landscape characteristics and efficiency. These 1000-year-old ancient techniques, rooted in centuries of traditional and agroecological knowledge, are under threat of tourism, urbanization, and unsustainable agricultural practices. Thus, Dalyans have diminished from 29 to approximately 4-5 active Dalyans. To deal with the adverse socio-economic and ecological consequences on Turkey's coastal areas, conserving Dalyans by protecting their indigenous practices while incorporating contemporary methods is essential. This study seeks to generate scenarios that envision the potential ways protection and development can manifest within case study areas.

Keywords: coastal foodscape, lagoon aquaculture, regenerative food systems, watershed food networks

Procedia PDF Downloads 35
1 Flood Risk Management in the Semi-Arid Regions of Lebanon - Case Study “Semi Arid Catchments, Ras Baalbeck and Fekha”

Authors: Essam Gooda, Chadi Abdallah, Hamdi Seif, Safaa Baydoun, Rouya Hdeib, Hilal Obeid

Abstract:

Floods are common natural disaster occurring in semi-arid regions in Lebanon. This results in damage to human life and deterioration of environment. Despite their destructive nature and their immense impact on the socio-economy of the region, flash floods have not received adequate attention from policy and decision makers. This is mainly because of poor understanding of the processes involved and measures needed to manage the problem. The current understanding of flash floods remains at the level of general concepts; most policy makers have yet to recognize that flash floods are distinctly different from normal riverine floods in term of causes, propagation, intensity, impacts, predictability, and management. Flash floods are generally not investigated as a separate class of event but are rather reported as part of the overall seasonal flood situation. As a result, Lebanon generally lacks policies, strategies, and plans relating specifically to flash floods. Main objective of this research is to improve flash flood prediction by providing new knowledge and better understanding of the hydrological processes governing flash floods in the East Catchments of El Assi River. This includes developing rainstorm time distribution curves that are unique for this type of study region; analyzing, investigating, and developing a relationship between arid watershed characteristics (including urbanization) and nearby villages flow flood frequency in Ras Baalbeck and Fekha. This paper discusses different levels of integration approach¬es between GIS and hydrological models (HEC-HMS & HEC-RAS) and presents a case study, in which all the tasks of creating model input, editing data, running the model, and displaying output results. The study area corresponds to the East Basin (Ras Baalbeck & Fakeha), comprising nearly 350 km2 and situated in the Bekaa Valley of Lebanon. The case study presented in this paper has a database which is derived from Lebanese Army topographic maps for this region. Using ArcMap to digitizing the contour lines, streams & other features from the topographic maps. The digital elevation model grid (DEM) is derived for the study area. The next steps in this research are to incorporate rainfall time series data from Arseal, Fekha and Deir El Ahmar stations to build a hydrologic data model within a GIS environment and to combine ArcGIS/ArcMap, HEC-HMS & HEC-RAS models, in order to produce a spatial-temporal model for floodplain analysis at a regional scale. In this study, HEC-HMS and SCS methods were chosen to build the hydrologic model of the watershed. The model then calibrated using flood event that occurred between 7th & 9th of May 2014 which considered exceptionally extreme because of the length of time the flows lasted (15 hours) and the fact that it covered both the watershed of Aarsal and Ras Baalbeck. The strongest reported flood in recent times lasted for only 7 hours covering only one watershed. The calibrated hydrologic model is then used to build the hydraulic model & assessing of flood hazards maps for the region. HEC-RAS Model is used in this issue & field trips were done for the catchments in order to calibrated both Hydrologic and Hydraulic models. The presented models are a kind of flexible procedures for an ungaged watershed. For some storm events it delivers good results, while for others, no parameter vectors can be found. In order to have a general methodology based on these ideas, further calibration and compromising of results on the dependence of many flood events parameters and catchment properties is required.

Keywords: flood risk management, flash flood, semi arid region, El Assi River, hazard maps

Procedia PDF Downloads 457