Search results for: stably-stratified atmospheric boundary layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4001

Search results for: stably-stratified atmospheric boundary layer

581 Strategic Analysis of Energy and Impact Assessment of Microalgae Based Biodiesel and Biogas Production in Outdoor Raceway Pond: A Life Cycle Perspective

Authors: T. Sarat Chandra, M. Maneesh Kumar, S. N. Mudliar, V. S. Chauhan, S. Mukherji, R. Sarada

Abstract:

The life cycle assessment (LCA) of biodiesel production from freshwater microalgae Scenedesmus dimorphus cultivated in open raceway pond is performed. Various scenarios for biodiesel production were simulated using primary and secondary data. The parameters varied in the modelled scenarios were related to biomass productivity, mode of culture mixing and type of energy source. The process steps included algae cultivation in open raceway ponds, harvesting by chemical flocculation, dewatering by mechanical drying option (MDO) followed by extraction, reaction and purification. Anaerobic digestion of defatted algal biomass (DAB) for biogas generation is considered as a co-product allocation and the energy derived from DAB was thereby used in the upstream of the process. The scenarios were analysed for energy demand, emissions and environmental impacts within the boundary conditions grounded on "cradle to gate" inventory. Across all the Scenarios, cultivation via raceway pond was observed to be energy intensive process. The mode of culture mixing and biomass productivity determined the energy requirements of the cultivation step. Emissions to Freshwater were found to be maximum contributing to 93-97% of total emissions in all the scenarios. Global warming potential (GWP) was the found to be major environmental impact accounting to about 99% of total environmental impacts in all the modelled scenarios. It was noticed that overall emissions and impacts were directly related to energy demand and an inverse relationship was observed with biomass productivity. The geographic location of an energy source affected the environmental impact of a given process. The integration of defatted algal remnants derived electricity with the cultivation system resulted in a 2% reduction in overall energy demand. Direct biogas generation from microalgae post harvesting is also analysed. Energy surplus was observed after using part of the energy in upstream for biomass production. Results suggest biogas production from microalgae post harvesting as an environmentally viable and sustainable option compared to biodiesel production.

Keywords: biomass productivity, energy demand, energy source, Lifecycle Assessment (LCA), microalgae, open raceway pond

Procedia PDF Downloads 266
580 The Biomechanical Analysis of Pelvic Osteotomies Applied for Developmental Dysplasia of the Hip Treatment in Pediatric Patients

Authors: Suvorov Vasyl, Filipchuk Viktor

Abstract:

Developmental Dysplasia of the Hip (DDH) is a frequent pathology in pediatric orthopedist’s practice. Neglected or residual cases of DDH in walking patients are usually treated using pelvic osteotomies. Plastic changes take place in hinge points due to acetabulum reorientation during surgery. Classically described hinge points and a traditional division of pelvic osteotomies on reshaping and reorientation are currently debated. The purpose of this article was to evaluate biomechanical changes during the most commonly used pelvic osteotomies (Salter, Dega, Pemberton) for DDH treatment in pediatric patients. Methods: virtual pelvic models of 2- and 6-years old patients were created, material properties were assigned, pelvic osteotomies were simulated and biomechanical changes were evaluated using finite element analysis (FEA). Results: it was revealed that the patient's age has an impact on pelvic bones and cartilages density (in younger patients the pelvic elements are more pliable - p<0.05). Stress distribution after each of the abovementioned pelvic osteotomy was assessed in 2- and 6-years old patients’ pelvic models; hinge points were evaluated. The new term "restriction point" was introduced, which means a place where restriction of acetabular deformity correction occurs. Pelvic ligaments attachment points were mainly these restriction points. Conclusions: it was found out that there are no purely reshaping and reorientation pelvic osteotomies as previously believed; the pelvic ring acts as a unit in carrying out the applied load. Biomechanical overload of triradiate cartilage during Salter osteotomy in 2-years old patient and in 2- and 6-years old patients during Pemberton osteotomy was revealed; overload of the posterior cortical layer in the greater sciatic notch in 2-years old patient during Dega osteotomy was revealed. Level of Evidence – Level IV, prognostic.

Keywords: developmental dysplasia of the hip, pelvic osteotomy, finite element analysis, hinge point, biomechanics

Procedia PDF Downloads 60
579 The Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Exposed for Different Environment Conditions

Authors: Rajai Al-Rousan

Abstract:

The repair and strengthening of concrete structures is a big challenge for the concrete industry for both engineers and contractors. Due to increasing economical constraints, the current trend is to repair/upgrade deteriorated and functionally obsolete structures rather than replacing them with new structures. CFRP has been used previously by air space industries regardless of the high costs. The decrease in the costs of the composite materials, as results of the technology improvement, has made CFRP an alternative to conventional materials for many applications. The primary objective of this research is to investigate the flexural behavior of reinforced concrete (RC) beams externally strengthened with CFRP composites exposed for three years for the following conditions: (a) room temperature, (b) cyclic ponding in 15% salt-water solution, (c) hot-water of 65oC, and (d) rapid freeze/thaw cycles. Results indicated that the after three years of various environmental conditions, the bond strength between the concrete beams and CFRP sheets was not affected. No signs of separation or debonding of CFRP sheets were observed before testing. Also, externally strengthening RC beams with CFRP sheets leads to a substantial increase in the ductility of concrete structures. This is a result of forcing the concrete to undergo inelastic deformation, resulting in compression failure of the structure after yielding of steel reinforcement. In addition, exposure to heat water tank for three years reduces the ultimate load by about 11%. This 11% reduction in the ultimate load equates to about 53%, 46% and 68% loss of the gain of the strength attributed to the CFRP of 2/3 Layer, 1 Layers and 2 Layers CFRP Sheets respectively. This mean that with decreasing of number of layers the environmental exposure had an efficient effect on concrete by protection concrete from environmental effect and adverse effect on the bond performance.

Keywords: flexural, behavior, CFRP, composites, environment, conditions

Procedia PDF Downloads 279
578 Graphic User Interface Design Principles for Designing Augmented Reality Applications

Authors: Afshan Ejaz, Syed Asim Ali

Abstract:

The reality is a combination of perception, reconstruction, and interaction. Augmented Reality is the advancement that layer over consistent everyday existence which includes content based interface, voice-based interfaces, voice-based interface and guide based or gesture-based interfaces, so designing augmented reality application interfaces is a difficult task for the maker. Designing a user interface which is not only easy to use and easy to learn but its more interactive and self-explanatory which have high perceived affordability, perceived usefulness, consistency and high discoverability so that the user could easily recognized and understand the design. For this purpose, a lot of interface design principles such as learnability, Affordance, Simplicity, Memorability, Feedback, Visibility, Flexibly and others are introduced but there no such principles which explain the most appropriate interface design principles for designing an Augmented Reality application interfaces. Therefore, the basic goal of introducing design principles for Augmented Reality application interfaces is to match the user efforts and the computer display (‘plot user input onto computer output’) using an appropriate interface action symbol (‘metaphors’) or to make that application easy to use, easy to understand and easy to discover. In this study by observing Augmented reality system and interfaces, few of well-known design principle related to GUI (‘user-centered design’) are identify and through them, few issues are shown which can be determined through the design principles. With the help of multiple studies, our study suggests different interface design principles which makes designing Augmented Reality application interface more easier and more helpful for the maker as these principles make the interface more interactive, learnable and more usable. To accomplish and test our finding, Pokémon Go an Augmented Reality game was selected and all the suggested principles are implement and test on its interface. From the results, our study concludes that our identified principles are most important principles while developing and testing any Augmented Reality application interface.

Keywords: GUI, augmented reality, metaphors, affordance, perception, satisfaction, cognitive burden

Procedia PDF Downloads 136
577 Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding

Authors: D. Miroud, H. Mokaddem, M. Tata, N. Foucha

Abstract:

The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure.

Keywords: dilution, dissolution, hardfacing, infiltrated matrix, PDC drill bits

Procedia PDF Downloads 316
576 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel

Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino

Abstract:

Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.

Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation

Procedia PDF Downloads 440
575 Mass Flux and Forensic Assessment: Informed Remediation Decision Making at One of Canada’s Most Polluted Sites

Authors: Tony R. Walker, N. Devin MacAskill, Andrew Thalhiemer

Abstract:

Sydney Harbour, Nova Scotia, Canada has long been subject to effluent and atmospheric inputs of contaminants, including thousands of tons of PAHs from a large coking and steel plant which operated in Sydney for nearly a century. Contaminants comprised of coal tar residues which were discharged from coking ovens into a small tidal tributary, which became known as the Sydney Tar Ponds (STPs), and subsequently discharged into Sydney Harbour. An Environmental Impact Statement concluded that mobilization of contaminated sediments posed unacceptable ecological risks, therefore immobilizing contaminants in the STPs using solidification and stabilization was identified as a primary source control remediation option to mitigate against continued transport of contaminated sediments from the STPs into Sydney Harbour. Recent developments in contaminant mass flux techniques focus on understanding “mobile” vs. “immobile” contaminants at remediation sites. Forensic source evaluations are also increasingly used for understanding origins of PAH contaminants in soils or sediments. Flux and forensic source evaluation-informed remediation decision-making uses this information to develop remediation end point goals aimed at reducing off-site exposure and managing potential ecological risk. This study included reviews of previous flux studies, calculating current mass flux estimates and a forensic assessment using PAH fingerprint techniques, during remediation of one of Canada’s most polluted sites at the STPs. Historically, the STPs was thought to be the major source of PAH contamination in Sydney Harbour with estimated discharges of nearly 800 kg/year of PAHs. However, during three years of remediation monitoring only 17-97 kg/year of PAHs were discharged from the STPs, which was also corroborated by an independent PAH flux study during the first year of remediation which estimated 119 kg/year. The estimated mass efflux of PAHs from the STPs during remediation was in stark contrast to ~2000 kg loading thought necessary to cause a short term increase in harbour sediment PAH concentrations. These mass flux estimates during remediation were also between three to eight times lower than PAHs discharged from the STPs a decade prior to remediation, when at the same time, government studies demonstrated on-going reduction in PAH concentrations in harbour sediments. Flux results were also corroborated using forensic source evaluations using PAH fingerprint techniques which found a common source of PAHs for urban soils, marine and aquatic sediments in and around Sydney. Coal combustion (from historical coking) and coal dust transshipment (from current coal transshipment facilities), are likely the principal source of PAHs in these media and not migration of PAH laden sediments from the STPs during a large scale remediation project.

Keywords: contaminated sediment, mass flux, forensic source evaluations, remediation

Procedia PDF Downloads 213
574 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi

Abstract:

During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.

Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization

Procedia PDF Downloads 473
573 Prediction of Fluid Induced Deformation using Cavity Expansion Theory

Authors: Jithin S. Kumar, Ramesh Kannan Kandasami

Abstract:

Geomaterials are generally porous in nature due to the presence of discrete particles and interconnected voids. The porosity present in these geomaterials play a critical role in many engineering applications such as CO2 sequestration, well bore strengthening, enhanced oil and hydrocarbon recovery, hydraulic fracturing, and subsurface waste storage. These applications involves solid-fluid interactions, which govern the changes in the porosity which in turn affect the permeability and stiffness of the medium. Injecting fluid into the geomaterials results in permeation which exhibits small or negligible deformation of the soil skeleton followed by cavity expansion/ fingering/ fracturing (different forms of instabilities) due to the large deformation especially when the flow rate is greater than the ability of the medium to permeate the fluid. The complexity of this problem increases as the geomaterial behaves like a solid and fluid under certain conditions. Thus it is important to understand this multiphysics problem where in addition to the permeation, the elastic-plastic deformation of the soil skeleton plays a vital role during fluid injection. The phenomenon of permeation and cavity expansion in porous medium has been studied independently through extensive experimental and analytical/ numerical models. The analytical models generally use Darcy's/ diffusion equations to capture the fluid flow during permeation while elastic-plastic (Mohr-Coulomb and Modified Cam-Clay) models were used to predict the solid deformations. Hitherto, the research generally focused on modelling cavity expansion without considering the effect of injected fluid coming into the medium. Very few studies have considered the effect of injected fluid on the deformation of soil skeleton. However, the porosity changes during the fluid injection and coupled elastic-plastic deformation are not clearly understood. In this study, the phenomenon of permeation and instabilities such as cavity and finger/ fracture formation will be quantified extensively by performing experiments using a novel experimental setup in addition to utilizing image processing techniques. This experimental study will describe the fluid flow and soil deformation characteristics under different boundary conditions. Further, a well refined coupled semi-analytical model will be developed to capture the physics involved in quantifying the deformation behaviour of geomaterial during fluid injection.

Keywords: solid-fluid interaction, permeation, poroelasticity, plasticity, continuum model

Procedia PDF Downloads 42
572 The Mechanical and Comfort Properties of Cotton/Micro-Tencel Lawn Fabrics

Authors: Abdul Basit, Shahid Latif, Shah Mehmood

Abstract:

Lawn fabric was usually prepared from originally of linen but at present chiefly cotton. Lawn fabric is worn in summer. Cotton Lawn is a lightweight pure cloth which is heavier than voile. It is so fine that it is somewhat transparent. It is soft and superb to wear thus it is perfect for summer clothes or for regular wear in hotter climates. Tencel (Lyocell) fiber is considered as the fiber of the future as Tencel fibers are absorbent, soft, and extremely strong when wet or dry, and resistant to wrinkles. Fibers are more absorbent than cotton, softer than silk and cooler than linen. High water absorption and water vapor absorption give more heat capacity and heat balancing effect for thermo-regulation. This thermo-regulation is analogous with the action of phase-change-materials. The thermal wear properties result in cool and dry touch that gives cooling effect in sportswear, and the warmth properties (when used as an insulation layer). These cooling and warming effects are adaptive to the environment giving comfort in a broad range of climatic conditions. In this work, single yarns of Ne 80s were made. Yarns were made from conventional ring spinning. Different yarns of 100% cotton, 100% micro-Tencel and Cotton:micro-Tencel blends (67:33, 50:50:33:67) were made. The mechanical and comfort properties of the woven fabrics were compared. The mechanical properties include the tensile and tear strength, bending length, pilling and abrasion resistance whereas comfort properties include the air permeability, moisture management and thermal resistance. It is found that as the content of the micro-Tencel is increased, the mechanical and comfort properties of the woven fabric are also increased.

Keywords: combed cotton, comfort properties , mechanical properties, micro-Tencel

Procedia PDF Downloads 286
571 Scientific Expedition to Understand the Crucial Issues of Rapid Lake Expansion and Moraine Dam Instability Phenomena to Justify the Lake Lowering Effort of Imja Lake, Khumbu Region of Sagarmatha, Nepal

Authors: R. C. Tiwari, N. P. Bhandary, D. B. Thapa Chhetri, R. Yatabe

Abstract:

The research enlightens the various issues of lake expansion and stability of the moraine dam of Imja lake. The Imja lake considered that the world highest altitude lake (5010m from m.s.l.), located in the Khumbu, Sagarmatha region of Nepal (27.90 N and 86.90 E) was reported as one of the fast growing glacier lakes in the Nepal Himalaya. The research explores a common phenomenon of lake expansion and stability issues of moraine dam to justify the necessity of lake lowering efforts if any in future in other glacier lakes in Nepal Himalaya. For this, we have explored the root causes of rapid lake expansion along with crucial factors responsible for the stability of moraine mass. This research helps to understand the structure of moraine dam and the ice, water and moraine interactions to the strength of moraine dam. The nature of permafrost layer and its effects on moraine dam stability is also studied here. The detail Geo-Technical properties of moraine mass of Imja lake gives a clear picture of the strength of the moraine material and their interactions. The stability analysis of the moraine dam under the consideration of strong ground motion of 7.8Mw 2015 Barpak-Gorkha and its major aftershock 7.3Mw Kodari, Sindhupalchowk-Dolakha border, Nepal earthquakes have also been carried out here to understand the necessity of lake lowering efforts. The lake lowering effort was recently done by Nepal Army by constructing an open channel and lowered 3m. And, it is believed that the entire region is now safe due to continuous draining of lake water by 3m. But, this option does not seem adequate to offer a significant risk reduction to downstream communities in this much amount of volume and depth, lowering as in the 75 million cubic meter water impounded with an average depth of 148.9m.

Keywords: finite element method, glacier, moraine, stability

Procedia PDF Downloads 184
570 Regenerative Therapeutic Effect of Statin Nanoparticle-Loaded Adipose-Derived Stem Cells on Myocardial Infarction

Authors: Masaaki Ii, Takashi Saito, Yasuhiko Tabata, Shintaro Nemoto

Abstract:

Background: Clinical trials of autologous adipose-derived stem cell (AdSC) therapy for ischemic heart diseases (IHD) are now on-going. We have investigated the hypothesis that combination of AdSCs and statin, an agent with pleiotropic effects, could augment the therapeutic effect on myocardial infarction (MI). Methods and Results: Human AdSC functions with different doses of simvastatin-conjugated nanoparticle (STNP) uptake were evaluated by in vitro assays. STNP promoted the migration activity without changing the proliferation activity, and also up-regulated growth factors. Next, MI was induced by LAD ligation in nude mice, and the mice were assigned in the following groups 3 days after MI: 1) PBS (control), 2) NP-AdSCs (50000 cells), 3) STNP, and 4) STNP-AdSCs (50000 cells). Cardiac functional recovery assessed by echocardiography was improved at 4 weeks after surgery in STNP-AdSC group. Masson’s trichrome-stained sections revealed that LV fibrosis length was reduced, and the number of TUNEL-positive cardiomyocytes was less in STNP-AdSC group. Surprisingly, a number of de novo endogenous Nkx-2.5/GATA4 positive immature cardiomyocytes as well as massive vascular formation were observed in outer layer of infarcted myocardium despite of a few recruited/retained transfused STNP-AdSCs 4 weeks after MI in STNP-AdSC group. Finally, massive myocardial regeneration was observed 8 weeks after MI. Conclusions: Intravenously injected small number of statin nanoparticle-loaded hAdSCs exhibited a potent therapeutic effect inducing endogenous cardiac tissue regeneration.

Keywords: statin, drug delivery system, stem cells, cardiac regeneration

Procedia PDF Downloads 165
569 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation

Authors: Pengfei Meng, Shuangcheng Jia, Qian Li

Abstract:

We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.

Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling

Procedia PDF Downloads 107
568 Studies on Distribution of the Doped Pr3+ Ions in the LaF3 Based Transparent Oxyfluoride Glass-Ceramic

Authors: Biswajit Pal, Amit Mallik, Anil K. Barik

Abstract:

Current years have witnessed a phenomenal growth in the research on the rare earth-doped transparent host materials, the essential components in optoelectronics that meet up the increasing demand for fabrication of high quality optical devices especially in telecommunication system. The combination of low phonon energy (because of fluoride environment) and high chemical durability with superior mechanical stability (due to oxide environment) makes the oxyfluoride glass–ceramics the promising and useful materials in optoelectronics. The present work reports on the undoped and doped (1 mol% Pr2O3) glass ceramics of composition 16.52 Al2O3•1.5AlF3• 12.65LaF3•4.33Na2O•64.85 SiO2 (mol%), prepared by melting technique initially that follows annealation at 450 ºC for 1 h. The glass samples so obtained were heat treated at constant 600 ºC with a variation in heat treatment schedule (10- 80 h). TEM techniques were employed to structurally characterize the glass samples. Pr2O3 affects the phase separation in the glass and delays the onset of crystallization in the glass ceramic. The modified crystallization mechanism is established from the analysis of advanced STEM/EDXS results. The phase separated droplets after annealing turn into 10-20 nm of LaF3 nano crystals those upon scrutiny are found to be dotted with the doped Pr3+ ions within the crystals themselves. The EDXS results also suggest that the inner LaF3 crystal core is swallowed by an Al enriched layer that follows a Si enriched surrounding shell as the outer core. This greatly increases the viscosity in the periphery of the crystals that restricts further crystal growth to account for the formation of nano sized crystals.

Keywords: advanced STEM/EDXS, crystallization mechanism, nano crystals, pr3+ ion doped glass and glass ceramic, structural characterization

Procedia PDF Downloads 165
567 Four-Way Coupled CFD-Dem Simulation of Concrete Pipe Flow Using a Non-Newtonian Rheological Model: Investigating the Simulation of Lubrication Layer Formation and Plug Flow Zones

Authors: Tooran Tavangar, Masoud Hosseinpoor, Jeffrey S. Marshall, Ammar Yahia, Kamal Henri Khayat

Abstract:

In this study, a four-way coupled CFD-DEM methodology was used to simulate the behavior of concrete pipe flow. Fresh concrete, characterized as a biphasic suspension, features aggregates comprising the solid-suspended phase with diverse particle-size distributions (PSD) within a non-Newtonian cement paste/mortar matrix forming the liquid phase. The fluid phase was simulated using CFD, while the aggregates were modeled using DEM. Interaction forces between the fluid and solid particles were considered through CFD-DEM computations. To capture the viscoelastic characteristics of the suspending fluid, a bi-viscous approach was adopted, incorporating a critical shear rate proportional to the yield stress of the mortar. In total, three diphasic suspensions were simulated, each featuring distinct particle size distributions and a concentration of 10% for five subclasses of spherical particles ranging from 1 to 17 mm in a suspending fluid. The adopted bi-viscous approach successfully simulated both un-sheared (plug flow) and sheared zones. Furthermore, shear-induced particle migration (SIPM) was assessed by examining coefficients of variation in particle concentration across the pipe. These SIPM values were then compared with results obtained using CFD-DEM under the Newtonian assumption. The study highlighted the crucial role of yield stress in the mortar phase, revealing that lower yield stress values can lead to increased flow rates and higher SIPM across the pipe.

Keywords: computational fluid dynamics, concrete pumping, coupled CFD-DEM, discrete element method, plug flow, shear-induced particle migration.

Procedia PDF Downloads 30
566 Reconsidering the Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kelum N. Manamendra-Arachchi, Kalangi Rodrigo

Abstract:

Bones, teeth, and shells have been acknowledged over the last two centuries as evidence of chronology, Palaeo-environment, and human activity. Faunal traces are valid evidence of past situations because they have properties that have not changed over long periods of time. Sri Lanka has been known as an Island, which has a diverse variation of prehistoric occupation among ecological zones. Defining the Paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated ' on-site ' Palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5 degrees. Based on Semnopithecus Priam (Gray Langur) remains unearned from wet zone prehistoric caves, it has been argued that periods of momentous climate changes during the LGM and Terminal Pleistocene/Early Holocene boundary, with a recognizable preference for semi-open ‘Intermediate’ rainforest or edges. Continuous Genus Acavus and Oligospira occupation along with uninterrupted horizontal pervasive of Canarium sp. (‘kekuna’ nut) have proven that temperatures in the lowland rain forests have not changed by at least 5 oC over the last 50,000 years. Site Catchment or Territorial analysis cannot be no longer defensible, due to time-distance based factors as well as optimal foraging theory failed as a consequences of prehistoric people were aware of the decrease in cost-benefit ratio and located sites, and generally played out a settlement strategy that minimized the ratio of energy expanded to energy produced.

Keywords: palaeo-environment, prehistory, palaeo-ecology, zooarchaeology

Procedia PDF Downloads 97
565 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model

Authors: Ella Sèdé Maforikan

Abstract:

Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.

Keywords: watershed, water balance, SWAT modeling, Beterou

Procedia PDF Downloads 29
564 Study of Lamination Quality of Semi-Flexible Solar Modules with Special Textile Materials

Authors: K. Drabczyk, Z. Starowicz, S. Maleczek, P. Zieba

Abstract:

The army, police and fire brigade commonly use dedicated equipment based on special textile materials. The properties of these textiles should ensure human life and health protection. Equally important is the ability to use electronic equipment and this requires access to the source of electricity. Photovoltaic cells integrated with such textiles can be solution for this problem in the most of outdoor circumstances. One idea may be to laminate the cells to textile without changing their properties. The main goal of this work was analyzed lamination quality of special designed semi-flexible solar module with special textile materials as a backsheet. In the first step of investigation, the quality of lamination was determined using device equipped with dynamometer. In this work, the crystalline silicon solar cells 50 x 50 mm and thin chemical tempered glass - 62 x 62 mm and 0.8 mm thick - were used. The obtained results showed the correlation between breaking force and type of textile weave and fiber. The breaking force was in the ranges: 4.5-5.5 N, 15-20 N and 30-33 N depending on the type of wave and fiber type. To verify these observations the microscopic and FTIR analysis of fibers was performed. The studies showed the special textile can be used as a backsheet of semi-flexible solar modules. This work presents a new composition of solar module with special textile layer which, to our best knowledge, has not been published so far. Moreover, the work presents original investigations on adhesion of EVA (ethylene-vinyl acetate) polymer to textile with respect to fiber structure of laminated substrate. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management.

Keywords: flexible solar modules, lamination process, solar cells, textile for photovoltaics

Procedia PDF Downloads 331
563 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass

Authors: Martin Botz, Michael Kraus, Geralt Siebert

Abstract:

The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.

Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity

Procedia PDF Downloads 95
562 On Elastic Anisotropy of Fused Filament Fabricated Acrylonitrile Butadiene Styrene Structures

Authors: Joseph Marae Djouda, Ashraf Kasmi, François Hild

Abstract:

Fused filament fabrication is one of the most widespread additive manufacturing techniques because of its low-cost implementation. Its initial development was based on part fabrication with thermoplastic materials. The influence of the manufacturing parameters such as the filament orientation through the nozzle, the deposited layer thickness, or the speed deposition on the mechanical properties of the parts has been widely experimentally investigated. It has been recorded the remarkable variations of the anisotropy in the function of the filament path during the fabrication process. However, there is a lack in the development of constitutive models describing the mechanical properties. In this study, integrated digital image correlation (I-DIC) is used for the identification of mechanical constitutive parameters of two configurations of ABS samples: +/-45° and so-called “oriented deposition.” In this last, the filament was deposited in order to follow the principal strain of the sample. The identification scheme based on the gap reduction between simulation and the experiment directly from images recorded from a single sample (single edge notched tension specimen) is developed. The macroscopic and mesoscopic analysis are conducted from images recorded in both sample surfaces during the tensile test. The elastic and elastoplastic models in isotropic and orthotropic frameworks have been established. It appears that independently of the sample configurations (filament orientation during the fabrication), the elastoplastic isotropic model gives the correct description of the behavior of samples. It is worth noting that in this model, the number of constitutive parameters is limited to the one considered in the elastoplastic orthotropic model. This leads to the fact that the anisotropy of the architectured 3D printed ABS parts can be neglected in the establishment of the macroscopic behavior description.

Keywords: elastic anisotropy, fused filament fabrication, Acrylonitrile butadiene styrene, I-DIC identification

Procedia PDF Downloads 98
561 Inhibition Effect of Natural Junipers Extract towards Steel Corrosion in HCl Solution

Authors: L. Bammou, M. Belkhaouda R. Salghi, L. Bazzi, B. Hammouti

Abstract:

Steel and steel-based alloys of different grades steel are extensively used in numerous applications where acid solutions are widely applied such as industrial acid pickling, industrial acid cleaning and oil-well acidizing. The use of chemical inhibitors is one of the most practical methods for the protection against corrosion in acidic media. Most of the excellent acid inhibitors are organic compounds containing nitrogen, oxygen, phosphorus and sulphur. The use of non-toxic inhibitors called green or eco-friendly environmental inhibitors is one of the solutions possible to prevent the corrosion of the material. These advantages have incited us to draw a large part of program of our laboratory to examine natural substances as corrosion inhibitors such as: prickly pear seed oil, Argan oil, Argan extract, Fennel oil, Rosemary oil, Thymus oil, Lavender oil, Jojoba oil, Pennyroyal Mint oil, and Artemisia. In the present work, we investigate the corrosion inhibition of steel in 1 M HCl by junipers extract using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The result obtained of junipers extract (JE) shows excellent inhibition properties for the corrosion of C38 steel in 1M HCl at 298K, and the inhibition efficiency increases with increasing of the JE concentration. The inhibitor efficiencies determined by weight loss, Tafel polarisation and EIS methods are in reasonable agreement. Based on the polarisation results, the investigated junipers extract can be classified as mixed inhibitor. The calculated structural parameters show increase of the obtained Rct values and decrease of the capacitance, Cdl, with JE concentration increase. It is suggested to attribute this to the increase of the thickness of the adsorption layer at steel surface. The adsorption model obeys to the Langmuir adsorption isotherm. The adsorption process is a spontaneous and exothermic process.

Keywords: corrosion inhibition, steel, friendly inhibitors, Tafel polarisation

Procedia PDF Downloads 483
560 Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka

Authors: H. M. N. L. Handagiripathira

Abstract:

The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at 27 different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analyses of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near to the southern end and the northern end of the lagoon, respectively, and equally salinity levels varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6 and average water temperature was 28.7 °C. The grain size analysis emphasized the mass fractions of the samples as sand (60.9%), fine sand (30.6%) and fine silt+clay (1.3%) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer, were oven dried at 105 °C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries' Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 ± 4, 67 ± 9, 181 ± 10, 59 ± 8, 3.5 ± 0.4 and 0.47 ± 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk.

Keywords: gamma spectrometry, lagoon, radioactivity, sediments

Procedia PDF Downloads 113
559 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters

Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens

Abstract:

Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.

Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,

Procedia PDF Downloads 409
558 Fabrication of Coatable Polarizer by Guest-Host System for Flexible Display Applications

Authors: Rui He, Seung-Eun Baik, Min-Jae Lee, Myong-Hoon Lee

Abstract:

The polarizer is one of the most essential optical elements in LCDs. Currently, the most widely used polarizers for LCD is the derivatives of the H-sheet polarizer. There is a need for coatable polarizers which are much thinner and more stable than H-sheet polarizers. One possible approach to obtain thin, stable, and coatable polarizers is based on the use of highly ordered guest-host system. In our research, we aimed to fabricate coatable polarizer based on highly ordered liquid crystalline monomer and dichroic dye ‘guest-host’ system, in which the anisotropic absorption of light could be achieved by aligning a dichroic dye (guest) in the cooperative motion of the ordered liquid crystal (host) molecules. Firstly, we designed and synthesized a new reactive liquid crystalline monomer containing polymerizable acrylate groups as the ‘host’ material. The structure was confirmed by 1H-NMR and IR spectroscopy. The liquid crystalline behavior was studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was confirmed that the monomers possess highly ordered smectic phase at relatively low temperature. Then, the photocurable ‘guest-host’ system was prepared by mixing the liquid crystalline monomer, dichroic dye and photoinitiator. Coatable polarizers were fabricated by spin-coating above mixture on a substrate with alignment layer. The in-situ photopolymerization was carried out at room temperature by irradiating UV light, resulting in the formation of crosslinked structure that stabilized the aligned dichroic dye molecules. Finally, the dichroic ratio (DR), order parameter (S) and polarization efficiency (PE) were determined by polarized UV/Vis spectroscopy. We prepared the coatable polarizers by using different type of dichroic dyes to meet the requirement of display application. The results reveal that the coatable polarizers at a thickness of 8μm exhibited DR=12~17 and relatively high PE (>96%) with the highest PE=99.3%, which possess potential for the LCD or flexible display applications.

Keywords: coatable polarizer, display, guest-host, liquid crystal

Procedia PDF Downloads 229
557 Spatial Climate Changes in the Province of Macerata, Central Italy, Analyzed by GIS Software

Authors: Matteo Gentilucci, Marco Materazzi, Gilberto Pambianchi

Abstract:

Climate change is an increasingly central issue in the world, because it affects many of human activities. In this context regional studies are of great importance because they sometimes differ from the general trend. This research focuses on a small area of central Italy which overlooks the Adriatic Sea, the province of Macerata. The aim is to analyze space-based climate changes, for precipitation and temperatures, in the last 3 climatological standard normals (1961-1990; 1971-2000; 1981-2010) through GIS software. The data collected from 30 weather stations for temperature and 61 rain gauges for precipitation were subject to quality controls: validation and homogenization. These data were fundamental for the spatialization of the variables (temperature and precipitation) through geostatistical techniques. To assess the best geostatistical technique for interpolation, the results of cross correlation were used. The co-kriging method with altitude as independent variable produced the best cross validation results for all time periods, among the methods analysed, with 'root mean square error standardized' close to 1, 'mean standardized error' close to 0, 'average standard error' and 'root mean square error' with similar values. The maps resulting from the analysis were compared by subtraction between rasters, producing 3 maps of annual variation and three other maps for each month of the year (1961/1990-1971/2000; 1971/2000-1981/2010; 1961/1990-1981/2010). The results show an increase in average annual temperature of about 0.1°C between 1961-1990 and 1971-2000 and 0.6 °C between 1961-1990 and 1981-2010. Instead annual precipitation shows an opposite trend, with an average difference from 1961-1990 to 1971-2000 of about 35 mm and from 1961-1990 to 1981-2010 of about 60 mm. Furthermore, the differences in the areas have been highlighted with area graphs and summarized in several tables as descriptive analysis. In fact for temperature between 1961-1990 and 1971-2000 the most areally represented frequency is 0.08°C (77.04 Km² on a total of about 2800 km²) with a kurtosis of 3.95 and a skewness of 2.19. Instead, the differences for temperatures from 1961-1990 to 1981-2010 show a most areally represented frequency of 0.83 °C, with -0.45 as kurtosis and 0.92 as skewness (36.9 km²). Therefore it can be said that distribution is more pointed for 1961/1990-1971/2000 and smoother but more intense in the growth for 1961/1990-1981/2010. In contrast, precipitation shows a very similar shape of distribution, although with different intensities, for both variations periods (first period 1961/1990-1971/2000 and second one 1961/1990-1981/2010) with similar values of kurtosis (1st = 1.93; 2nd = 1.34), skewness (1st = 1.81; 2nd = 1.62 for the second) and area of the most represented frequency (1st = 60.72 km²; 2nd = 52.80 km²). In conclusion, this methodology of analysis allows the assessment of small scale climate change for each month of the year and could be further investigated in relation to regional atmospheric dynamics.

Keywords: climate change, GIS, interpolation, co-kriging

Procedia PDF Downloads 96
556 Variability of Physico-Chemical and Carbonate Chemistry of Seawater in Selected Portions of the Central Atlantic Coastline of Ghana

Authors: Robert Kwame Kpaliba, Dennis Kpakpor Adotey, Yaw Serfor-Armah

Abstract:

Increase in the oceanic carbon dioxide absorbance from the atmosphere due to climate change has led to appreciable change in the chemistry of the oceans. The change in oceanic pH referred to as ocean acidification poses multiple threats and stresses on marine species, biodiversity, goods and services, and livelihoods. Marine ecosystems are continuously threatened by plethora of natural and anthropogenic stressors including carbon dioxide (CO₂) emissions causing a lot of changes which has not been experienced for approximately 60 years. Little has been done in Africa as a whole and Ghana in particular to improve the understanding of the variations of the carbonate chemistry of seawater and the biophysical impacts of ocean acidification on security of seafood, nutrition, climate and environmental change. There is, therefore, the need for regular monitoring of carbonate chemistry of seawater along Ghana’s coastline to generate reliable data to aid marine policy formulation. Samples of seawater were collected thrice every month for a one-year period from five study sites for the various parameters to be analyzed. Analysis of the measured physico-chemical and the carbonate chemistry parameters was done using simple statistics. Correlation test and ANOVA were run on both of the physico-chemical and carbonate chemistry parameters. The carbonate chemistry parameters were measured using computer software programme (CO₂cal v4.0.9) except total alkalinity and pH. The study assessed the variability of seawater carbonate chemistry in selected portions of the Central Atlantic Coastline of Ghana (Tsokomey/Bortianor, Kokrobitey, Gomoa Nyanyanor, Gomoa Fetteh, and Senya Breku landing beaches) over a 1-year period (June 2016–May 2017). For physico-chemical parameters, there was insignificant variation in nitrate (NO₃⁻) (1.62 - 2.3 mg/L), ammonia (NH₃) (1.52 - 2.05 mg/L), and salinity (sal) (34.50 - 34.74 ppt). Carbonate chemistry parameters for all the five study sites showed significant variation: partial pressure of carbon dioxide (pCO₂) (414.08-715.5 µmol/kg), carbonate ion (CO₃²⁻) (115-157.92 µmol/kg), pH (7.9-8.12), total alkalinity (TA) (1711.8-1986 µmol/kg), total carbon dioxide (TCO₂) (1512.1 - 1792 µmol/kg), dissolved carbon dioxide (CO₂aq) (10.97-18.92 µmol/kg), Revelle Factor (RF) (9.62-11.84), aragonite (ΩAr) (0.75-1.48) and calcite (ΩCa) (1.08-2.14). The study revealed that the partial pressure of carbon dioxide and temperature did not have a significant effect on each other (r² = 0.31) (p-value = 0.0717). There was an appreciable effect of pH on dissolved carbon dioxide (r² = 0.921) (p-value = 0.0000). The variation between total alkalinity and dissolved carbon dioxide was appreciable (r² = 0.731) (p-value = 0.0008). There was a significant correlation between total carbon dioxide and dissolved carbon dioxide (r² = 0.852) (p-value = 0.0000). Revelle factor correlated strongly with dissolved carbon dioxide (r² = 0.982) (p-value = 0.0000). Partial pressure of carbon dioxide corresponds strongly with atmospheric carbon dioxide (r² = 0.9999) (p-value = 0.00000).

Keywords: carbonate chemistry, seawater, central atlantic coastline, Ghana, ocean acidification

Procedia PDF Downloads 526
555 Evaluation of Ficus racemosa (Moraceae) as a Potential Source for Drug Formulation Against Coccidiosis

Authors: Naveeda Akhtar Qureshi, Wajiha

Abstract:

Coccidiosis is a protozoan parasitic disease of genus Eimeria. It is an avian infection causing a great economic loss of 3 billion USD per year globally. A number of anticoccidial drugs are in use however many of them have side effects and cost effective. With increase in poultry demand throughout the world there is a need of more drugs and vaccines against coccidiosis. The present study is based upon the use of F. racemosa a medicinal plant to be a potential source of anticoccidial agents. The methanolic leaves extract was fractionated by column and thin layer chromatography and got nineteen fractions. Each fraction different concentrations was evaluated for its anticoccidial properties in an invitro experiment against E. tenella, E. necatrix and E. mitis. The anticoccidial active fractions were further characterized by spectroscopy (UV-Vis, FTIR) and GC-MS analysis. The in silico molecular docking of active fractions identified compounds were carried out. Among all fractions significantly maximum sporulation inhibition efficacy was shown by F-19 (67.11±2.18) followed by F-15 (65.21±1.34) at concentration of 30mg/ml against E. tenella. The significantly highest sporozoites viability inhibition was shown by F-19 (69.23±2.11) followed by F-15 (67.14±1.52) against E. necatrix at concentration 30mg/ml. Anticoccidial active fractions 15 and 19 showed peak spectrum at 207 and 202nm respectively by UV analysis. Their FTIR analysis confirmed the presence of carboxylic acid, amines, phenols, etc. Anticoccidial active compounds like Cyclododecane methanol, oleic acid, Octadecanoic acid, etc were identified by GC-MS analysis. Identified compounds in silico molecular docking study showed that cyclododecane methanol of F-19 and oleic acid of F-15 showed highest binding affinity with target S-Adenosylmethionine synthase. Hence for further authentication in vivo anticoccidial studies are recommended.

Keywords: ficus racemosa, cluster fig, column chromatography, anticoccidial fractions, GC-MS, molecular docking., s-adenosylmethionine synthase

Procedia PDF Downloads 41
554 Partnering with Stakeholders to Secure Digitization of Water

Authors: Sindhu Govardhan, Kenneth G. Crowther

Abstract:

Modernisation of the water sector is leading to increased connectivity and integration of emerging technologies with traditional ones, leading to new security risks. The convergence of Information Technology (IT) with Operation Technology (OT) results in solutions that are spread across larger geographic areas, increasingly consist of interconnected Industrial Internet of Things (IIOT) devices and software, rely on the integration of legacy with modern technologies, use of complex supply chain components leading to complex architectures and communication paths. The result is that multiple parties collectively own and operate these emergent technologies, threat actors find new paths to exploit, and traditional cybersecurity controls are inadequate. Our approach is to explicitly identify and draw data flows that cross trust boundaries between owners and operators of various aspects of these emerging and interconnected technologies. On these data flows, we layer potential attack vectors to create a frame of reference for evaluating possible risks against connected technologies. Finally, we identify where existing controls, mitigations, and other remediations exist across industry partners (e.g., suppliers, product vendors, integrators, water utilities, and regulators). From these, we are able to understand potential gaps in security, the roles in the supply chain that are most likely to effectively remediate those security gaps, and test cases to evaluate and strengthen security across these partners. This informs a “shared responsibility” solution that recognises that security is multi-layered and requires collaboration to be successful. This shared responsibility security framework improves visibility, understanding, and control across the entire supply chain, and particularly for those water utilities that are accountable for safe and continuous operations.

Keywords: cyber security, shared responsibility, IIOT, threat modelling

Procedia PDF Downloads 43
553 Diversity and Taxonomy: Malaysian Marine Algae Genus Halimeda (Halimedaceae, Chlorophyta)

Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail

Abstract:

The study of genus Halimeda in Malaysia is in the early stage due to less specific study on its taxonomy. Most of the previous research tend to choose other genus such as Caulerpa and Gracilaria because of the potential of being utilized. The identification of Halimeda is complex by the high morphological variation within individual species due to different types of habitat and the changes in composition of seawater. The study was completed to study the diversity and distribution of Halimeda in Malaysia and to identify the morphological and anatomical differences between Halimeda species. The methods which have been used for this study are collection of Halimeda and seawater, preservation of specimen, identification of the specimen including the preparation of the temporary slide and decalcification of the calcium layer by using diluted hydrochloric acid. The specimen were processed in laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. Environmental parameters were tested by using YSI multiparameter probe and the recorded data were temperature, salinity, pH and dissolved oxygen. The nutrient content of seawater such as nitrate and phosphate were analysed by using Hach kit model DR 2000. In the present study, out of 330 herbarium specimen, ten species were identified as Halimeda cuneata, H. discoidea, H. macroloba, H. macrophysa, H. opuntia, H. simulans, H. stuposa, H. taenicola, H. tuna and H. velasquezii. Of these, five species were new record to Malaysia. They are Halimeda cuneata, H. macrophysa, H. stuposa, H. taenicola and H. velasquezii. H. opuntia was found as the most abundance species with wide distribution in Malaysia coastal area. Meanwhile, from the study of their distribution, two localities in which Pulau Balak Balak, Kudat and Pulau Langkawi, Kedah, were noted having high number of Halimeda species. As a conclusion, this study has successfully identified ten species of Halimeda of Malaysia with full description of morphological characteristics that may assist further researcher to differentiate and identify Halimeda.

Keywords: Distribution, diversity, Halimeda, morphological, taxonomy

Procedia PDF Downloads 302
552 Minimizing the Drilling-Induced Damage in Fiber Reinforced Polymeric Composites

Authors: S. D. El Wakil, M. Pladsen

Abstract:

Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.

Keywords: drilling of composites, dimensional accuracy of holes drilled in composites, delamination and charring, graphite-epoxy composites

Procedia PDF Downloads 366