Search results for: spinning disc reactor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1113

Search results for: spinning disc reactor

933 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion

Procedia PDF Downloads 187
932 Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry

Authors: D. Abdelrazek, M. NaguibAly, A. A. Badawi, Asmaa G. Abo Elnour, A. A. El-Kafas

Abstract:

This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors.” The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups. The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared. REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies.

Keywords: complex fuel geometry, PARET, RELAP5, WWR-SM reactor

Procedia PDF Downloads 308
931 The Effects of Hydraulic Retention Time on the Sludge Characteristics and Effluent Quality in an Aerobic Suspension Sequencing Batch Reactor

Authors: Ali W. N. Alattabi, Clare B. Harris, Rafid M. Alkhaddar, Montserrat Ortoneda, David A. Phipps, Ali Alzeyadi, Khalid S. Hashim

Abstract:

This study was performed to optimise the hydraulic retention time (HRT) and study its effects on the sludge characteristics and the effluent quality in an aerobic suspension sequencing batch reactor (ASSBR) treating synthetic wastewater. The results showed that increasing the HRT from 6 h to 12 h significantly improved the COD and Nitrate removal efficiency; it was increased from 78.7% - 75.7% to 94.7% – 97% for COD and Nitrate respectively. However, increasing the HRT from 12 h to 18 h reduced the COD and Nitrate removal efficiency from 94.7% - 97% to 91.1% – 94.4% respectively. Moreover, Increasing the HRT from 18 h to 24 h did not affect the COD and Nitrate removal efficiency. Sludge volume index (SVI) was used to monitor the sludge settling performance. The results showed a direct relationship between the HRT and SVI value. Increasing the HRT from 6 h to 12 h led to decrease the SVI value from 123 ml/g to 82.5 ml/g, and then it remained constant despite of increasing the HRT from 12 h to 18 h and to 24 h. The results obtained from this study showed that the HRT of 12 h was better for COD and Nitrate removal and a good settling performance occurred during that range.

Keywords: COD, hydraulic retention time, nitrate, sequencing batch reactor, sludge characteristics

Procedia PDF Downloads 340
930 N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene

Authors: Tony K. Joseph, Balasubramanian Vathilingam, Stephane Morin

Abstract:

Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference.

Keywords: cracking, catalyst, evaluation, ethylene, heptane, propylene

Procedia PDF Downloads 109
929 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool

Procedia PDF Downloads 236
928 Improvements in Transient Testing in The Transient REActor Test (TREAT) with a Choice of Filter

Authors: Harish Aryal

Abstract:

The safe and reliable operation of nuclear reactors has always been one of the topmost priorities in the nuclear industry. Transient testing allows us to understand the time-dependent behavior of the neutron population in response to either a planned change in the reactor conditions or unplanned circumstances. These unforeseen conditions might occur due to sudden reactivity insertions, feedback, power excursions, instabilities, and accidents. To study such behavior, we need transient testing, which is like car crash testing, to estimate the durability and strength of a car design. In nuclear designs, such transient testing can simulate a wide range of accidents due to sudden reactivity insertions and helps to study the feasibility and integrity of the fuel to be used in certain reactor types. This testing involves a high neutron flux environment and real-time imaging technology with advanced instrumentation with appropriate accuracy and resolution to study the fuel slumping behavior. With the aid of transient testing and adequate imaging tools, it is possible to test the safety basis for reactor and fuel designs that serves as a gateway in licensing advanced reactors in the future. To that end, it is crucial to fully understand advanced imaging techniques both analytically and via simulations. This paper presents an innovative method of supporting real-time imaging of fuel pins and other structures during transient testing. The major fuel-motion detection device that is studied in this dissertation is the Hodoscope which requires collimators. This paper provides 1) an MCNP model and simulation of a Transient Reactor Test (TREAT) core with a central fuel element replaced by a slotted fuel element that provides an open path between test samples and a hodoscope detector and 2) a choice of good filter to improve image resolution.

Keywords: hodoscope, transient testing, collimators, MCNP, TREAT, hodogram, filters

Procedia PDF Downloads 48
927 Atmospheric Dispersion Modeling for a Hypothetical Accidental Release from the 3 MW TRIGA Research Reactor of Bangladesh

Authors: G. R. Khan, Sadia Mahjabin, A. S. Mollah, M. R. Mawla

Abstract:

Atmospheric dispersion modeling is significant for any nuclear facilities in the country to predict the impact of radiological doses on environment as well as human health. That is why to ensure safety of workers and population at plant site; Atmospheric dispersion modeling and radiation dose calculations were carried out for a hypothetical accidental release of airborne radionuclide from the 3 MW TRIGA research reactor of Savar, Bangladesh. It is designed with reactor core which consists of 100 fuel elements(1.82245 cm in diameter and 38.1 cm in length), arranged in an annular corefor steady-state and square wave power level of 3 MW (thermal) and for pulsing with maximum power level of 860MWth.The fuel is in the form of a uniform mixture of 20% uranium and 80% zirconium hydride. Total effective doses (TEDs) to the public at various downwind distances were evaluated with a health physics computer code “HotSpot” developed by Lawrence Livermore National Laboratory, USA. The doses were estimated at different Pasquill stability classes (categories A-F) with site-specific averaged meteorological conditions. The meteorological data, such as, average wind speed, frequency distribution of wind direction, etc. have also been analyzed based on the data collected near the reactor site. The results of effective doses obtained remain within the recommended maximum effective dose.

Keywords: accidental release, dispersion modeling, total effective dose, TRIGA

Procedia PDF Downloads 108
926 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis

Authors: Mohamed Bendoukha, Mustapha Mosbah

Abstract:

The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.

Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy

Procedia PDF Downloads 155
925 Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer

Authors: Aastha Paliwal, H. N. Chanakya, S. Dasappa

Abstract:

Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots.

Keywords: anaerobic digestion, bulk density, feed compaction, lignocellulose, lignocellulosic matrix, cellulose, hemicellulose, lignin, extractives, mass transfer

Procedia PDF Downloads 123
924 A Computational Fluid Dynamics Simulation of Single Rod Bundles with 54 Fuel Rods without Spacers

Authors: S. K. Verma, S. L. Sinha, D. K. Chandraker

Abstract:

The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube type, heavy water moderated and boiling light water cooled natural circulation based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18 and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passage called subchannels. Single phase flow condition exists in reactor rod bundle during startup condition and up to certain length of rod bundle when it is operating at full power. Prediction of the thermal margin of the reactor during startup condition has necessitated the determination of the turbulent mixing rate of coolant amongst these subchannels. Thus, it is vital to evaluate turbulent mixing between subchannels of AHWR rod bundle. With the remarkable progress in the computer processing power, the computational fluid dynamics (CFD) methodology can be useful for investigating the thermal–hydraulic characteristics phenomena in the nuclear fuel assembly. The present report covers the results of simulation of pressure drop, velocity variation and turbulence intensity on single rod bundle with 54 rods in circular arrays. In this investigation, 54-rod assemblies are simulated with ANSYS Fluent 15 using steady simulations with an ANSYS Workbench meshing. The simulations have been carried out with water for Reynolds number 9861.83. The rod bundle has a mean flow area of 4853.0584 mm2 in the bare region with the hydraulic diameter of 8.105 mm. In present investigation, a benchmark k-ε model has been used as a turbulence model and the symmetry condition is set as boundary conditions. Simulation are carried out to determine the turbulent mixing rate in the simulated subchannels of the reactor. The size of rod and the pitch in the test has been same as that of actual rod bundle in the prototype. Water has been used as the working fluid and the turbulent mixing tests have been carried out at atmospheric condition without heat addition. The mean velocity in the subchannel has been varied from 0-1.2 m/s. The flow conditions are found to be closer to the actual reactor condition.

Keywords: AHWR, CFD, single-phase turbulent mixing rate, thermal–hydraulic

Procedia PDF Downloads 300
923 Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility

Authors: Prasenjit Singha, Ajay Kumar Shukla

Abstract:

To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries.

Keywords: desulphurization, degassing, factsage, reactor

Procedia PDF Downloads 181
922 Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan

Authors: Ahtesham Javaid, Costin S. Bildea

Abstract:

The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions.

Keywords: dehydrogenation and hydrogenation, reaction coupling, design and control, process integration

Procedia PDF Downloads 309
921 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 141
920 Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids

Authors: A. Ghadbane, M. N. Bouaziz, S. Hanini, B. Baggoura, M. Abbaci

Abstract:

The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate.

Keywords: PWR fuel assembly, spacer grid, mixing vane, swirl flow, turbulent heat transfer, CFD

Procedia PDF Downloads 466
919 A Polynomial Relationship for Prediction of COD Removal Efficiency of Cyanide-Inhibited Wastewater in Aerobic Systems

Authors: Eze R. Onukwugha

Abstract:

The presence of cyanide in wastewater is known to inhibit the normal functioning of bio-reactors since it has the tendency to poison reactor micro-organisms. Bench scale models of activated sludge reactors with varying aspect ratios were operated for the treatment of cassava wastewater at several values of hydraulic retention time (HRT). The different values of HRT were achieved by the use of a peristaltic pump to vary the rate of introduction of the wastewater into the reactor. The main parameters monitored are the cyanide concentration and respective COD values of the influent and effluent. These observed values were then transformed into a mathematical model for the prediction of treatment efficiency.

Keywords: wastewater, aspect ratio, cyanide-inhibited wastewater, modeling

Procedia PDF Downloads 50
918 Plasma-Assisted Decomposition of Cyclohexane in a Dielectric Barrier Discharge Reactor

Authors: Usman Dahiru, Faisal Saleem, Kui Zhang, Adam Harvey

Abstract:

Volatile organic compounds (VOCs) are atmospheric contaminants predominantly derived from petroleum spills, solvent usage, agricultural processes, automobile, and chemical processing industries, which can be detrimental to the environment and human health. Environmental problems such as the formation of photochemical smog, organic aerosols, and global warming are associated with VOC emissions. Research showed a clear relationship between VOC emissions and cancer. In recent years, stricter emission regulations, especially in industrialized countries, have been put in place around the world to restrict VOC emissions. Non-thermal plasmas (NTPs) are a promising technology for reducing VOC emissions by converting them into less toxic/environmentally friendly species. The dielectric barrier discharge (DBD) plasma is of interest due to its flexibility, moderate capital cost, and ease of operation under ambient conditions. In this study, a dielectric barrier discharge (DBD) reactor has been developed for the decomposition of cyclohexane (as a VOC model compound) using nitrogen, dry, and humidified air carrier gases. The effect of specific input energy (1.2-3.0 kJ/L), residence time (1.2-2.3 s) and concentration (220-520 ppm) were investigated. It was demonstrated that the removal efficiency of cyclohexane increased with increasing plasma power and residence time. The removal of cyclohexane decreased with increasing cyclohexane inlet concentration at fixed plasma power and residence time. The decomposition products included H₂, CO₂, H₂O, lower hydrocarbons (C₁-C₅) and solid residue. The highest removal efficiency (98.2%) was observed at specific input energy of 3.0 kJ/L and a residence time of 2.3 s in humidified air plasma. The effect of humidity was investigated to determine whether it could reduce the formation of solid residue in the DBD reactor. It was observed that the solid residue completely disappeared in humidified air plasma. Furthermore, the presence of OH radicals due to humidification not only increased the removal efficiency of cyclohexane but also improves product selectivity. This work demonstrates that cyclohexane can be converted to smaller molecules by a dielectric barrier discharge (DBD) non-thermal plasma reactor by varying plasma power (SIE), residence time, reactor configuration, and carrier gas.

Keywords: cyclohexane, dielectric barrier discharge reactor, non-thermal plasma, removal efficiency

Procedia PDF Downloads 106
917 The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development

Authors: Muhammad Zainuddin Arriafdi, Hamudah Hakimah Abdullah, Mohd Helmi Sani, Wan Azlina Ahmad, Muhd Nazrul Hisham Zainal Alam

Abstract:

The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors.

Keywords: biotechnology, miniature bioreactor, research tools, Saccharomyces cerevisiae

Procedia PDF Downloads 86
916 Sexual Health And Male Fertility: Improving Sperm Health With Focus On Technology

Authors: Diana Peninger

Abstract:

Over 10% of couples in the U.S. have infertility problems, with roughly 40% traceable to the male partner. Yet, little attention has been given to improving men’s contribution to the conception process. One solution that is showing promise in increasing conception rates for IVF and other assisted reproductive technology treatments is a first-of-its-kind semen collection that has been engineered to mitigate sperm damage caused by traditional collection methods. Patients are able to collect semen at home and deliver to clinics within 48 hours for use in fertility analysis and treatment, with less stress and improved specimen viability. This abstract will share these findings along with expert insight and tips to help attendees understand the key role sperm collection plays in addressing and treating reproductive issues, while helping to improve patient outcomes and success. Our research was to determine if male reproductive outcomes can be increased by improving sperm specimen health with a focus on technology. We utilized a redesigned semen collection cup (patented as the Device for Improved Semen Collection/DISC—U.S. Patent 6864046 – known commercially as a ProteX) that met a series of physiological parameters. Previous research demonstrated significant improvement in semen perimeters (motility forward, progression, viability, and longevity) and overall sperm biochemistry when the DISC is used for collection. Animal studies have also shown dramatic increases in pregnancy rates. Our current study compares samples collected in the DISC, next-generation DISC (DISCng), and a standard specimen cup (SSC), dry, with the 1 mL measured amount of media and media in excess ( 5mL). Both human and animal testing will be included. With sperm counts declining at alarming rates due to environmental, lifestyle, and other health factors, accurate evaluations of sperm health are critical to understanding reproductive health, origins, and treatments of infertility. An increase in the health of the sperm as measured by extensive semen parameter analysis and improved semen parameters stable for 48 hours, expanding the processing time from 1 hour to 48 hours were also demonstrated.

Keywords: reprodutive, sperm, male, infertility

Procedia PDF Downloads 103
915 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space

Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi

Abstract:

This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.

Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space

Procedia PDF Downloads 407
914 Investigation of the GFR2400 Reactivity Control System

Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban

Abstract:

The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiC cladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.

Keywords: control rods design, GFR2400, hot spot, movable reflector, reactivity

Procedia PDF Downloads 410
913 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing

Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

Abstract:

A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.

Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation

Procedia PDF Downloads 7
912 Different Tillage Possibilities for Second Crop in Green Bean Farming

Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz

Abstract:

In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.

Keywords: green bean, soil tillage, yield, vegetative

Procedia PDF Downloads 333
911 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma

Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado

Abstract:

The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this direction, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.

Keywords: BTEX, degradation, cold plasma, ecological sciences

Procedia PDF Downloads 287
910 Multi-Objective Optimization of the Thermal-Hydraulic Behavior for a Sodium Fast Reactor with a Gas Power Conversion System and a Loss of off-Site Power Simulation

Authors: Avent Grange, Frederic Bertrand, Jean-Baptiste Droin, Amandine Marrel, Jean-Henry Ferrasse, Olivier Boutin

Abstract:

CEA and its industrial partners are designing a gas Power Conversion System (PCS) based on a Brayton cycle for the ASTRID Sodium-cooled Fast Reactor. Investigations of control and regulation requirements to operate this PCS during operating, incidental and accidental transients are necessary to adapt core heat removal. To this aim, we developed a methodology to optimize the thermal-hydraulic behavior of the reactor during normal operations, incidents and accidents. This methodology consists of a multi-objective optimization for a specific sequence, whose aim is to increase component lifetime by reducing simultaneously several thermal stresses and to bring the reactor into a stable state. Furthermore, the multi-objective optimization complies with safety and operating constraints. Operating, incidental and accidental sequences use specific regulations to control the thermal-hydraulic reactor behavior, each of them is defined by a setpoint, a controller and an actuator. In the multi-objective problem, the parameters used to solve the optimization are the setpoints and the settings of the controllers associated with the regulations included in the sequence. In this way, the methodology allows designers to define an optimized and specific control strategy of the plant for the studied sequence and hence to adapt PCS piloting at its best. The multi-objective optimization is performed by evolutionary algorithms coupled to surrogate models built on variables computed by the thermal-hydraulic system code, CATHARE2. The methodology is applied to a loss of off-site power sequence. Three variables are controlled: the sodium outlet temperature of the sodium-gas heat exchanger, turbomachine rotational speed and water flow through the heat sink. These regulations are chosen in order to minimize thermal stresses on the gas-gas heat exchanger, on the sodium-gas heat exchanger and on the vessel. The main results of this work are optimal setpoints for the three regulations. Moreover, Proportional-Integral-Derivative (PID) control setting is considered and efficient actuators used in controls are chosen through sensitivity analysis results. Finally, the optimized regulation system and the reactor control procedure, provided by the optimization process, are verified through a direct CATHARE2 calculation.

Keywords: gas power conversion system, loss of off-site power, multi-objective optimization, regulation, sodium fast reactor, surrogate model

Procedia PDF Downloads 280
909 Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium

Authors: I. Nava-Arenas, N. Ruiz-Ordaz, C. J. Galindez-Mayer, M. L. Luna-Guido, S. L. Ruiz-López, A. Cabrera-Orozco, D. Nava-Arenas

Abstract:

Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides.

Keywords: biodegradation, biofilm reactor, microbial community, organochlorine herbicides

Procedia PDF Downloads 405
908 Desulfurization of Crude Oil Using Bacteria

Authors: Namratha Pai, K. Vasantharaj, K. Haribabu

Abstract:

Our Team is developing an innovative cost effective biological technique to desulfurize crude oil. ’Sulphur’ is found to be present in crude oil samples from .05% - 13.95% and its elimination by industrial methods is expensive currently. Materials required :- Alicyclobacillus acidoterrestrius, potato dextrose agar, oxygen, Pyragallol and inert gas(nitrogen). Method adapted and proposed:- 1) Growth of bacteria studied, energy needs. 2) Compatibility with crude-oil. 3) Reaction rate of bacteria studied and optimized. 4) Reaction development by computer simulation. 5) Simulated work tested by building the reactor. The method being developed requires the use of bacteria Alicyclobacillus acidoterrestrius - an acidothermophilic heterotrophic, soil dwelling aerobic, Sulfur bacteria. The bacteria are fed to crude oil in a unique manner. Its coated onto potato dextrose agar beads, cultured for 24 hours (growth time coincides with time when it begins reacting) and fed into the reactor. The beads are to be replenished with O2 by passing them through a jacket around the reactor which has O2 supply. The O2 can’t be supplied directly as crude oil is inflammable, hence the process. Beads are made to move around based on the concept of fluidized bed reactor. By controlling the velocity of inert gas pumped , the beads are made to settle down when exhausted of O2. It is recycled through the jacket where O2 is re-fed and beads which were inside the ring substitute the exhausted ones. Crude-oil is maintained between 1 atm-270 M Pa pressure and 45°C treated with tartaric acid (Ph reason for bacteria growth) for optimum output. Bacteria being of oxidising type react with Sulphur in crude-oil and liberate out SO4^2- and no gas. SO4^2- is absorbed into H2O. NaOH is fed once reaction is complete and beads separated. Crude-oil is thus separated of SO4^2-, thereby Sulphur, tartaric acid and other acids which are separated out. Bio-corrosion is taken care of by internal wall painting (phenolepoxy paints). Earlier methods used included use of Pseudomonas and Rhodococcus species. They were found to be inefficient, time and energy consuming and reduce the fuel value as they fed on skeleton.

Keywords: alicyclobacillus acidoterrestrius, potato dextrose agar, fluidized bed reactor principle, reaction time for bacteria, compatibility with crude oil

Procedia PDF Downloads 289
907 Evaluation of Fluidized Bed Bioreactor Process for Mmabatho Waste Water Treatment Plant

Authors: Shohreh Azizi, Wag Nel

Abstract:

The rapid population growth in South Africa has increased the requirement of waste water treatment facilities. The aim of this study is to assess the potential use of Fluidized bed Bio Reactor for Mmabatho sewage treatment plant. The samples were collected from the Inlet and Outlet of reactor daily to analysis the pH, Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS) as per standard method APHA 2005. The studies were undertaken on a continue laboratory scale, and analytical data was collected before and after treatment. The reduction of 87.22 % COD, 89.80 BOD % was achieved. Fluidized Bed Bio Reactor remove Bod/COD removal as well as nutrient removal. The efforts also made to study the impact of the biological system if the domestic wastewater gets contaminated with any industrial contamination and the result shows that the biological system can tolerate high Total dissolved solids up to 6000 mg/L as well as high heavy metal concentration up to 4 mg/L. The data obtained through the experimental research are demonstrated that the FBBR may be used (<3 h total Hydraulic Retention Time) for secondary treatment in Mmabatho wastewater treatment plant.

Keywords: fluidized bed bioreactor, wastewater treatment plant, biological system, high TDS, heavy metal

Procedia PDF Downloads 137
906 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock

Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng

Abstract:

Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.

Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel

Procedia PDF Downloads 223
905 Enhanced COVID-19 Pharmaceuticals and Microplastics Removal from Wastewater Using Hybrid Reactor System

Authors: Reda Dzingelevičienė, Vytautas Abromaitis, Nerijus Dzingelevičius, Kęstutis Baranauskis, Saulius Raugelė, Malgorzata Mlynska-Szultka, Sergej Suzdalev, Reza Pashaei, Sajjad Abbasi, Boguslaw Buszewski

Abstract:

A unique hybrid technology was developed for the removal of COVID-19 specific contaminants from wastewater. Reactor testing was performed using model water samples contaminated with COVID-19 pharmaceuticals and microplastics. Different hydraulic retention times, concentrations of pollutants and dissolved ozone were tested. Liquid Chromatography-Mass Spectrometry, solid phase extraction, surface area and porosity, analytical tools were used to monitor the treatment efficiency and remaining sorption capacity of the spent adsorbent. The combination of advanced oxidation and adsorption processes was found to be the most effective, with the highest 90-99% and 89-95% molnupiravir and microplastics contaminants removal efficiency from the model wastewater. The research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: adsorption, hybrid reactor system, pharmaceuticals-microplastics, wastewater

Procedia PDF Downloads 53
904 Study of the Late Phase of Core Degradation during Reflooding by Safety Injection System for VVER1000 with ASTECv2 Computer Code

Authors: Antoaneta Stefanova, Rositsa Gencheva, Pavlin Groudev

Abstract:

This paper presents the modeling approach in SBO sequence for VVER 1000 reactors and describes the reactor core behavior at late in-vessel phase in case of late reflooding by HPIS and gives preliminary results for the ASTECv2 validation. The work is focused on investigation of plant behavior during total loss of power and the operator actions. The main goal of these analyses is to assess the phenomena arising during the Station blackout (SBO) followed by primary side high pressure injection system (HPIS) reflooding of already damaged reactor core at very late ‘in-vessel’ phase. The purpose of the analysis is to define how the later HPIS switching on can delay the time of vessel failure or possibly avoid vessel failure. For this purpose has been simulated an SBO scenario with injection of cold water by a high pressure pump (HPP) in cold leg at different stages of core degradation. The times for HPP injection were chosen based on previously performed investigations.

Keywords: VVER, operator action validation, reflooding of overheated reactor core, ASTEC computer code

Procedia PDF Downloads 391