Search results for: spatial scale
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7823

Search results for: spatial scale

1493 Optimization of Titanium Leaching Process Using Experimental Design

Authors: Arash Rafiei, Carroll Moore

Abstract:

Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.

Keywords: titanium leaching, optimization, experimental design, performance analysis

Procedia PDF Downloads 342
1492 Performance Study of Geopolymer Concrete by Partial Replacement of Fly Ash with Cement and Full Replacement of River Sand by Crushed Sand

Authors: Asis Kumar Khan, Rajeev Kumar Goel

Abstract:

Recent infrastructure growth all around the world lead to increase in demand for concrete day by day. Cement being binding material for concrete the usage of cement also gone up significantly. Cement manufacturing utilizes abundant natural resources and causes environment pollution by releasing a huge quantity of CO₂ into the atmosphere. So, it is high time to look for alternates to reduce the cement consumption in concrete. Geopolymer concrete is one such material which utilizes the industrial waste such as fly ash, ground granulated blast furnace slag and low-cost alkaline liquids such as sodium hydroxide and sodium silicate to produce the concrete. On the other side, river sand is becoming very expensive due to its large-scale depletion at source and the high cost of transportation. In this view, river sand is replaced by crushed sand in this study. In this work, an attempt has been made to understand the durability parameters of geopolymer concrete by partially replacing fly ash with cement. Fly ash is replaced by cement at various levels e.g., from 0 to 50%. Concrete cubes of 100x100x100mm were used for investigating different durability parameters. The various parameters studied includes compressive strength, split tensile strength, drying shrinkage, sodium sulphate attack resistance, sulphuric acid attack resistance and chloride permeability. Highest compressive strength & highest split tensile strength is observed in 30% replacement level. Least drying is observed with 30% replacement level. Very good resistance for sulphuric acid & sodium sulphate is found with 30% replacement. However, it was not possible to find out the chloride permeability due to the high conductivity of geopolymer samples of all replacement levels.

Keywords: crushed sand, compressive strength, drying shrinkage, geopolymer concrete, split tensile strength, sodium sulphate attack resistance, sulphuric acid attack resistance

Procedia PDF Downloads 269
1491 Anaerobic Co-Digestion of Sewage Sludge and Bagasse for Biogas Recovery

Authors: Raouf Ahmed Mohamed Hassan

Abstract:

In Egypt, the excess sewage sludge from wastewater Treatment Plants (WWTPs) is rapidly increasing due to the continuous increase of population, urban planning and industrial developments. Also, cane bagasses constitute an important component of Urban Solid Waste (USW), especially at the south of Egypt, which are difficult to degrade under normal composting conditions. These wastes need to be environmentally managed to reduce the negative impacts of its application or disposal. In term of biogas recovery, the anaerobic digestion of sewage sludge or bagasse separately is inefficient, due to the presence of nutrients and minerals. Also, the Carbone-Nitrogen Ratio (C/N) play an important role, sewage sludge has a ratio varies from 6-16, where cane bagasse has a ratio around 150, whereas the suggested optimum C/N ratio for anaerobic digestion is in the range of 20 to 30. The anaerobic co-digestion is presented as a successful methodology that combines several biodegradable organic substrates able to decrease the amount of output wastes by biodegradation, sharing processing facilities, reducing operating costs, while enabling recovery of biogas. This paper presents the study of co-digestion of sewage sludge from wastewater treatment plants as a type of organic wastes and bagasse as agriculture wastes. Laboratory-scale mesophilic and thermophilic digesters were operated with varied hydraulic retention times. Different percentage of sludge and bagasse are investigated based on the total solids (TS). Before digestion, the bagasse was subjected to grinding pretreatment and soaked in distilled water (water pretreatment). The effect of operating parameters (mixing, temperature) is investigated in order to optimize the process in the biogas production. The yield and the composition of biogas from the different experiments were evaluated and the cumulative curves were estimated. The conducted tests did show that there is a good potential to using the co-digestion of wastewater sludge and bagasse for biogas production.

Keywords: co-digestion, sewage sludge, bagasse, mixing, mesophilic, thermophilic

Procedia PDF Downloads 474
1490 Exhaust Gas Cleaning Systems on Board Ships and Impact on Crews’ Health: A Feasibility Study Protocol

Authors: Despoina Andrioti Bygvraa, Ida-Maja Hassellöv, George Charalambous

Abstract:

Exhaust gas cleaning systems, also known as scrubbers, are today widely used to allow for the use of High Sulphur Heavy Fuel Oil and still comply with the regulations limiting sulphur content in marine fuels. There are extensive concerns about environmental consequences, especially in the Baltic Sea, from the wide-scale use of scrubbers, as the wash water is acidic (ca pH 3) and contains high concentrations of toxic, carcinogenic, and mutagenic substances. The aim of this feasibility study is to investigate the potential adverse effects on seafarers’ health with the ultimate goal of raising awareness of chemical-related health and safety issues in the shipping environment. The project got funding from the Swedish Foundation. The team will extend previously compiled data on scrubber wash water concentrations of hazardous substances and pH to include the use of strong base in closed-loop scrubbers, and scoping assessment on handling and disposing practices. Based on the findings (a), a systematic review of risk assessment will follow to show the risk of exposures, the establishment of the hazardous levels for human health as well as the respective prevention practices. In addition, the researchers will perform (b) a systematic review to identify facilitators and barriers of the crew on compliance with the safe handling of chemicals. The study will run for 12 months, delivering (a) a risk assessment inventory with risk exposures and (b) a course description of safe handling practices. This feasibility study could provide valuable knowledge on how pollutants found in scrubbers should be considered from a human health perspective to facilitate evidence-based informed decisions in future technology- and policy development to make shipping a safer, healthier, and more attractive workplace.

Keywords: health and safety, seafarers, scrubbers, chemicals, risk exposures

Procedia PDF Downloads 16
1489 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes

Authors: L. Shafiq, A. Rigby

Abstract:

All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.

Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation

Procedia PDF Downloads 164
1488 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification

Authors: Kunio Yoshikawa, Ding Lu

Abstract:

Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).

Keywords: biomass carbonization, densification, distributed power generation, gasification

Procedia PDF Downloads 123
1487 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 38
1486 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia

Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui

Abstract:

To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.

Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia

Procedia PDF Downloads 270
1485 Importance of the Bali Strait for Devil Ray Reproduction

Authors: Irianes C. Gozali, Betty J.L. Laglbauer, Muhammad G. Salim, Sila K. Sari, Fahmi Fahmi, Selvia Oktaviyani

Abstract:

Muncar, located off the eastern coast of Java, is an important fishing port for small-scale fleets which land mobulid rays as retained bycatch, primarily in drift gillnets. Due to overlap with fishing grounds in the Bali Strait, three devil ray species are landed in Muncar, the spinetail devil ray Mobula mobular, the bentfin devil ray Mobula thurstoni, and the Chilean devil ray Mobula tarapacana, which are all listed as Endangered by the International Union for the Conservation of Nature. However, despite the importance of life-history data to better manage stocks, such information is still rare or unavailable for Indonesian mobulid ray populations. Using morphometric data, reproductive assessments, and samples collected from dead specimens at fish markets from 2015-2019, we provide information on the maturity stage, reproductive periodicity, gestation, and size at parturition. A majority of immature individuals of all three devil ray species were recorded (<10% individuals in Mobula mobular to <30% individuals in Mobula thurstoni). Pregnant females of two species, Mobula mobular and Mobula thurstoni were recorded containing embryos of various developmental stages (each with a single embryo in the left functional uterus), while for Mobula tarapacana, no fetuses were found. The largest embryo recorded in M. mobular was within the range of that previously reported for neonates of the species in Indonesia (957 cm, for a 920-994 range), and represents a near-term embryo reflecting size at parturition. Low reproductive output was confirmed for the study-species. Based on this study, we infer that the Bali Straight is likely an important location for devil ray reproduction, which raises concern for the sustainability of mobulid ray populations in the face of bycatch in drift gillnets. Potential management approaches to tackle this issue are discussed.

Keywords: devil ray, mobulid, reproduction, Indonesia

Procedia PDF Downloads 154
1484 Deep Brain Stimulation and Motor Cortex Stimulation for Post-Stroke Pain: A Systematic Review and Meta-Analysis

Authors: Siddarth Kannan

Abstract:

Objectives: Deep Brain Stimulation (DBS) and Motor Cortex stimulation (MCS) are innovative interventions in order to treat various neuropathic pain disorders such as post-stroke pain. While each treatment has a varying degree of success in managing pain, comparative analysis has not yet been performed, and the success rates of these techniques using validated, objective pain scores have not been synthesised. The aim of this study was to compare the effect of pain relief offered by MCS and DBS on patients with post-stroke pain and to assess if either of these procedures offered better results. Methods: A systematic review and meta-analysis were conducted in accordance with PRISMA guidelines (PROSPEROID CRD42021277542). Three databases were searched, and articles published from 2000 to June 2023 were included (last search date 25 June 2023). Meta-analysis was performed using random effects models. We evaluated the performance of DBS or MCS by assessing studies that reported pain relief using the Visual Analogue Scale (VAS). Data analysis of descriptive statistics was performed using SPSS (Version 27; IBM; Armonk; NY; USA). R statistics (Rstudio Version 4.0.1) was used to perform meta-analysis. Results: Of the 478 articles identified, 27 were included in the analysis (232 patients- 117 DBS & 115 MCS). The pooled number of patients who improved after DBS was 0.68 (95% CI, 0.57-0.77, I2=36%). The pooled number of patients who improved after MCS was 0.72 (95% CI, 0.62-0.80, I2=59%). Further sensitivity analysis was done to include only studies with a minimum of 5 patients in order to assess if there was any impact on the overall results. Nine studies each for DBS and MCS met these criteria. There seemed to be no significant difference in results. Conclusions: The use of surgical interventions such as DBS and MCS is an upcoming field for the treatment of post-stroke pain, with limited studies exploring and comparing these two techniques. While our study shows that MCS might be a slightly better treatment option, further research would need to be done in order to determine the appropriate surgical intervention for post-stroke pain.

Keywords: post-stroke pain, deep brain stimulation, motor cortex stimulation, pain relief

Procedia PDF Downloads 96
1483 Quantification of River Ravi Pollution and Oxidation Pond Treatment to Improve the Drain Water Quality

Authors: Yusra Mahfooz, Saleha Mehmood

Abstract:

With increase in industrialization and urbanization, water contaminating rivers through effluents laden with diverse chemicals in developing countries. The study was based on the waste water quality of the four drains (Outfall, Gulshan -e- Ravi, Hudiara, and Babu Sabu) which enter into river Ravi in Lahore, Pakistan. Different pollution parameters were analyzed including pH, DO, BOD, COD, turbidity, EC, TSS, nitrates, phosphates, sulfates and fecal coliform. Approximately all the water parameters of drains were exceeded the permissible level of wastewater standards. In calculation of pollution load, Hudiara drains showed highest pollution load in terms of COD i.e. 429.86 tons/day while in Babu Sabu drain highest pollution load was calculated in terms of BOD i.e. 162.82 tons/day (due to industrial and sewage discharge in it). Lab scale treatment (oxidation ponds) was designed in order to treat the waste water of Babu Sabu drain, through combination of different algae species i.e. chaetomorphasutoria, sirogoniumsticticum and zygnema sp. Two different sizes of ponds (horizontal and vertical), and three different concentration of algal samples (25g/3L, 50g/3L, and 75g/3L) were selected. After 6 days of treatment, 80 to 97% removal efficiency was found in the pollution parameters. It was observed that in the vertical pond, maximum reduction achieved i.e. turbidity 62.12%, EC 79.3%, BOD 86.6%, COD 79.72%, FC 100%, nitrates 89.6%, sulphates 96.9% and phosphates 85.3%. While in the horizontal pond, the maximum reduction in pollutant parameters, turbidity 69.79%, EC 83%, BOD 88.5%, COD 83.01%, FC 100%, nitrates 89.8%, sulphates 97% and phosphates 86.3% was observed. Overall treatment showed that maximum reduction was carried out in 50g algae setup in the horizontal pond due to large surface area, after 6 days of treatment. Results concluded that algae-based treatment are most energy efficient, which can improve drains water quality in cost effective manners.

Keywords: oxidation pond, ravi pollution, river water quality, wastewater treatment

Procedia PDF Downloads 262
1482 Contrasting Infrastructure Sharing and Resource Substitution Synergies Business Models

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) rely on two modes of cooperation that are infrastructure sharing and resource substitution to obtain economic and environmental benefits. The former consists in the intensification of use of an asset while the latter is based on the use of waste, fatal energy (and utilities) as alternatives to standard inputs. Both modes, in fact, rely on the shift from a business-as-usual functioning towards an alternative production system structure so that in a business point of view the distinction is not clear. In order to investigate the way those cooperation modes can be distinguished, we consider the stakeholders' interplay in the business model structure regarding their resources and requirements. For infrastructure sharing (following economic engineering literature) the cost function of capacity induces economies of scale so that demand pooling reduces global expanses. Grassroot investment sizing decision and the ex-post pricing strongly depends on the design optimization phase for capacity sizing whereas ex-post operational cost sharing minimizing budgets are less dependent upon production rates. Value is then mainly design driven. For resource substitution, synergies value stems from availability and is at risk regarding both supplier and user load profiles and market prices of the standard input. Baseline input purchasing cost reduction is thus more driven by the operational phase of the symbiosis and must be analyzed within the whole sourcing policy (including diversification strategies and expensive back-up replacement). Moreover, while resource substitution involves a chain of intermediate processors to match quality requirements, the infrastructure model relies on a single operator whose competencies allow to produce non-rival goods. Transaction costs appear higher in resource substitution synergies due to the high level of customization which induces asset specificity, and non-homogeneity following transaction costs economics arguments.

Keywords: business model, capacity, sourcing, synergies

Procedia PDF Downloads 149
1481 Perception of Quality of Life and Self-Assessed Health in Patients Undergoing Haemodialysis

Authors: Magdalena Barbara Kaziuk, Waldemar Kosiba

Abstract:

Introduction: Despite the development of technologies and improvements in the interior of dialysis stations, dialysis remains an unpleasant procedure, difficult to accept by the patients (who undergo it 2 to 3 times a week, a single treatment lasting several hours). Haemodialysis is one of the renal replacement therapies, in Poland most commonly used in patients with chronic or acute kidney failure. Purpose: An attempt was made to evaluate the quality of life in haemodialysed patients using the WHOQOL-BREF questionnaire. Material and methods: The study covered 422 patients (200 women and 222 men, aged 60.5 ± 12.9 years) undergoing dialysis at three selected stations in Poland. The patients were divided into 2 groups, depending on the duration of their dialysis treatment. The evaluation was conducted with the WHOQOL-BREF questionnaire containing 26 questions analysing 4 areas of life, as well as the perception of the quality of life and health self-assessment. A 5-point scale is used to answer them. The maximum score in each area is 20 points. The results in individual areas have a positive direction. Results: In patients undergoing dialysis for more than 3 years, a reduction in the quality of life was found in the physical area and in their environment versus a group of patients undergoing dialysis for less than 3 years, where a reduced quality of life was found in the areas of social relations and mental well-being (p < 0.05). A significant correlation (p < 0.01) between the two groups was found in self-perceived general health, while no significant differences were observed in the general perception of the quality of life (p > 0.05). Conclusions: The study confirmed that in patients undergoing dialysis for more than three years, the quality of life is especially reduced in their environment (access to and quality of healthcare, financial resources, and mental and physical safety). The assessment of the quality of life should form a part of the therapeutic process, in which the role of the patient in chronic renal care should be emphasised, reflected in the quality of services provided by dialysis stations.

Keywords: haemodialysis, perception of quality of life, quality of services provided, dialysis station

Procedia PDF Downloads 238
1480 Medical versus Non-Medical Students' Opinions about Academic Stress Management Using Unconventional Therapies

Authors: Ramona-Niculina Jurcau, Ioana-Marieta Jurcau, Dong Hun Kwak, Nicolae-Alexandru Colceriu

Abstract:

Background: Stress management (SM) is a topic of great academic interest and equally a task to accomplish. In addition, it is recognized the beneficial role of unconventional therapies (UCT) in stress modulation. Aims: The aim was to evaluate medical (MS) versus non-medical students’ (NMS) opinions about academic stress management (ASM) using UCT. Methods: MS (n=103, third year males and females) and NMS (n=112, males and females, from humanities faculties, different years of study), out of their academic program, voluntarily answered to a questionnaire concerning: a) Classification of the four most important academic stress factors; b) The extent to which their daily life influences academic stress; c) The most important SM methods they know; d) Which of these methods they are applying; e) the UCT they know or about which they have heard; f) Which of these they know to have stress modulation effects; g) Which of these UCT, participants are using or would like to use for modulating stress; and if participants use UTC for their own choose or following a specialist consultation in those therapies (SCT); h) If they heard about the following UCT and what opinion they have (using visual analogue scale) about their use (following CST) for the ASM: Phytotherapy (PT), apitherapy (AT), homeopathy (H), ayurvedic medicine (AM), traditional Chinese medicine (TCM), music therapy (MT), color therapy (CT), forest therapy (FT). Results: Among the four most important academic stress factors, for MS more than for NMS, are: busy schedule, large amount of information taught; high level of performance required, reduced time for relaxing. The most important methods for SM that MS and NMS know, hierarchically are: listen to music, meeting friends, playing sport, hiking, sleep, regularly breaks, seeing positive side, faith; of which, NMS more than MS, are partially applying to themselves. UCT about which MS and less NMS have heard, are phytotherapy, apitherapy, acupuncture, reiki. Of these UTC, participants know to have stress modulation effects: some plants, bee’s products and music; they use or would like to use for ASM (the majority without SCT) certain teas, honey and music. Most of MS and only some NMS heard about PT, AT, TCM, MT and much less about H, AM, CT, TT. NMS more than MS, would use these UCT, following CST. Conclusions: 1) Academic stress is similarly reflected in MS and NMS opinions. 2) MS and NMS apply similar but very few UCT for stress modulation. 3) Information that MS and NMS have about UCT and their ASM application is reduced. 4) It is remarkable that MS and especially NMS, are open to UCT use for ASM, following an SCT.

Keywords: academic stress, stress management, stress modulation, medical students, non-medical students, unconventional therapies

Procedia PDF Downloads 310
1479 Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis

Authors: Alexander A. Tokmakov

Abstract:

Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

Keywords: bioinformatics analysis, cell-free protein synthesis, expression success, optimization, recombinant proteins

Procedia PDF Downloads 384
1478 Differences in Cognitive Functioning over the Course of Chemotherapy in Patients Suffering from Multiple Myeloma and the Possibility to Predict Their Cognitive State on the Basis of Biological Factors

Authors: Magdalena Bury-Kaminska, Aneta Szudy-Szczyrek, Aleksandra Nowaczynska, Olga Jankowska-Lecka, Marek Hus, Klaudia Kot

Abstract:

Introduction: The aim of the research was to determine the changes in cognitive functioning in patients with plasma cell myeloma by comparing patients’ state before the treatment and during chemotherapy as well as to determine the biological factors that can be used to predict patients’ cognitive state. Methods: The patients underwent the research procedure twice: before chemotherapy and after 4-6 treatment cycles. A psychological test and measurement of the following biological variables were carried out: TNF-α (tumor necrosis factor), IL-6 (interleukin 6), IL-10 (interleukin 10), BDNF (brain-derived neurotrophic factor). The following research methods were implemented: the Montreal Cognitive Assessment (MoCA), Battery of Tests for Assessing Cognitive Functions PU1, experimental and clinical trials based on the Choynowski’s Memory Scale, Stroop Color-Word Interference Test (SCWT), depression measurement questionnaire. Results: The analysis of the research showed better cognitive functions of patients during chemotherapy in comparison to the phase before it. Moreover, neurotrophin BDNF allows to predict the level of selected cognitive functions (semantic fluency and execution control) already at the diagnosis stage. After 4-6 cycles, it is also possible to draw conclusions concerning the extent of working memory based on the level of BDNF. Cytokine TNF-α allows us to predict the level of letter fluency during anti-cancer treatment. Conclusions: It is possible to presume that BDNF has a protective influence on patients’ cognitive functions and working memory and that cytokine TNF-α co-occurs with a diminished execution control and better material grouping in terms of phonological fluency. Acknowledgment: This work was funded by the National Science Center in Poland [grant no. 2017/27/N/HS6/02057.

Keywords: chemobrain, cognitive impairment, non−central nervous system cancers, hematologic diseases

Procedia PDF Downloads 129
1477 Application of Laser-Induced Breakdown Spectroscopy for the Evaluation of Concrete on the Construction Site and in the Laboratory

Authors: Gerd Wilsch, Tobias Guenther, Tobias Voelker

Abstract:

In view of the ageing of vital infrastructure facilities, a reliable condition assessment of concrete structures is becoming of increasing interest for asset owners to plan timely and appropriate maintenance and repair interventions. For concrete structures, reinforcement corrosion induced by penetrating chlorides is the dominant deterioration mechanism affecting the serviceability and, eventually, structural performance. The determination of the quantitative chloride ingress is required not only to provide valuable information on the present condition of a structure, but the data obtained can also be used for the prediction of its future development and associated risks. At present, wet chemical analysis of ground concrete samples by a laboratory is the most common test procedure for the determination of the chloride content. As the chloride content is expressed by the mass of the binder, the analysis should involve determination of both the amount of binder and the amount of chloride contained in a concrete sample. This procedure is laborious, time-consuming, and costly. The chloride profile obtained is based on depth intervals of 10 mm. LIBS is an economically viable alternative providing chloride contents at depth intervals of 1 mm or less. It provides two-dimensional maps of quantitative element distributions and can locate spots of higher concentrations like in a crack. The results are correlated directly to the mass of the binder, and it can be applied on-site to deliver instantaneous results for the evaluation of the structure. Examples for the application of the method in the laboratory for the investigation of diffusion and migration of chlorides, sulfates, and alkalis are presented. An example for the visualization of the Li transport in concrete is also shown. These examples show the potential of the method for a fast, reliable, and automated two-dimensional investigation of transport processes. Due to the better spatial resolution, more accurate input parameters for model calculations are determined. By the simultaneous detection of elements such as carbon, chlorine, sodium, and potassium, the mutual influence of the different processes can be determined in only one measurement. Furthermore, the application of a mobile LIBS system in a parking garage is demonstrated. It uses a diode-pumped low energy laser (3 mJ, 1.5 ns, 100 Hz) and a compact NIR spectrometer. A portable scanner allows a two-dimensional quantitative element mapping. Results show the quantitative chloride analysis on wall and floor surfaces. To determine the 2-D distribution of harmful elements (Cl, C), concrete cores were drilled, split, and analyzed directly on-site. Results obtained were compared and verified with laboratory measurements. The results presented show that the LIBS method is a valuable addition to the standard procedures - the wet chemical analysis of ground concrete samples. Currently, work is underway to develop a technical code of practice for the application of the method for the determination of chloride concentration in concrete.

Keywords: chemical analysis, concrete, LIBS, spectroscopy

Procedia PDF Downloads 87
1476 Management Methods of Food Losses in Polish Processing Plants

Authors: Beata Bilska, Marzena Tomaszewska, Danuta Kolozyn-Krajewska

Abstract:

Food loss and food waste are a global problem of the modern economy. The research undertaken aimed to analyze how food is handled in catering establishments when it comes to food waste and to demonstrate the main ways of management with foods/dishes not served to consumers. A survey study was conducted from January to June 2019. The selection of catering establishments participating in the study was deliberate. The study included establishments located only in Mazowieckie Voivodeship (Poland). Forty-two completed questionnaires were collected. In some questions, answers were based on a 5-point scale of 1 to 5 (from "always" / "every day" to "never"). The survey also included closed questions with a suggested cafeteria of answers. The respondents stated that in their workplaces, dishes served cold and hot ready meals are discarded every day or almost every day (23.7% and 20.5% of answers respectively). A procedure most frequently used for dealing with dishes not served to consumers on a given day is their storage at a cool temperature until the following day. In the research, 1/5 of respondents admitted that consumers "always" or "usually" leave uneaten meals on their plates, and over 41% "sometimes" do so. It was found additionally that food not used in the foodservice sector is most often thrown into a public container for rubbish. Most often thrown into the public container (with communal trash) were: expired products (80.0%), plate waste (80.0%) and inedible products (fruit and vegetable peels, eggshells) (77.5%). Most frequently into the container dedicated only to food waste were thrown out used deep-frying oil (62.5%). 10% of respondents indicated that inedible products in their workplaces are allocated for animal feeds. Food waste in the foodservice sector remains an insufficiently studied issue, as owners of these objects are often unwilling to disclose data about the subject. Incorrect ways of management with foods not served to consumers were observed. There is a need to develop educational activities for employees and management in the context of food waste management in the foodservice sector.

Keywords: food waste, inedible products, plate waste, used deep-frying oil

Procedia PDF Downloads 100
1475 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 48
1474 Study Variation of Blade Angle on the Performance of the Undershot Waterwheel on the Pico Scale

Authors: Warjito, Kevin Geraldo, Budiarso, Muhammad Mizan, Rafi Adhi Pranata, Farhan Rizqi Syahnakri

Abstract:

According to data from 2021, the number of households in Indonesia that have access to on-grid electricity is claimed to have reached 99.28%, which means that around 0.7% of Indonesia's population (1.95 million people) still have no proper access to electricity and 38.1% of it comes from remote areas in Nusa Tenggara Timur. Remote areas are classified as areas with a small population of 30 to 60 families, have limited infrastructure, have scarce access to electricity and clean water, have a relatively weak economy, are behind in access to technological innovation, and earn a living mostly as farmers or fishermen. These people still need electricity but can’t afford the high cost of electricity from national on-grid sources. To overcome this, it is proposed that a hydroelectric power plant driven by a pico-hydro turbine with an undershot water wheel will be a suitable pico-hydro turbine technology because of the design, materials and installation of the turbine that is believed to be easier (i.e., operational and maintenance) and cheaper (i.e., investment and operating costs) than any other type. The comparative study of the angle of the undershot water wheel blades will be discussed comprehensively. This study will look into the best variation of curved blades on an undershot water wheel that produces maximum hydraulic efficiency. In this study, the blade angles were varied by 180 ̊, 160 ̊, and 140 ̊. Two methods of analysis will be used, which are analytical and numerical methods. The analytical method will be based on calculations of the amount of torque and rotational speed of the turbine, which is used to obtain the input and output power of the turbine. Whereas the numerical method will use the ANSYS application to simulate the flow during the collision with the designed turbine blades. It can be concluded, based on the analytical and numerical methods, that the best angle for the blade is 140 ̊, with an efficiency of 43.52% for the analytical method and 37.15% for the numerical method.

Keywords: pico hydro, undershot waterwheel, blade angle, computational fluid dynamics

Procedia PDF Downloads 53
1473 The Carers-ID Online Intervention For Family Carers Of People With Intellectual Disabilities: A Feasibility Trial Protocol

Authors: Mark Linden, Rachel Leonard, Trisha Forbes, Michael Brown, Lynne Marsh, Stuart Todd, Nathan Hughes, Maria Truesdale

Abstract:

Background: Current interventions which aim to improve the mental health of family carers are often face to face, which can create barriers to full participation. Online interventions can offer flexibility in delivery compared to face to face approaches. The primary objective of this study is to determine the feasibility of delivering the Carers-ID online intervention, while the secondary outcome is to improve the mental health of family carers of people with intellectual disabilities. Methods: Family carers (n = 120) will be randomised to receive the intervention (n=60) or assigned to a wait-list control (n=60) group. The intervention (www.Carers-ID.com) consists of fourteen modules which cover topics including promoting resilience, providing peer support, reducing anxiety, managing stress, accessing local supports, managing family conflict and information for siblings who are carers. Primary outcomes for this study include acceptability and feasibility of the outcome measures, recruitment, participation and retention rates and effect sizes. Secondary outcomes will be completed at three time points (baseline, following intervention completion and three months after completion). Secondary outcomes include, depression, anxiety, stress, well-being , resilience and social connectedness. Participants (n=12) who have taken part in the intervention arm of the research will be invited to participate in semi-structured interviews as part of the process evaluation. Discussion: To determine whether a full-scale randomised controlled effectiveness trial is warranted, feasibility testing of the intervention and trial procedures is a necessary first step. The Carers-ID intervention provides an accessible resource for family carers to support their mental health and well-being.

Keywords: intellectual disability, family carer, feasibility trial, online intervention

Procedia PDF Downloads 35
1472 A Microsurgery-Specific End-Effector Equipped with a Bipolar Surgical Tool and Haptic Feedback

Authors: Hamidreza Hoshyarmanesh, Sanju Lama, Garnette R. Sutherland

Abstract:

In tele-operative robotic surgery, an ideal haptic device should be equipped with an intuitive and smooth end-effector to cover the surgeon’s hand/wrist degrees of freedom (DOF) and translate the hand joint motions to the end-effector of the remote manipulator with low effort and high level of comfort. This research introduces the design and development of a microsurgery-specific end-effector, a gimbal mechanism possessing 4 passive and 1 active DOFs, equipped with a bipolar forceps and haptic feedback. The robust gimbal structure is comprised of three light-weight links/joint, pitch, yaw, and roll, each consisting of low-friction support and a 2-channel accurate optical position sensor. The third link, which provides the tool roll, was specifically designed to grip the tool prongs and accommodate a low mass geared actuator together with a miniaturized capstan-rope mechanism. The actuator is able to generate delicate torques, using a threaded cylindrical capstan, to emulate the sense of pinch/coagulation during conventional microsurgery. While the tool left prong is fixed to the rolling link, the right prong bears a miniaturized drum sector with a large diameter to expand the force scale and resolution. The drum transmits the actuator output torque to the right prong and generates haptic force feedback at the tool level. The tool is also equipped with a hall-effect sensor and magnet bar installed vis-à-vis on the inner side of the two prongs to measure the tooltip distance and provide an analogue signal to the control system. We believe that such a haptic end-effector could significantly increase the accuracy of telerobotic surgery and help avoid high forces that are known to cause bleeding/injury.

Keywords: end-effector, force generation, haptic interface, robotic surgery, surgical tool, tele-operation

Procedia PDF Downloads 96
1471 Geological Mapping of Gabel Humr Akarim Area, Southern Eastern Desert, Egypt: Constrain from Remote Sensing Data, Petrographic Description and Field Investigation

Authors: Doaa Hamdi, Ahmed Hashem

Abstract:

The present study aims at integrating the ASTER data and Landsat 8 data to discriminate and map alteration and/or mineralization zones in addition to delineating different lithological units of Humr Akarim Granites area. The study area is located at 24º9' to 24º13' N and 34º1' to 34º2'45"E., covering a total exposed surface area of about 17 km². The area is characterized by rugged topography with low to moderate relief. Geologic fieldwork and petrographic investigations revealed that the basement complex of the study area is composed of metasediments, mafic dikes, older granitoids, and alkali-feldspar granites. Petrographic investigations revealed that the secondary minerals in the study area are mainly represented by chlorite, epidote, clay minerals and iron oxides. These minerals have specific spectral signatures in the region of visible near-infrared and short-wave infrared (0.4 to 2.5 µm). So that the ASTER imagery processing was concentrated on VNIR-SWIR spectrometric data in order to achieve the purposes of this study (geologic mapping of hydrothermal alteration zones and delineate possible radioactive potentialities). Mapping of hydrothermal alterations zones in addition to discriminating the lithological units in the study area are achieved through the utilization of some different image processing, including color band composites (CBC) and data transformation techniques such as band ratios (BR), band ratio codes (BRCs), principal component analysis(PCA), Crosta Technique and minimum noise fraction (MNF). The field verification and petrographic investigation confirm the results of ASTER imagery and Landsat 8 data, proposing a geological map (scale 1:50000).

Keywords: remote sensing, petrography, mineralization, alteration detection

Procedia PDF Downloads 128
1470 Designing a Model for Measuring the Components of Good Governance in the Iranian Higher Education System

Authors: Maria Ghorbanian, Mohammad Ghahramani, Mahmood Abolghasemi

Abstract:

Universities and institutions of higher education in Iran, like other higher education institutions in the world, have a heavy mission and task to educate students based on the needs of the country. Taking on such a serious responsibility requires having a good governance system for planning, formulating executive plans, evaluating, and finally modifying them in accordance with the current conditions and challenges ahead. In this regard, the present study was conducted with the aim of identifying the components of good governance in the Iranian higher education system by survey method and with a quantitative approach. In order to collect data, a researcher-made questionnaire was used, which includes two parts: personal and professional characteristics (5 questions) and the three components of good governance in the Iranian higher education system, including good management and leadership (8 items), continuous evaluation and effective (university performance, finance, and university appointments) (8 items) and civic responsibility and sustainable development (7 items). These variables were measured and coded in the form of a five-level Likert scale from "Very Low = 1" to "Very High = 5". First, the validity and reliability of the research model were examined. In order to calculate the reliability of the questionnaire, two methods of Cronbach's alpha and combined reliability were used. Fornell-Larker interaction and criterion were also used to determine the degree of diagnostic validity. The statistical population of this study included all faculty members of public universities in Tehran (N = 4429). The sample size was estimated to be 340 using the Cochran's formula. These numbers were studied using a randomized method with a proportional assignment. The data were analyzed by the structural equation method with the least-squares approach. The results showed that the component of civil responsibility and sustainable development with a factor load of 0.827 is the most important element of good governance.

Keywords: good governance, higher education, sustainable, development

Procedia PDF Downloads 132
1469 Cross-Linked Amyloglucosidase Aggregates: A New Carrier Free Immobilization Strategy for Continuous Saccharification of Starch

Authors: Sidra Pervez, Afsheen Aman, Shah Ali Ul Qader

Abstract:

The importance of attaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. Cross-linked enzyme aggregate (CLEAs) is a new approach for immobilization of enzymes using carrier free strategy. This method is exquisitely simple (involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules) and amenable to rapid optimization. Among many industrial enzymes, amyloglucosidase is an important amylolytic enzyme that hydrolyzes alpha (1→4) and alpha (1→6) glycosidic bonds in starch molecule and produce glucose as a sole end product. Glucose liberated by amyloglucosidase can be used for the production of ethanol and glucose syrups. Besides this amyloglucosidase can be widely used in various food and pharmaceuticals industries. For production of amyloglucosidase on commercial scale, filamentous fungi of genera Aspergillus are mostly used because they secrete large amount of enzymes extracellularly. The current investigation was based on isolation and identification of filamentous fungi from genus Aspergillus for the production of amyloglucosidase in submerged fermentation and optimization of cultivation parameters for starch saccharification. Natural isolates were identified as Aspergillus niger KIBGE-IB36, Aspergillus fumigatus KIBGE-IB33, Aspergillus flavus KIBGE-IB34 and Aspergillus terreus KIBGE-IB35 on taxonomical basis and 18S rDNA analysis and their sequence were submitted to GenBank. Among them, Aspergillus fumigatus KIBGE-IB33 was selected on the basis of maximum enzyme production. After optimization of fermentation conditions enzyme was immobilized on CLEA. Different parameters were optimized for maximum immobilization of amyloglucosidase. Data of enzyme stability (thermal and Storage) and reusability suggested the applicability of immobilized amyloglucosidase for continuous saccharification of starch in industrial processes.

Keywords: aspergillus, immobilization, industrial processes, starch saccharification

Procedia PDF Downloads 466
1468 The Walkway Project: An Exploration of Informal Public Space Upgrading in Gugulethu, Cape Town

Authors: Kathryn Ewing

Abstract:

Safe and accessible public spaces are vital elements of our South African cities. Public spaces hold the potential to act as important, vibrant places for learning, exchange, and practice. Public walkways, however, are some of the most neglected and extremely dangerous public spaces experienced in the local neighborhood of Gugulethu in Cape Town. Walkways feel insignificant, being recognized as informal and undetermined or retain complex fragments of formal erven. They are generally out of sight connecting minor streets and informal settlements. Community residents refer to the walkways as unsafe and dirty spaces. Local authorities allocate minimal to no municipal budgets nor maintenance plans resulting in a lack of basic services, particularly lighting and green infrastructure. ‘The Walkway Project’ presents a series of urban stories collected from co-design workshops, emotional mapping exercises, and fieldwork, including urban walks and urban talks. The narrative interprets the socio-spatial practice and complexity of informal public space in Gugulethu, Cape Town. The Walkway Project research, interrelated to the Master of Urban Design teaching and design-research studio, has a strong focus on participatory and engaged learning and action research methodology within a deliberate pedagogy. A consolidated urban design implementation plan exposes the impact and challenges of waste and water, opening the debate on relevant local solutions for resilience and safety in Cape Town. A small and neglected passage connecting two streets, commonly referred to as iThemba Walkway, is presented as a case study to show-case strategic urban design intervention strategies for urban upgrading. The iThemba walkway is a community-driven project that demonstrates active and responsible co-design and participatory development opportunities. In March 2021, when visited on an urban walk, the public space was covered by rubble and solid waste. By April 2021, the community cleaned the walkway and created an accessible passage for the school children to pass. Numerous co-design workshops have taken place over the past year. The walkway has emerged as a public space upgrading project facilitated, motivated, and implemented by multiple local partners and residents. Social maps from urban walks and talks illustrate the transformation of iThemba Walkway into an inclusive, safe, resilient, and sustainable urban space, linked to Sustainable Development Goal number 11, sustainable cities and communities. The outcomes of the upgrading project facilitate a deeper understanding of co-design methods, urban upgrading processes, and monitoring of public space and informal urbanism.

Keywords: informal, public space, resilience, safety, upgrade, walkways

Procedia PDF Downloads 65
1467 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution

Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko

Abstract:

Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.

Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking

Procedia PDF Downloads 44
1466 Report of a Realistic Simulation Training in Using Bougie Guide for Endotracheal Intubation

Authors: Cleto J. Sauer Jr., Rita C. Sauer, Chaider G. Andrade, Dóris F. Rabelo

Abstract:

Some patients with COVID-19 disease and difficult airway characteristics undergo to endotracheal intubation (ETI) procedure. The tracheal introducer, known as the bougie guide, can aid ETI in patients with difficult airway pattern. Realistic simulation (RS) is a methodology utilized for healthcare professionals training. To improve skills in using the bougie guide of physicians from Recôncavo da Bahia region in Brazil, during COVID-19 outbreak, RS training was carried out. Simulated scenario included the Nasco Lifeform realistic simulator for ETI and a bougie guide introducer. Training was a capacitation program organized by the Health Department of Bahia State. Objective: To report effects in participants´ self-confidence perception for using bougie guide after a RS based training. Methods: Descriptive study, secondary data extracted from questionnaires. Priority workplace and previous knowledge about bougie were reported on a preparticipation formulary. Participants also completed pre- and post-training qualitative self-assessment (10-point Likert scale) regarding to self-confidence in using bougie guide. Distribution analysis for qualitative data was performed with Wilcoxon Signed Rank Test, and self-confidence increase analysis in frequency contingency tables with Fisher's exact test. Results: From May to June 2020 a total of 36 physicians participated of training, 25 (69%) from primary care setting, 32 (89%) with no previous knowledge about the bougie guide utilization. For those who had previous knowledge about bougie pre-training self-confidence median was 6,5, and 2 for participants who had not. In overall there was an increase in self-confidence median for bougie utilization. Median (variation) before and after training was 2.5 (1-7) vs. 8 (4-10) (p <0.0001). Among those who had no previous knowledge about bougie (n = 32) an increase in self-confidence greater than 3 points for bougie utilization was reported by 31 vs. 1 participants (p = 0.71). Conclusions: Most of participants had no previous knowledge about using the bougie guide. RS training contributed to self-confidence increase for using bougie for ETI procedure. RS methodology can contribute for training in using the bougie guide for ETI procedure during COVID-19 outbreak.

Keywords: bougie, confidence, COVID-19, endotracheal intubation, realistic simulation

Procedia PDF Downloads 109
1465 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 310
1464 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 109