Search results for: sound and shape production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9871

Search results for: sound and shape production

9751 Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning

Authors: Gichun Cha, Byoungjoon Yu, Jihwan Park, Minsoo Park, Junghyun Im, Sehwan Park, Sujung Sin, Seunghee Park

Abstract:

The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance.

Keywords: terrestrial laser scanning, point cloud, shape information model, displacement measurement

Procedia PDF Downloads 203
9750 Three-Dimensional Jet Refraction Simulation Using a Gradient Term Suppression and Filtering Method

Authors: Lican Wang, Rongqian Chen, Yancheng You, Ruofan Qiu

Abstract:

In the applications of jet engine, open-jet wind tunnel and airframe, there wildly exists a shear layer formed by the velocity and temperature gradients between jet flow and surrounded medium. The presence of shear layer will refract and reflect the sound path that consequently influences the measurement results in far-field. To investigate and evaluate the shear layer effect, a gradient term suppression and filtering method is adopted to simulate sound propagation through a steady sheared flow in three dimensions. Two typical configurations are considered: one is an incompressible and cold jet flow in wind tunnel and the other is a compressible and hot jet flow in turbofan engine. A numerically linear microphone array is used to localize the position of given sound source. The localization error is presented and linearly fitted.

Keywords: aeroacoustic, linearized Euler equation, acoustic propagation, source localization

Procedia PDF Downloads 157
9749 Metabolic Engineering of Yarrowia Lipolytica for the Simultaneous Production of Succinic Acid (SA) and Polyhydroxyalkanoates (PHAs)

Authors: Qingsheng Qi, Cuijuan Gao, Carol Sze Ki Lin

Abstract:

Food waste can be defined as a by-product of food processing by industries and consumers, which has not been recycled or used for other purposes. Stringent waste regulations worldwide are pushing local companies and sectors towards higher sustainability standards. The development of novel strategies for food waste re-use is economically and environmentally sound, as it solves a waste management issue and represents an inexpensive nutrient source for biotechnological processes. For example, Yarrowia lipolytica is a yeast which can utilize hydrophobic substrates, such as fatty acids, lipids, and alkanes and simple carbon sources, such as glucose and glycerol, which can all be found in food waste. This broad substrate range makes Y. lipolytica a promising candidate for the degradation and valorisation of food waste, and for the production of organic acids, such as citric and α-ketoglutaric acids. Current research conducted in our group demonstrated that Y. lipolytica was shown to be able to produce succinic acid. In this talk, we will focus on the application of genetically modified yeast Y. lipolytica for fermentative succinic acid production with an aim to increase productivity and yield.

Keywords: food waste, succinic acid, Yarrowia lipolytica, bioplastic

Procedia PDF Downloads 260
9748 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components

Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin

Abstract:

This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.

Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization

Procedia PDF Downloads 352
9747 CAD Tool for Parametric Design modification of Yacht Hull Surface Models

Authors: Shahroz Khan, Erkan Gunpinar, Kemal Mart

Abstract:

Recently parametric design techniques became a vital concept in the field of Computer Aided Design (CAD), which helps to provide sophisticated platform to the designer in order to automate the design process in efficient time. In these techniques, design process starts by parameterizing the important features of design models (typically the key dimensions), with the implementation of design constraints. The design constraints help to retain the overall shape of the model while modifying its parameters. However, the process of initializing an appropriate number of design parameters and constraints is the crucial part of parametric design techniques, especially for complex surface models such as yacht hull. This paper introduces a method to create complex surface models in favor of parametric design techniques, a method to define the right number of parameters and respective design constraints, and a system to implement design parameters in contract to design constraints schema. For this, in our proposed approach the design process starts by dividing the yacht hull into three sections. Each section consists of different shape lines, which form the overall shape of yacht hull. The shape lines are created using Cubic Bezier Curves, which allow larger design flexibility. Design parameters and constraints are defined on the shape lines in 3D design space to facilitate the designers for better and individual handling of parameters. Afterwards, shape modifiers are developed, which allow the modification of each parameter while satisfying the respective set of criteria and design constraints. Such as, geometric continuities should be maintained between the shape lines of the three sections, fairness of the hull surfaces should be preserved after modification and while design modification, effect of a single parameter should be negligible on other parameters. The constraints are defined individually on shape lines of each section and mutually between the shape lines of two connecting sections. In order to validate and visualize design results of our shape modifiers, a real time graphic interface is created.

Keywords: design parameter, design constraints, shape modifies, yacht hull

Procedia PDF Downloads 278
9746 Approximating a Funicular Shape with a Translational Surface, Example of a Glass Canopy

Authors: Raphaël Menard, Etienne Fayette, Paul Azzopardi

Abstract:

This paper presents the method to generate the geometry of an actual glass canopy project in Rennes, France, by architect Bruno Gaudin, with aim to achieve the best structural efficiency possible using only quadrangle meshing. The paper includes equation of the translational surface generated, the level of accuracy in approximating the funicular shape and the method of constructive implementation.

Keywords: funicular shape, glass canopy, glass panels, lowered arches, mathematics, penalization, shell structure

Procedia PDF Downloads 522
9745 Comparison of Noise Emissions in the Interior of Passenger Cars

Authors: Martin Kendra, Tomas Skrucany, Jaroslav Masek

Abstract:

The noise is one of the negative elements influencing the human health. This article is due to the measurement of noise emitted by road vehicle and its parts during the operation. Measurement was done in the interior of common passenger cars with a digital sound meter. The results compare the noise value in different cars with different body shape, which influences the driver’s health. Transport has considerable ecological effects, many of them detrimental to environmental sustainability. Roads and traffic exert a variety of direct and mostly detrimental effects on nature.

Keywords: driver, noise measurement, passenger road vehicle, road transport

Procedia PDF Downloads 424
9744 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior

Authors: Priyanka Gupta, Bipin Kumar

Abstract:

Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.

Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle

Procedia PDF Downloads 64
9743 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 16
9742 Some Investigations of Primary Slurry Used for Production of Ceramic Shells

Authors: Balwinder Singh

Abstract:

In the current competitive environment, casting industry has several challenges such as production of intricate castings, near net shape castings, decrease lead-time from product design to production, improved casting quality and to control costs. The raw materials used to make ceramic shell play an important role in determining the overall final ceramic shell characteristics. In this work, primary slurries were formulated using various combinations of zircon flour, fused silica and aluminosilicate powders as filler, colloidal silica as binder along with wetting and antifoaming agents (Catalyst). Taguchi’s parameter design strategy has been applied to investigate the effect of primary slurry parameters on the viscosity of the slurry and primary coating of shell. The result reveals that primary coating with low viscosity slurry has produced a rough surface of the shell due to stucco penetration.

Keywords: ceramic shell, primary slurry, filler, slurry viscosity, surface roughness

Procedia PDF Downloads 447
9741 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors

Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri

Abstract:

Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.

Keywords: citrus greening, pattern recognition, feature extraction, classification

Procedia PDF Downloads 144
9740 Active Noise Cancellation in the Rectangular Enclosure Systems

Authors: D. Shakirah Shukor, A. Aminudin, Hashim U. A., Waziralilah N. Fathiah, T. Vikneshvaran

Abstract:

The interior noise control is essential to be explored due to the interior acoustic analysis is significant in the systems such as automobiles, aircraft, air-handling system and diesel engine exhausts system. In this research, experimental work was undertaken for canceling an active noise in the rectangular enclosure. The rectangular enclosure was fabricated with multiple speakers and microphones inside the enclosure. A software program using digital signal processing is implemented to evaluate the proposed method. Experimental work was conducted to obtain the acoustic behavior and characteristics of the rectangular enclosure and noise cancellation based on active noise control in low-frequency range. Noise is generated by using multispeaker inside the enclosure and microphones are used for noise measurements. The technique for noise cancellation relies on the principle of destructive interference between two sound fields in the rectangular enclosure. One field is generated by the original or primary sound source, the other by a secondary sound source set up to interfere with, and cancel, that unwanted primary sound. At the end of this research, the result of output noise before and after cancellation are presented and discussed. On the basis of the findings presented in this research, an active noise cancellation in the rectangular enclosure is worth exploring in order to improve the noise control technologies.

Keywords: active noise control, digital signal processing, noise cancellation, rectangular enclosure

Procedia PDF Downloads 244
9739 3D Shape Knitting: Loop Alignment on a Surface with Positive Gaussian Curvature

Authors: C. T. Cheung, R. K. P. Ng, T. Y. Lo, Zhou Jinyun

Abstract:

This paper aims at manipulating loop alignment in knitting a three-dimensional (3D) shape by its geometry. Two loop alignment methods are introduced to handle a surface with positive Gaussian curvature. As weft knitting is a two-dimensional (2D) knitting mechanism that the knitting cam carrying the feeders moves in two directions only, left and right, the knitted fabric generated grows in width and length but not in depth. Therefore, a 3D shape is required to be flattened to a 2D plane with surface area preserved for knitting. On this flattened plane, dimensional measurements are taken for loop alignment. The way these measurements being taken derived two different loop alignment methods. In this paper, only plain knitted structure was considered. Each knitted loop was taken as a basic unit for loop alignment in order to achieve the required geometric dimensions, without the inclusion of other stitches which give textural dimensions to the fabric. Two loop alignment methods were experimented and compared. Only one of these two can successfully preserve the dimensions of the shape.

Keywords: 3D knitting, 3D shape, loop alignment, positive Gaussian curvature

Procedia PDF Downloads 322
9738 Effect of Dietary Supplementation of Ashwagandha (Withania somnifera) on Performance of Commercial Layer Hens

Authors: P. Arun Subhash, B. N. Suresh, M. C. Shivakumar, N. Suma

Abstract:

An experiment was conducted to study the effect of dietary supplementation of ashwagandha (Withania somnifera) root powder on the egg production performance and egg quality in commercial layer birds. A practical type layer diet was prepared as per Bureau of Indian Standards (1992) to serve as the control, and the test diet was prepared by supplementing control diet with ashwagandha powder at 1kg/ton of feed. Each diet was assigned to twenty replicate groups of 5 laying hens each for duration of 84 days. The result revealed that cumulative egg production (%) was comparable between control and test group. The feed consumption and its conversion efficiency were similar among both the groups. The egg weight and egg characteristics viz., yolk index, yolk color, haugh unit score, albumen index, egg shape index and eggshell thickness were also remained similar between both the groups. It was concluded that supplementation of ashwagandha powder at 1kg/ton in layer diets has no beneficial effect on egg production and egg quality parameters.

Keywords: ashwagandha, egg production, egg quality, layers

Procedia PDF Downloads 120
9737 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel

Authors: Gurjit Singh, Gurmail Singh

Abstract:

The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.

Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel

Procedia PDF Downloads 57
9736 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 165
9735 Advantages of a New Manufacturing Facility for the Production of Nanofiber

Authors: R. Knizek, D. Karhankova

Abstract:

The production of nanofibers and the machinery for their production is a current issue. The pioneer, in the industrial production of nanofibers, is the machinery with the sales descriptions NanospiderTM from the company Elmarco, which came into being in 2008. Most of the production facilities, like NanospiderTM, use electrospinning. There are also other methods of industrial production of nanofibers, such as the centrifugal spinning process, which is used by FibeRio Technology Corporation. However, each method and machine has its advantages, but also disadvantages and that is the reason why a new machine called as Nanomachine, which eliminates the disadvantages of other production facilities producing nanofibers, has been developed.

Keywords: nanomachine, nanospider, spinning slat, electrospinning

Procedia PDF Downloads 280
9734 A New Criterion Using Pose and Shape of Objects for Collision Risk Estimation

Authors: DoHyeung Kim, DaeHee Seo, ByungDoo Kim, ByungGil Lee

Abstract:

As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.

Keywords: collision risk, pose, shape, fuzzy logic

Procedia PDF Downloads 492
9733 Assessment and Evaluation of Traffic Noise in Selected Government Healthcare Facilities at Birnin Kebbi, Kebbi State-Nigeria

Authors: Muhammad Naziru Yahaya, Buhari Samaila, Nasiru Abubakar

Abstract:

Noise pollution caused by vehicular movement in urban cities has reached alarming proportions due to continuous increases in vehicles and industrialization. Traffic noise causes deafness, annoyance, and other health challenges. According to World Health Organization recommends 60Db daytime sound levels and 40db night time sound levels in hospitals, schools, and other residential areas. Measurements of traffic noise were taken at six different locations of selected healthcare facilities at Birnin Kebbi (Sir Yahaya Memorial Hospital and Federal Medical Centre Birnin Kebbi). The data was collected in the vicinity of hospitals using the slow setting of the device and pointed at noise sources. An integrated multifunctional sound level GM1352, KK2821163 model, was used for measuring the emitted noise and temperatures. The data was measured and recorded at three different periods of the day 8 am – 12 pm, 3 pm – 6 pm, and 6 pm – 8:30 pm, respectively. The results show that a fair traffic flow producing an average sound level in the order of 38db – 64db was recorded at GOPDF, amenityF, and ante-natalF. Similarly, high traffic noise was observed at GOPDS, amenityS, and Fati-LamiS in the order of 52db – 78db unsatisfactory threshold for human hearing.

Keywords: amenities, healthcare, noise, hospital, traffic

Procedia PDF Downloads 72
9732 The Acoustic Performance of Double-skin Wind Energy Facade

Authors: Sara Mota Carmo

Abstract:

Wind energy applied in architecture has been largely abandoned due to the uncomfortable noise it causes. This study aims to investigate the acoustical performance in the urban environment and indoor environment of a double-skin wind energy facade. Measurements for sound transmission were recorded by using a hand-held sound meter device on a reduced-scale prototype of a wind energy façade. The applied wind intensities ranged between 2m/s and 8m/s, and the increase sound produced were proportional to the wind intensity.The study validates the acoustic performance of wind energy façade using a double skin façade system, showing that noise reduction indoor by approximately 30 to 35 dB. However, the results found that above 6m/s win intensity, in urban environment, the wind energy system applied to the façade exceeds the maximum 50dB recommended by world health organization and needs some adjustments.

Keywords: double-skin wind energy facade, acoustic energy facade, wind energy in architecture, wind energy prototype

Procedia PDF Downloads 66
9731 Fano-Resonance-Based Wideband Acoustic Metamaterials with Highly Efficient Ventilation

Authors: Xi-Wen Xiao, Tzy-Rong Lin, Chien-Hao Liu

Abstract:

Ventilated acoustic metamaterials have attracted considerable research attention due to their low-frequency absorptions and efficient fluid ventilations. In this research, a wideband acoustic metamaterial with auditory filtering ability and efficient ventilation capacity were proposed. In contrast to a conventional Fano-like resonator, a Fano-like resonator composed of a resonant unit and two nonresonant units with a large opening area of 68% for fluid passages was developed. In addition, the coupling mechanism to improve the narrow bandwidths of conventional Fano-resonance-based meta-materials was included. With a suitable design, the output sound waves of the resonant and nonresonant states were out of phase to achieve sound absorptions in the far fields. Therefore, three-element and five-element coupled Fano-like metamaterials were designed and simulated with the help of the finite element software to obtain the filtering fractional bandwidths of 42.5% and 61.8%, respectively. The proposed approach can be extended to multiple coupled resonators for obtaining ultra-wide bandwidths and can be implemented with 3D printing for practical applications. The research results are expected to be beneficial for sound filtering or noise reductions in duct applications and limited-volume spaces.

Keywords: fano resonance, noise reduction, resonant coupling, sound filtering, ventilated acoustic metamaterial

Procedia PDF Downloads 91
9730 Logistics Process of Pineapple’s Leaves Product in Prachuapkhirikhan Province

Authors: Atcharawan Phenwansuk

Abstract:

The product design is important to the development of SME towards the global, because it made to the quality product to react the needs of consumers and could reduces cost in the production, making it more profitable. As a results, the business are competition advantage for more marketing. It also enhance image of product and firms to build its own brand products to be acceptable. The product was designed should be shape, size, colorful, and direct of target consumers. This is method to add value products to get popular and effective, because the beauty is first satisfaction which come from main shape and color of the design product, but the product was designed need to hold data and law combination of shape and color between artistic theory and satisfaction of consumers together. The design must consider the safety of life and asset of consumers the most important. From to use of designed products should be to consider the cost savings, convenient distance, transportation, routes (land, water or air) of living space on transport (capacity, volume, width, length of the car, truck and container, etc). The packaging must be can to prevent not damage of the products. If products is more large , maybe to design new packaging, which can easily disassembled for make smaller package such as designing the assembly. Products must be packed in the container for size standard for save costs, as well as the buyer can make transport and assembly of products to fit easily on your own.

Keywords: logistics process , pineapple’s leaves product, product design, satisfaction of consumers

Procedia PDF Downloads 372
9729 Corporate Governance and Firm Performance: Empirical Evidence from India

Authors: G. C. Surya Bahadur, Ranjana Kothari

Abstract:

The paper attempts to analyze linkages between corporate governance and firm performance in India. The study employs a panel data of 50 Nifty companies from 2008 to 2012. Using LSDV panel data model and 2SLS model the study reveals that that good corporate governance practices adopted by companies is positively related with financial performance. Board independence, number of board committees and executive compensation are found to have positive relationship while ownership by promoters and financial leverage have negative relationship with performance. There is existence of bi-directional relationship between corporate governance and financial performance. Companies with sound financial performance are more likely to conform to corporate governance norms and standards and implement sound corporate governance system. The findings indicate that companies can enhance business performance and sustainability by embracing sound corporate governance practices.

Keywords: board structure, corporate governance, executive compensation, ownership structure

Procedia PDF Downloads 445
9728 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects

Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet

Abstract:

New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.

Keywords: auditory feedback, gesture sonification, sound perception, virtual object

Procedia PDF Downloads 274
9727 The Effect of Pixelation on Face Detection: Evidence from Eye Movements

Authors: Kaewmart Pongakkasira

Abstract:

This study investigated how different levels of pixelation affect face detection in natural scenes. Eye movements and reaction times, while observers searched for faces in natural scenes rendered in different ranges of pixels, were recorded. Detection performance for coarse visual detail at lower pixel size (3 x 3) was better than with very blurred detail carried by higher pixel size (9 x 9). The result is consistent with the notion that face detection relies on gross detail information of face-shape template, containing crude shape structure and features. In contrast, detection was impaired when face shape and features are obscured. However, it was considered that the degradation of scenic information might also contribute to the effect. In the next experiment, a more direct measurement of the effect of pixelation on face detection, only the embedded face photographs, but not the scene background, will be filtered.

Keywords: eye movements, face detection, face-shape information, pixelation

Procedia PDF Downloads 291
9726 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

Authors: Yu T. Tsai, Jin H. Huang

Abstract:

In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

Keywords: sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties

Procedia PDF Downloads 358
9725 Numerical Prediction of Effects of Location of Across-the-Width Laminations on Tensile Properties of Rectangular Wires

Authors: Kazeem K. Adewole

Abstract:

This paper presents the finite element analysis numerical investigation of the effects of the location of across-the-width lamination on the tensile properties of rectangular wires for civil engineering applications. FE analysis revealed that the presence of the mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture shape with an opening at the bottom/pointed end of the V-shape at the location of the mid-thickness across-the-width lamination. FE analysis also revealed that the presence of the mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the location of the mid-width across-the-thickness lamination. The FE fracture behaviour prediction approach presented in this work serves as a tool for failure analysis of wires with lamination at different orientations which cannot be conducted experimentally.

Keywords: across-the-width lamination, tensile properties, lamination location, wire

Procedia PDF Downloads 452
9724 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern

Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc

Abstract:

The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.

Keywords: phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization

Procedia PDF Downloads 476
9723 Shape Management Method for Safety Evaluation of Bridge Based on Terrestrial Laser Scanning Using Least Squares

Authors: Gichun Cha, Dongwan Lee, Junkyeong Kim, Aoqi Zhang, Seunghee Park

Abstract:

All the world are studying the construction technology of double deck tunnel in order to respond to the increasing urban traffic demands and environmental changes. Advanced countries have the construction technology of the double deck tunnel structure. but the domestic country began research on it. Construction technologies are important. But Safety evaluation of structure is necessary to prevent possible accidents during construction. Thus, the double deck tunnel was required the shape management of middle slabs. The domestic country is preparing the construction of double deck tunnel for an alternate route and a pleasant urban environment. Shape management of double deck tunnel has been no research because it is a new attempted technology. The present, a similar study is bridge structure for the shape management. Bridge is implemented shape model using terrestrial laser scanning(TLS). Therefore, we proceed research on the bridge slabs because there is a similar structure of double deck tunnel. In the study, we develop shape management method of bridge slabs using TLS. We select the Test-bed for measurement site. This site is bridge located on Sungkyunkwan University Natural Sciences Campus. This bridge has a total length of 34m, the vertical height of 8.7m from the ground. It connects Engineering Building #1 and Engineering Building #2. Point cloud data for shape management is acquired the TLS and We utilized the Leica ScanStation C10/C5 model. We will confirm the Maximum displacement area of middle slabs using Least-Squares Fitting. We expect to raise stability for double deck tunnel through shape management for middle slabs.

Keywords: bridge slabs, least squares, safety evaluation, shape management method, terrestrial laser scanning

Procedia PDF Downloads 217
9722 Environmental Performance of Olive Oil Production in Greece

Authors: P. Tsarouhas, Ch. Achillas, D. Aidonis, D. Folinas, V. Maslis, N. Moussiopoulos

Abstract:

Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed.

Keywords: LCA, olive oil production, environmental impact, case study, Greece

Procedia PDF Downloads 403