Search results for: smart irrigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1843

Search results for: smart irrigation

1753 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 466
1752 Spatial Variability of Soil Pollution and Health Risks Due to Long-Term Wastewater Irrigation in Egypt

Authors: Mohamed Eladham Fadl M. E. Fadl

Abstract:

In Egypt, wastewater has been used for irrigation in areas with fresh water scarcity. However, continuous applications may cause potential risks. Thus, the current study aims at screening the impacts of long-term wastewater irrigation on soil pollution and human health due to the exposure of heavy metals. Soils of nine sites in Al-Qalyubiyah Governorate, Egypt were sampled and analyzed for different properties. Wastewater resulted in a build-up of metals in soils. The pollution index (PI) showed the order of Cd > Pb > Ni > Zn. The integrated pollution index of Nemerow’s (IPIN) exceeded the safe limit of 0.7. The enrichment factor (EF) surpassed 1.0 value proving anthropogenic effects. The geo-accumulation index (Igeo) indicated that Pb, Ni, and Zn-induced none to moderate pollution, while high threats were associated with Cd. The calculated hazard index proved a potential health risk for humans, particularly children. It is recommended to perform a treatment to the wastewater used in irrigation to avoid such threats.

Keywords: pollution, health risks, heavy metals, effluent, irrigation, GIS techniques

Procedia PDF Downloads 313
1751 Application of Cloud Based Healthcare Information System through a Smart Card in Kingdom of Saudi Arabia

Authors: Wasmi Woishi

Abstract:

Smart card technology is a secure and safe technology that is expanding its capabilities day by day in terms of holding important information without alteration. It is readily available, and its ease of portability makes it more efficient in terms of its usage. The smart card is in use by many industries such as financial, insurance, governmental industries, personal identification, to name a few. Smart card technology is popular for its wide familiarity, adaptability, accessibility, benefits, and portability. This research aims to find out the perception toward the application of a cloud-based healthcare system through a smart card in KSA. The research has compiled the countries using a smart card or smart healthcare card and indicated the potential benefits of implementing smart healthcare cards. 120 participants from Riyadh city were surveyed by the means of a closed-ended questionnaire. Data were analyzed through SPSS. This research extends the research body in the healthcare system. Empirical evidence regarding smart healthcare cards is scarce and hence undertaken in this study. The study provides a useful insight into collecting, storing, analyzing, manipulating, and accessibility of medical information regarding smart healthcare cards. Research findings can help achieve KSA's Vision 2030 goals in terms of the digitalization of healthcare systems in improving its efficiency and effectiveness in storing and accessing healthcare data.

Keywords: smart card technology, healthcare using smart cards, smart healthcare cards, KSA healthcare information system, cloud-based healthcare cards

Procedia PDF Downloads 138
1750 Evaluation of the Quality Water Irrigation in Region of Lioua (Biskra), Algeria

Authors: F. Hiouani, M. Henouda, A. Masmoudi, M. Rechachi

Abstract:

The objective of this study was to evaluate the quality of irrigation water of some underground water resources in the region of Lioua (Biskra, Algéria). Analysis of cations (Ca++, Mg++, Na+, K+), anions (Cl-, SO4--, CO3--, HCO3-, NO3-), pH and electrical conductivity (EC) of ten water samples taken during March 2015. The resulted showed that water samples are designated salty and very salty. On the other hand, average SAR values show that there is no alkalinity risk of soil. According to Riverside diagram water samples are grouped into five classes (C3-S1, C4-S1, C4-S3, C5-S2 and C5-S3).

Keywords: groundwater, irrigation, quality, lioua biskra

Procedia PDF Downloads 282
1749 Use of Treated Municipal Wastewater on Artichoke Crop

Authors: G. Disciglio, G. Gatta, A. Libutti, A. Tarantino, L. Frabboni, E. Tarantino

Abstract:

Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.

Keywords: artichoke, soil chemical characteristics, fecal indicators, treated municipal wastewater, water recycling

Procedia PDF Downloads 399
1748 Effect of Sugar Mill Effluent on Growth, Yield and Soil Properties of Ratoon Cane in Cauvery Command Area

Authors: G. K. Madhu, S. Bhaskar, M. S. Dinesh, R. Manii, C. A. Srinivasamurthy

Abstract:

A field experiment was conducted in the premises of M/s Sri Chamundeshwari Sugars Ltd., Bharathinagar, Mandya District Pvt. Ltd., during 2014 to study the effect of sugar mill effluent (SME) on growth, yield and soil properties of ratoon cane with eight treatments replicated thrice using RCBD design. Significantly higher growth parameters like cane height (249.77 cm) and number of tillers per clump (12.22) were recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower growth attributes were recorded in treatment which received irrigation with sugar mill effluent alone. Significantly higher cane yield (104. 93 t -1) was recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower cane yield (87.40 t ha-1) was observed in treatment which received irrigation with sugar mill effluent alone. Soil properties like pH (7.84) was higher in treatment receiving Alternate irrigation with freshwater and sugar mill effluent + RDF. But EC was significantly higher in treatment which received Cycle of1 irrigation with freshwater + 2 irrigations with sugar mill effluent + RDF as compared to other treatments.

Keywords: sugar mill effluent, sugarcane, irrigation, cane yield

Procedia PDF Downloads 303
1747 A New Smart Plug for Home Energy Management

Authors: G. E. Kiral, O. Elma, A. T. Ince, B. Vural, U. S. Selamogullari, M. Uzunoglu

Abstract:

Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy.

Keywords: energy efficiency, home energy management, smart home, smart plug

Procedia PDF Downloads 698
1746 Smart Irrigation System for Applied Irrigation Management in Tomato Seedling Production

Authors: Catariny C. Aleman, Flavio B. Campos, Matheus A. Caliman, Everardo C. Mantovani

Abstract:

The seedling production stage is a critical point in the vegetable production system. Obtaining high-quality seedlings is a prerequisite for subsequent cropping to occur well and productivity optimization is required. The water management is an important step in agriculture production. The adequate water requirement in horticulture seedlings can provide higher quality and increase field production. The practice of irrigation is indispensable and requires a duly adjusted quality irrigation system, together with a specific water management plan to meet the water demand of the crop. Irrigation management in seedling management requires a great deal of specific information, especially when it involves the use of inputs such as hydrorentering polymers and automation technologies of the data acquisition and irrigation system. The experiment was conducted in a greenhouse at the Federal University of Viçosa, Viçosa - MG. Tomato seedlings (Lycopersicon esculentum Mill) were produced in plastic trays of 128 cells, suspended at 1.25 m from the ground. The seedlings were irrigated by 4 micro sprinklers of fixed jet 360º per tray, duly isolated by sideboards, following the methodology developed for this work. During Phase 1, in January / February 2017 (duration of 24 days), the cultivation coefficient (Kc) of seedlings cultured in the presence and absence of hydrogel was evaluated by weighing lysimeter. In Phase 2, September 2017 (duration of 25 days), the seedlings were submitted to 4 irrigation managements (Kc, timer, 0.50 ETo, and 1.00 ETo), in the presence and absence of hydrogel and then evaluated in relation to quality parameters. The microclimate inside the greenhouse was monitored with the use of air temperature, relative humidity and global radiation sensors connected to a microcontroller that performed hourly calculations of reference evapotranspiration by Penman-Monteith standard method FAO56 modified for the balance of long waves according to Walker, Aldrich, Short (1983), and conducted water balance and irrigation decision making for each experimental treatment. Kc of seedlings cultured on a substrate with hydrogel (1.55) was higher than Kc on a pure substrate (1.39). The use of the hydrogel was a differential for the production of earlier tomato seedlings, with higher final height, the larger diameter of the colon, greater accumulation of a dry mass of shoot, a larger area of crown projection and greater the rate of relative growth. The handling 1.00 ETo promoted higher relative growth rate.

Keywords: automatic system; efficiency of water use; precision irrigation, micro sprinkler.

Procedia PDF Downloads 89
1745 Postoperative Budesonide Nasal Irrigation vs Normal Saline Irrigation for Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis

Authors: Rakan Hassan M. Alzahrani, Ziyad Alzahrani, Bader Bashrahil, Abdulrahman Elyasi, Abdullah a Ghaddaf, Rayan Alzahrani, Mohammed Alkathlan, Nawaf Alghamdi, Dakheelallah Almutairi

Abstract:

Background: Corticosteroid irrigations, which regularly involve the off-label use of budesonide mixed with normal saline in high volume Sino-nasal irrigations, have been more commonly used in the management of post-operative chronic rhinosinusitis (CRS). Objective: This article attempted to measure the efficacy of post-operative budesonide nasal irrigation compared to normal saline-alone nasal irrigation in the management of chronic rhinosinusitis (CRS) through a systematic review and meta-analysis of randomized controlled trials (RCTs). Methods: The databases PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched by two independent authors. Only RCTs comparing budesonide irrigation to normal saline alone irrigation for CRS with or without polyposis after functional endoscopic sinus surgery (FESS) were eligible. A random effect analysis model of the reported CRS-related quality of life (QOL) measures and the objective endoscopic assessment scales of the disease was done. Results: Only 6 RCTs met the eligibility criteria, with a total number of participants of 356. Compared to normal saline irrigation, budesonide nasal irrigation showed statically significant improvements in both the CRS-related quality of life (QOL) and the endoscopic findings (MD= -4.22 confidence interval [CI]: -5.63, -2.82 [P < 0.00001]), (SMD= -0.50 confidence interval [CI]: -0.93, -0.06 [P < 0.03]) respectively. Conclusion: Both intervention arms showed improvements in CRS-related QOL and endoscopic findings in post-FESS chronic rhinosinusitis with or without polyposis. However, budesonide irrigation seems to have a slight edge over conventional normal saline irrigation with no reported serious side effects, including hypothalamic-pituitary-adrenal (HPA) axis suppression.

Keywords: Budesonide, chronic rhinosinusitis, corticosteroids, nasal irrigation, normal saline

Procedia PDF Downloads 50
1744 Assessment of Smart Mechatronics Application in Agriculture

Authors: Sairoel Amertet, Girma Gebresenbet

Abstract:

Smart mechatronics systems in agriculture can be traced back to the mid-1980s, when research into automated fruit harvesting systems began in Japan, Europe, and the United States. Since then, impressive advances have been made in smart mechatronics systems. Furthermore, smart mechatronics systems are promising areas, and as a result, we were intrigued to learn more about them. Consequently, the purpose of this study was to examine the smart mechatronic systems that have been applied to agricultural areas so far, with inspiration from the smart mechatronic system in other sectors. To get an overview of the current state of the art, benefits and drawbacks of smart mechatronics systems, various approaches were investigated. Moreover, smart mechatronic modules and various networks applied in agriculture processing were examined. Finally, we explored how the data retrieved using the one-way analysis of variance related to each other. The result showed that there were strongly related keywords for different journals. With the virtually limited use of sophisticated mechatronics in the agricultural industry and, at the same time, the low production rate, the demand for food security has fallen dramatically. Therefore, the application of smart mechatronics systems in agricultural sectors would be taken into consideration in order to overcome these issues.

Keywords: mechatronics, robotic, robotic system, automation, agriculture mechanism

Procedia PDF Downloads 42
1743 Design of Open Framework Based Smart ESS Profile for PV-ESS and UPS-ESS

Authors: Young-Su Ryu, Won-Gi Jeon, Byoung-Chul Song, Jae-Hong Park, Ki-Won Kwon

Abstract:

In this paper, an open framework based smart energy storage system (ESS) profile for photovoltaic (PV)-ESS and uninterruptible power supply (UPS)-ESS is proposed and designed. An open framework based smart ESS is designed and developed for unifying the different interfaces among manufacturers. The smart ESS operates under the profile which provides the specifications of peripheral devices such as different interfaces and to the open framework. The profile requires well systemicity and expandability for addible peripheral devices. Especially, the smart ESS should provide the expansion with existing systems such as UPS and the linkage with new renewable energy technology such as PV. This paper proposes and designs an open framework based smart ESS profile for PV-ESS and UPS-ESS. The designed profile provides the existing smart ESS and also the expandability of additional peripheral devices on smart ESS such as PV and UPS.

Keywords: energy storage system (ESS), open framework, profile, photovoltaic (PV), uninterruptible power supply (UPS)

Procedia PDF Downloads 440
1742 Progress and Challenges of Smart Cities in India: An Exploratory Study

Authors: Sushil K. Sharma, Jeff Zhang, Saeed Tabar

Abstract:

Worldwide, several governments are utilizing the Internet of Things (IoT) and other information and communication technologies (ICTs) to create smart city infrastructures to improve both the quality of government services and citizen welfare. Over 700 cities from around the world have already started implementing their smart city projects. Smart City utilizes the network of connected things, or the Internet of Things (IoT), that interconnects devices and various components across city infrastructure, making them work together seamlessly to enhance the quality, performance, and interactivity of urban services, optimize resources, and reduce costs. Without developing smart cities, the accelerating growth of cities, and their disproportionate consumption of physical and social resources are unsustainable. In 2016, the Indian Government released a list of 100 cities with the intention of kick-starting the process of developing them into 'smart cities’ as part of the Smart Cities Mission. This study reports the progress and challenges of Smart City projects in India. The data were collected through the city/state government websites, media reports, and focus group discussions/interviews. The preliminary results indicate that smart city projects are not only behind in their implementation and scope but also lacks the sincerity for its implementation.

Keywords: smart city, smart government, Internet of Things, digital government

Procedia PDF Downloads 139
1741 Effects of Irrigation Scheduling and Soil Management on Maize (Zea mays L.) Yield in Guinea Savannah Zone of Nigeria

Authors: I. Alhassan, A. M. Saddiq, A. G. Gashua, K. K. Gwio-Kura

Abstract:

The main objective of any irrigation program is the development of an efficient water management system to sustain crop growth and development and avoid physiological water stress in the growing plants. Field experiment to evaluate the effects of some soil moisture conservation practices on yield and water use efficiency (WUE) of maize was carried out in three locations (i.e. Mubi and Yola in the northern Guinea Savannah and Ganye in the southern Guinea Savannah of Adamawa State, Nigeria) during the dry seasons of 2013 and 2014. The experiment consisted of three different irrigation levels (7, 10 and 12 day irrigation intervals), two levels of mulch (mulch and un-mulched) and two tillage practices (no tillage and minimum tillage) arranged in a randomized complete block design with split-split plot arrangement and replicated three times. The Blaney-Criddle method was used for measuring crop evapotranspiration. The results indicated that seven-day irrigation intervals and mulched treatment were found to have significant effect (P>0.05) on grain yield and water use efficiency in all the locations. The main effect of tillage was non-significant (P<0.05) on grain yield and WUE. The interaction effects of irrigation and mulch were significant (P>0.05) on grain yield and WUE at Mubi and Yola. Generally, higher grain yield and WUE were recorded on mulched and seven-day irrigation intervals, whereas lower values were recorded on un-mulched with 12-day irrigation intervals. Tillage exerts little influence on the yield and WUE. Results from Ganye were found to be generally higher than those recorded in Mubi and Yola; it also showed that an irrigation interval of 10 days with mulching could be adopted for the Ganye area, while seven days interval is more appropriate for Mubi and Yola.

Keywords: irrigation, maize, mulching, tillage, savanna

Procedia PDF Downloads 183
1740 Water Use Efficiency of Sunflower Genotypes Under Drip Irrigation

Authors: Adel M. Mahmoud

Abstract:

This Investigation was conducted to determine the productivity and water use efficiency for new sunflower genotypes. Ten sunflower genotypes were evaluated under drip irrigation using two treatments of. Results indicate that decreasing the amount of irrigation water from 1500 to 1130 mm/hectar significantly reduced all studied traits. Mutation (M1-63) surpassed all the other one genotypes in seed yield and WUE. Lines which gave the highest yield of the seed have water use efficiency under drought conditions higher than water use efficiency under normal irrigation. The lowest depression in seed yield due to drought conditions has been registered for Line 20, Line M1-63 and Sakha 53 genotypes (11 , 18 and 16 %, respectively). Genotypes (Line 20 , Line M1-63 and Sakha 53) are more tolerant to drought than others and we can used its in breeding program to develop sunflower hybrids suitable for cultivation under drought condition.

Keywords: sunflower genotypes, water use efficiency, mutation, inbred lines

Procedia PDF Downloads 350
1739 Determination of Optimum Water Consumptive Using Deficit Irrigation Model for Barely: A Case Study in Arak, Iran

Authors: Mohsen Najarchi

Abstract:

This research was carried out in five fields (5-15 hectares) in Arak located in center of Iran, to determine optimum level of water consumed for Barely in four stages growth (vegetative, yield formation, flowering, and ripening). Actual evapotranspiration was calculated using measured water requirement in the fields. Five levels of water requirement equal to 50, 60, 70, 80, and 90 percents formed the treatments. To determine the optimum level of water requirement linear programming was used. The study showed 60 percent water requirement (40 percent deficit irrigation) has been the optimum level of irrigation for winter wheat in four stages of growth. Comparison between all of the treatments indicated above with normal condition (100% water requirement) shows increasing in water use efficiency. Although 40% deficit irrigation treatment lead to decrease of 38% in yield, net benefit was increasing in 11.37%. Furthermore, in comparison with normal condition, 70% of water requirement increased water use efficiency as 30%.

Keywords: optimum, deficit irrigation, water use efficiency, evapotranspiration

Procedia PDF Downloads 369
1738 The Effects of Subsidised Irrigation Service Fees on Irrigation Performance in Vietnam

Authors: Trang Pham

Abstract:

Approximately 70% of the Vietnamese population lives in rural areas where the main livelihood is farming. For many years, the Vietnamese Government has been working towards improving farmers’ quality of life. In 2008, the Government issued the decree 115/2008/ND-CP to subsidize farmers’ water fees. The subsidy covers operation and management costs of major water infrastructure. Water users have only to pay for the operation and management of minor or tertiary canal systems. But the “subsidized water fee” has become contentious; there are two opposing schools of thought. One view is that the subsidy lessens the burden on farmers in terms of reducing their production costs, at the same time generating a sufficient budget for Irrigation Management Companies (IMCs) and Water User Association (WUAs). The alternate point of view is that the subsidy negatively effects irrigation performance, especially in tertiary canals. The aim of this study was to gain clear awareness of the perceptions of farmers, WUA members, and IMC staffs in regard to irrigation performance and management since the introduction of subsidies and local water fees. In order to find out how the government intervention has affected local farming communities, a series of questionnaires and interviews were administered in 2013. Four case studies were chosen which represent four different agricultural areas and four different irrigation systems in Vietnam. Interviews were conducted with IMC staffs and WUA members and questionnaires were used to gather information from farmers. The study compares the difference in operation and management costs across the four case studies both before and after the implementation of the decree. The results disclose factors behind the subsidized water fee that either allow or hinder improved irrigation performance and better irrigation management.

Keywords: water fee, irrigation performance, local farming, tertiary canal systems

Procedia PDF Downloads 285
1737 Effects of Saline Groundwater on Crop Yield of Bitter-Gourd (Momordica charantia L.) under Drip System of Irrigation

Authors: Kamran Baksh Soomro, Amin Talei, Sina Alaghmand

Abstract:

Water scarcity has exacerbated in the last couple of decades; it is incumbent on agriculture to maximize the use of water of all qualities. The drip irrigation system practice has shown a vast increase in profit and research interests in the last two decades. However, the application of this system is still limited. The two years field experiment was conducted with three replications at Malir, Karachi (a semi-arid region) in Pakistan. The aim was to evaluate the effects of two qualities of irrigation water IT1 (EC 0.56 dS.m⁻¹) and IT2 (EC 2.89 dS.m⁻¹) on water use efficiency. To achieve the aim, bitter gourd was grown under the drip irrigation system in 2016-17. The uniformity co-efficient (UC) ranged from 93 to 96%. Water use efficiency, of 1.60 and 1.21 kg.m⁻³ under IT1 was recorded higher in season 1 and 2. Using t-test at 5% significance level, the crop yield was higher in both seasons under IT1 compared to IT2. Using pairwise t-test at 5% significance level, the parameters related with the quality of fruit, like length, weight, and diameter, were higher in IT1 than IT2 in all plants; and in both seasons. A correlational study was also conducted to observe the trends in the variables associated with both irrigation treatments for the two seasons. Results showed that most of the parameters exhibited a similar linear trend in both the seasons. The study concluded that bitter gourd crop could be grown successfully in sandy loam using drip irrigation system, supplying saline ground-water. The sustainable use of saline irrigation water should be utilized for vegetable cultivation to meet the food demand in the rural areas of Pakistan.

Keywords: uniformity co-efficient, water use efficiency, drip irrigation, ground-water, t-test, correlation

Procedia PDF Downloads 119
1736 Genotypic Response Differences among Faba Bean Accessions under Regular Deficit Irrigation (RDI)

Authors: M. Afzal, Salem Safer Alghamdi, Awais Ahmad

Abstract:

Limited amount of irrigation water is an alarming threat to arid and semiarid agriculture. However, genotypic response differences to water deficit conditions within species have been reported frequently. Present study was conducted in order to measure the genotypic differences among faba bean accessions under Regular Deficit Irrigation (RDI). Five seeds from each accession were sown in 135 silt filled pots (30 x 24 cm). Experiment was planned under split plot arrangement and replicated thrice. Treatments consisted of three RDI levels (100% (control), 60% and 40% of the field capacity) and fifteen faba bean accessions (two local accessions as reference while thirteen from different sources around the world). Irrigation treatment was started from the very first day of sowing. Plant height, shoot dry weight, stomatal conductance and total chlorophyll contents (SPAD reading) were measured one month after germination. Irrigation, faba bean accessions and the all possible interactions has stood significantly high for all studied parameters. Regular deficient irrigation has hampered the plant growth and associated parameters in decreasing order (100% < 60% < 40%). Accessions have responded differently under regular deficient irrigation and some of them are even better than local accession. A highly significant correlation among all parameters has also been observed. It was concluded from results that above parameters could be used as markers to identify the genotypic differences for water deficit stress response. This outcome encouraged the use of superior faba bean genotypes in breeding programs for improved varieties to enhance water use efficiency under stress conditions.

Keywords: accessions, stomatal conductance, total chlorophyll contents, RDI, regular deficient irrigation

Procedia PDF Downloads 262
1735 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: disturbance automation, electric power grid, smart grid, smart switches

Procedia PDF Downloads 281
1734 Innovation and Technologies Synthesis of Various Components: A Contribution to the New Precision Irrigation Development for Open-Field Fruit Orchards

Authors: Pipop Chatrabhuti, S. Visessri, T. Charinpanitkul

Abstract:

Precision irrigation (PI) technology has emerged as a solution to optimize water usage in agriculture, aiming to maximize crop yields while minimizing water waste. Developing a new PI for commercialization requires developers to research, synthesize, evaluate, and select appropriate technologies and make use of such information to produce innovative products. The objective of this review is to facilitate innovators by providing them with a summary of existing knowledge and the identification of gaps in research linking to the innovative development of PI. This paper reviews and synthesizes technologies and components relevant to precision irrigation, highlighting its potential benefits and challenges. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework is used for the review. The study is intended to contribute to innovators who apply for collaborative approach to problem-solving and idea generation that involves seeking external input and resources from a diverse range of individuals and organizations.

Keywords: innovation synthesis, technology assessment, precision irrigation technologies, precision irrigation components, new product development

Procedia PDF Downloads 38
1733 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat

Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar

Abstract:

One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.

Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency

Procedia PDF Downloads 212
1732 Artificial Intelligence Aided Improvement in Canada's Supply Chain Management

Authors: Mohammad Talebi

Abstract:

Supply chain administration could be a concern for all the countries within the world, whereas there's no special approach towards supportability. Generally, for one decade, manufactured insights applications in keen supply chains have found a key part. In this paper, applications of artificial intelligence in supply chain management have been clarified, and towards Canadian plans for smart supply chain management (SCM), a few notes have been suggested. A hierarchical framework for smart SCM might provide a great roadmap for decision-makers to find the most appropriate approach toward smart SCM. Within the system of decision-making, all the levels included in the accomplishment of smart SCM are included. In any case, more considerations are got to be paid to available and needed infrastructures.

Keywords: smart SCM, AI, SSCM, procurement

Procedia PDF Downloads 62
1731 Potential Micro Hydro at Irrigation Canal in the Gorontalo Province and Modeling Setling Basin for Reduction of Sedimentation Effect

Authors: Arifin Matoka, Nadjamuddin Harun, Salama Manjang, M. Arsyad Thaha

Abstract:

Along irrigation canals in certain areas falling water level height is have potential for micro hydro power plant (MHP), which generally MHP potential valley away from society consumer of electricity and needed a long conductor cable, so that with the MHP Irrigation is ideal are typical with an Open Flume type turbines. This study is divided into two phases research phase of the potential power that exist in irrigation channels at the Gorontalo Province and stages solution sedimentation effects. The total power generated in the irrigation channel of the results of this study at 781.83 Kw, it is quite significant for the 1737 rural households on average consumes 450 watt per household. In the field of observation, sedimentation lifting effect on the quality of electric power, at which time the turbid sediment concentrations occur significant voltage fluctuations causing damage to some household electrical appliances such as electronic equipment and lighting. This problem is solution by modeling the sedimentation tub (setling basin) to reduce sedimentation thus olso can reduce the regulation load control equipment which can minimize the cost of investment and maintenance.

Keywords: irrigation canals, microhydro powerplant, sedimentation, Gorontalo Province

Procedia PDF Downloads 558
1730 Comparison of the Effect of Two Rootstocks Citrus Macrophylla and Citrus Volkameriana on Water Productivity of Citrus “Orogrande” Under Three Irrigation Doses

Authors: Hicham Elomari, Absa Fall, Taoufiq Elkrochni

Abstract:

This present work mainly concerns the improvement of citrus water productivity in the Souss Massa region. The objective is to evaluate the effect of deficit irrigation applied during the fruit growth stage on fruit size, quality and yield of the Orogrande variety grafted on Citrus macrophylla and Citrus volkameriana. Three irrigation regimes were adopted, a control D0 of 3.6 l/h and two doses D1 (58% D0 =2.1 l/h) and D2 (236% D0 =8.5 l/h). The experimental design was a randomized complete block while keeping the same spacing between drippers, the same duration of irrigation and the beginning of trials (fruit growth stage). Results showed that at the end of the cycle from October 1, 2020, to September 30, 2021, a total water supply of 732 mm and 785 mm using the D1 dose was provided to trees of Orogrande variety, respectively grafted on Citrus macrophylla and Citrus volkameriana rootstocks. Citrus macrophylla presented largest fruit size of 38 mm compared to Citrus volkameriana (33mm) with a significant difference. Total soluble sugar (8°Brix) and juice content level (40%) were higher with the application of the D1 dose on both rootstocks. Yield of 36 Tons was not affected by the deficit irrigation. Reduction of water supply by 18% increases agronomic productivity (6 MAD/m³) and economic productivity (3 MAD/m³).

Keywords: citrus, irrigation, fruit size, fruit quality, yield

Procedia PDF Downloads 31
1729 Assessment of Heavy Metals in Irrigation Water Collected from Various Vegetables Growing Areas of Swat Valley

Authors: Islam Zeb

Abstract:

The water of poor quality used for irrigation purposes has the potential to be the direct source of contamination and a vehicle for spreading contamination in the field. A number of wide-ranging review articles have been published that highlight irrigation water as a source of heavy metals toxicity which leads to chronic diseases in the human body. Here a study was planned to determine the microbial and heavy metals status of irrigation water collected from various locations of district Swat in various months. The analyses were carried out at the Environmental Horticulture Laboratory, Department of Horticulture, The University of Agriculture Peshawar, during the year 2018 – 19. The experiment was laid out in Randomized Complete Block Design (RCBD) with two factors and three replicates. Factor A consist of different locations and factor B represent various months. The result of heavy metals concentration in different regions, maximum Lead, Cadmium, Chromium, Nickel and Copper (4.27, 0.56, 0.81, 1.33 and 1.51 mg L-1 respectively) were noted for the irrigation water samples collected from Mingora while minimum Lead, Cadmium, Chromium, Nickel and Copper concentration (2.59, 0.30, 0.27, 0.40 and 0.54 mg L-1 respectively) were noted for the samples of matta. Whereas results of heavy metals content in irrigation water samples for various months maximum content of Lead, Cadmium, Chromium, Nickel and Copper (4.56, 0.63, 1.15, 1.31 and 1.48 mg L-1 respectively) were noted for the samples collected in Jan/Feb while lowest values for Lead, Cadmium, Chromium, Nickel and Copper (2.38, 0.24, 0.21, 0.41 and 0.52 mg L-1 respectively) were noted in the samples of July/August. A significant interaction was found for all the studied parameters. It was concluded that the concentration of heavy metal was maximum in irrigation water samples collected from the Mingora location during the month of Jan/Feb because Mingora is the most polluted area as compared to other studied regions, whereas the water content in winter goes to freeze and mostly contaminated water is used for irrigation purposes.

Keywords: irrigation water, various months, different regions, heavy metals contamination, Swat

Procedia PDF Downloads 41
1728 Response of Wheat (Triticum aestivum L.) to Deficit Irrigation Management in the Semi-Arid Awash Basin of Ethiopia

Authors: Gobena D. Bayisa, A. Mekonen, Megersa O. Dinka, Tilahun H. Nebi, M. Boja

Abstract:

Crop production in arid and semi-arid regions of Ethiopia is largely limited by water availability. Changing climate conditions and declining water resources increase the need for appropriate approaches to improve water use and find ways to increase production through reduced and more reliable water supply. In the years 2021/22 and 2022/23, a field experiment was conducted to evaluate the effect of limited irrigation water use on bread wheat (Triticum aestivum L.) production, water use efficiency, and financial benefits. Five irrigation treatments, i.e., full irrigation (100% ETc/ control), 85% ETc, 70% ETc, 55% ETc, and 40% ETc, were evaluated using a randomized complete block design (RCBD) with four replicates in the semi-arid climate condition of Awash basin of Ethiopia. Statistical analysis showed a significant effect of irrigation levels on wheat grain yield, water use efficiency, crop water response factor, economic profit, wheat grain quality, aboveground biomass, and yield index. The highest grain yield (5085 kg ha⁻¹) was obtained with 100% ETc irrigation (417.2 mm), and the lowest grain yield with 40% ETc (223.7 mm). Of the treatments, 70% ETc produced the higher wheat grain yield (4555 kg ha⁻¹), the highest water use efficiency (1.42 kg m⁻³), and the highest yield index (0.43). Using the saved water, wheat could be produced 23.4% more with a 70% ETc deficit than full irrigation on 1.38 ha of land, and it could get the highest profit (US$2563.9) and higher MRR (137%). The yield response factor and crop-water production function showed potential reductions associated with increased irrigation deficits. However, a 70% ETc deficit is optimal for increasing wheat grain yield, water use efficiency, and economic benefits of irrigated wheat production. The result indicates that deficit irrigation of wheat under the typical arid and semi-arid climatic conditions of the Awash Basin can be a viable irrigation management approach for enhancing water use efficiency while minimizing the decrease in crop yield could be considered effective.

Keywords: crop-water response factor, deficit irrigation, water use efficiency, wheat production

Procedia PDF Downloads 37
1727 Water-Sensitive Landscaping in Desert-Located Egyptian Cities through Sheer Reductions of Turfgrass and Efficient Water Use

Authors: Sarah M. Asar, Nabeel M. Elhady

Abstract:

Egypt’s current per capita water share indicates that the country suffers and has been suffering from water poverty. The abundant utilization of turfgrass in Egypt’s new urban settlements, the reliance on freshwater for irrigation, and the inadequate plant selection increase the water demand in such settlements. Decreasing the surface area of turfgrass by using alternative landscape features such as mulching, using ornamental low-maintenance plants, increasing pathways, etc., could significantly decrease the water demand of urban landscapes. The use of Ammochloa palaestina, Cenchrus crientalis (Oriental Fountain Grass), and Cistus parviflorus (with water demands of approximately 0.005m³/m²/day) as alternatives for Cynodon dactylon (0.01m³/m²/day), which is the most commonly used grass species in Egypt’s landscape, could decrease an area’s water demand by approximately 40-50%. Moreover, creating hydro-zones of similar water demanding plants would enable irrigation facilitation rather than the commonly used uniformed irrigation. Such a practice could further reduce water consumption by 15-20%. These results are based on a case-study analysis of one of Egypt’s relatively new urban settlements, Al-Rehab. Such results emphasize the importance of utilizing native, drought-tolerant vegetation in the urban landscapes of Egypt to reduce irrigation demands. Furthermore, proper implementation, monitoring, and maintenance of automated irrigation systems could be an important factor in a space’s efficient water use. As most new urban settlements in Egypt adopt sprinkler and drip irrigation systems, the lack of maintenance leads to the manual operation of such systems, and, thereby, excessive irrigation occurs.

Keywords: alternative landscape, native plants, efficient irrigation, low water demand

Procedia PDF Downloads 37
1726 Planning for a Smart Sustainable Cities: A Case Study

Authors: Ajaykumar Kambekar, Nikita Kalantri

Abstract:

Due to faster urbanization; developing nations will have to look forward towards establishing new planned cities those are environmentally friendly. Due to growth in Information and Communication Technology (ICT), it is evident that the rise of smart cities is witnessed as a promising trend for future growth; however, technology alone cannot make a city as a smart city. Cities must use smart systems to enhance the quality of life of its citizens and to achieve sustainable growth. Recent trends in technology may offer some indication towards harnessing our cities potential as the new engines of sustainable growth. To overcome the problems of mega-urbanization, new concept of smart cities has been introduced. The current research aims to reduce the knowledge gap in urban planning by exploring the concept of smart cities considering sustainability as a major focus. The aim of this paper is to plan for an entire smart city. The paper analyses sustainable development and identifies the key factors for the creation of future smart cities. The study also emphasizes the use of advanced planning and scheduling software such as Microsoft Project (MSP).

Keywords: urbanization, planned cities, information and communication technology, sustainable growth

Procedia PDF Downloads 279
1725 Smart Grids in Morocco: An Outline of the Recent Developments, Key Drivers, and Recommendations for Better Implementation

Authors: Mohamed Laamim, Abdelilah Rochd, Aboubakr Benazzouz, Abderrahim El Fadili

Abstract:

Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features.

Keywords: smart grids, microgrids, virtual power plants, digital twin, distributed energy resources, vehicle-to-grid, advanced metering infrastructure.

Procedia PDF Downloads 94
1724 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare

Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.

Abstract:

Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.

Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor

Procedia PDF Downloads 100