Search results for: shock waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1086

Search results for: shock waves

966 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring

Procedia PDF Downloads 443
965 Seismic Behavior of Existing Reinforced Concrete Buildings in California under Mainshock-Aftershock Scenarios

Authors: Ahmed Mantawy, James C. Anderson

Abstract:

Numerous cases of earthquakes (main-shocks) that were followed by aftershocks have been recorded in California. In 1992 a pair of strong earthquakes occurred within three hours of each other in Southern California. The first shock occurred near the community of Landers and was assigned a magnitude of 7.3 then the second shock occurred near the city of Big Bear about 20 miles west of the initial shock and was assigned a magnitude of 6.2. In the same year, a series of three earthquakes occurred over two days in the Cape-Mendocino area of Northern California. The main-shock was assigned a magnitude of 7.0 while the second and the third shocks were both assigned a value of 6.6. This paper investigates the effect of a main-shock accompanied with aftershocks of significant intensity on reinforced concrete (RC) frame buildings to indicate nonlinear behavior using PERFORM-3D software. A 6-story building in San Bruno and a 20-story building in North Hollywood were selected for the study as both of them have RC moment resisting frame systems. The buildings are also instrumented at multiple floor levels as a part of the California Strong Motion Instrumentation Program (CSMIP). Both buildings have recorded responses during past events such as Loma-Prieta and Northridge earthquakes which were used in verifying the response parameters of the numerical models in PERFORM-3D. The verification of the numerical models shows good agreement between the calculated and the recorded response values. Then, different scenarios of a main-shock followed by a series of aftershocks from real cases in California were applied to the building models in order to investigate the structural behavior of the moment-resisting frame system. The behavior was evaluated in terms of the lateral floor displacements, the ductility demands, and the inelastic behavior at critical locations. The analysis results showed that permanent displacements may have happened due to the plastic deformation during the main-shock that can lead to higher displacements during after-shocks. Also, the inelastic response at plastic hinges during the main-shock can change the hysteretic behavior during the aftershocks. Higher ductility demands can also occur when buildings are subjected to trains of ground motions compared to the case of individual ground motions. A general conclusion is that the occurrence of aftershocks following an earthquake can lead to increased damage within the elements of an RC frame buildings. Current code provisions for seismic design do not consider the probability of significant aftershocks when designing a new building in zones of high seismic activity.

Keywords: reinforced concrete, existing buildings, aftershocks, damage accumulation

Procedia PDF Downloads 258
964 Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles

Authors: Tobias Schramm, Günther Prokop

Abstract:

Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle.

Keywords: vehicle dynamics, vehicle simulation, vehicle component degradation, shock absorber model, shock absorber degradation

Procedia PDF Downloads 75
963 Reality Shock Affecting the Motivation to Work of New Flight Attendants: An Exploratory Qualitative Study of Flight Attendants Who Left Their Jobs Early

Authors: Hiromi Takafuji

Abstract:

Flight attendant:FA is one of popular occupation, especially in Asian countries, and the decision to be hired is made after clearing a high multiplier. On the other hand, immediately after joining the company, they experience unique stress due to the fact that the organization requires them to perform security and customer service duties in a highly specialized and limited space and time. As a result, despite the high level of difficulty in joining the company, many new recruits retire early at a high rate. It is commonly said that 30% of new graduates leave the company within three years in Japan and speculated that Reality Shock:RS is one of the causes of this. RS is that newcomers experience refers to the stress caused by the difference between pre-employment expectations and post-employment reality. The purpose of this study was to elucidate the mechanism by which the expertise required of new FA and the expectation of expertise held by each of them cause reality shock, which affects motivation and the decision to leave. This study identified the professionalism required of new FA and the impact of that expectation for professionalism on RS through an exploratory study of the experiences and psychological processes of FA who left within three years. Semi-structured in-depth interviews were conducted with five FA who left a major Japanese airline at an early stage, and their experiences were categorized, integrated, and classified by qualitative content analysis. They were chosen under a number of controlled conditions. Then two major findings emerged: first, that pre-employment expectations defining RS were hierarchical, and second, that training amplified expectations of professionalism, which strongly influenced early turnover. From these, this study generated a model of RS generative process model of FA that expectations are hierarchical and influential. This could contribute to the prevention of mental health deterioration by reality shock among new FA.

Keywords: reality shock, flight attendant, early turnover, qualitative study

Procedia PDF Downloads 58
962 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves

Authors: Yingchen Yang

Abstract:

Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.

Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction

Procedia PDF Downloads 142
961 Guided Wave in a Cylinder with Trepezoid Cross-Section

Authors: Nan Tang, Bin Wu, Cunfu He

Abstract:

The trapezoid rods are widely used in civil engineering as load –carrying members. Ultrasonic guided wave is one of the most popular techniques in analyzing the propagation of elastic guided wave. The goal of this paper is to investigate the propagation of elastic waves in the isotropic bar with trapezoid cross-section. Dispersion curves that describe the relationship between the frequency and velocity provide the fundamental information to describe the propagation of elastic waves through a structure. Based on the SAFE (semi-analytical finite element) a linear algebraic system of equations is obtained. By using numerical methods, dispersion curves solved for the rods with the trapezoid cross-section. These fundamental information plays an important role in applying ultrasonic guided waves to NTD for structures with trapezoid cross section.

Keywords: guided wave, dispersion, finite element method, trapezoid rod

Procedia PDF Downloads 269
960 Design of Demand Pacemaker Using an Embedded Controller

Authors: C. Bala Prashanth Reddy, B. Abhinay, C. Sreekar, D. V. Shobhana Priscilla

Abstract:

The project aims in designing an emergency pacemaker which is capable of giving shocks to a human heart which has stopped working suddenly. A pacemaker is a machine commonly used by cardiologists. This machine is used in order to shock a human’s heart back into usage. The way the heart works is that there are small cells called pacemakers sending electrical pulses to cardiac muscles that tell the heart when to pump blood. When these electrical pulses stop, the heart stops beating. When this happens, a pacemaker is used to shock the heart muscles and the pacemakers back into action. The way this is achieved is by rubbing the two panels of the pacemaker together to create an adequate electrical current, and then the heart gets back to the normal state. The project aims in designing a system which is capable of continuously displaying the heart beat and blood pressure of a person on LCD. The concerned doctor gets the heart beat and also the blood pressure details continuously through the GSM Modem in the form of SMS alerts. In case of abnormal condition, the doctor sends message format regarding the amount of electric shock needed. Automatically the microcontroller gives the input to the pacemaker which in turn gives the shock to the patient. Heart beat monitor and display system is a portable and a best replacement for the old model stethoscope which is less efficient. The heart beat rate is calculated manually using stethoscope where the probability of error is high because the heart beat rate lies in the range of 70 to 90 per minute whose occurrence is less than 1 sec, so this device can be considered as a very good alternative instead of a stethoscope.

Keywords: missing R wave, PWM, demand pacemaker, heart

Procedia PDF Downloads 443
959 Study of Effects of 3D Semi-Spheriacl Basin-Shape-Ratio on the Frequency Content and Spectral Amplitudes of the Basin-Generated Surface Waves

Authors: Kamal, J. P. Narayan

Abstract:

In the present wok the effects of basin-shape-ratio on the frequency content and spectral amplitudes of the basin-generated surface waves and the associated spatial variation of ground motion amplification and differential ground motion in a 3D semi-spherical basin has been studied. A recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations was used to estimate seismic responses. The simulated results demonstrated the increase of both the frequency content and the spectral amplitudes of the basin-generated surface waves and the duration of ground motion in the basin with the increase of shape-ratio of semi-spherical basin. An increase of the average spectral amplification (ASA), differential ground motion (DGM) and the average aggravation factor (AAF) towards the centre of the semi-spherical basin was obtained.

Keywords: 3D viscoelastic simulation, basin-generated surface waves, basin-shape-ratio effects, average spectral amplification, aggravation factors and differential ground motion

Procedia PDF Downloads 472
958 Cumulus Cells of Mature Local Goat Oocytes Vitrified with Insulin Transferrin Selenium and Heat Shock Protein 70

Authors: Izzatul Ulfana, Angga Pratomo Cahyadi, Rimayanti, Widjiati

Abstract:

Freezing oocyte could cause temperature stress. Temperature stress triggers cell damage. Insulin Transferrin Selenium (ITS) and Heat Shock Protein 70 (HSP70) had been used to prevent damage to the oocyte after freezing. ITS and HSP70 could cause the difference protective effect. The aim of this research was to obtain an effective cryoprotectant for freezing local goat oocyte in cumulus cells change. The research began by collecting the ovary from a local slaughterhouse in Indonesia, aspiration follicle, in vitro maturation and the freezing had been used vitrification method. Examination of the morphology cells by native staining method. Data on the calculation morphology oocyte analyzed by Kruskall-Wallis Test. After the Kruskall-Wallis Test which indicated significance, followed by Mann-Whitney Test to compare between treatment groups. As a result, cryoprotectant ITS has the best culumus cells after warming

Keywords: Insulin Transferrin Selenium, Heat Shock Protein 70, cryoprotectant, vitrification

Procedia PDF Downloads 209
957 The Investigation of Oil Price Shocks by Using a Dynamic Stochastic General Equilibrium: The Case of Iran

Authors: Bahram Fathi, Karim Alizadeh, Azam Mohammadbagheri

Abstract:

The aim of this paper is to investigate the role of oil price shocks in explaining business cycles in Iran using a dynamic stochastic general equilibrium approach. This model incorporates both productivity and oil revenue shocks. The results indicate that productivity shocks are relatively more important to business cycles than oil shocks. The model with two shocks produces different values for volatility, but these values have the same ranking as that of the actual data for most variables. In addition, the actual data are close to the ratio of standard deviations to the output obtained from the model with two shocks. The results indicate that productivity shocks are relatively more important to business cycles than the oil shocks. The model with only a productivity shock produces the most similar figures in term of volatility magnitude to that of the actual data. Next, we use the Impulse Response Functions (IRF) to evaluate the capability of the model. The IRF shows no effect of an oil shock on the capital stocks and on labor hours, which is a feature of the model. When the log-linearized system of equations is solved numerically, investment and labor hours were not found to be functions of the oil shock. This research recommends using different techniques to compare the model’s robustness. One method by which to do this is to have all decision variables as a function of the oil shock by inducing the stationary to the model differently. Another method is to impose a bond adjustment cost. This study intends to fill that gap. To achieve this objective, we derive a DSGE model that allows for the world oil price and productivity shocks. Second, we calibrate the model to the Iran economy. Next, we compare the moments from the theoretical model with both single and multiple shocks with that obtained from the actual data to see the extent to which business cycles in Iran can be explained by total oil revenue shock. Then, we use an impulse response function to evaluate the role of world oil price shocks. Finally, I present implications of the findings and interpretations in accordance with economic theory.

Keywords: oil price, shocks, dynamic stochastic general equilibrium, Iran

Procedia PDF Downloads 409
956 Expression of Inflammatory and Cell Death Genes and DNA Damage Induced by Endotoxic Shock in Laying Hens

Authors: Mariam G. Eshak, Ahmed Abbas, M. I. El-Sabry, M. M. Mashaly

Abstract:

This investigation was conducted to determine the physiological response and evaluate the expression of inflammatory and cell death genes and DNA damage induced by endotoxic shock in laying hens. Endotoxic shock was induced by a single intravenous injection of 107 Escherichia coli (E. coli,) colony/hen. In the present study, 240 forty-week-old laying hens (H&N) were randomly assigned into 2 groups with 3 replicates of 40 birds each. Hens were reared in battery cages with wire floors in an open-sided housing system under natural conditions. Housing and general management practices were similar for all groups. At 42-wk of age, 45 hens from the first group (15 replicate) were infected with E. coli, while the same number of hens from the second group was injected with saline and served as a control. Heat shock protein-70 (HSP-70) expression, plasma corticosterone concentration, body temperature, and the gene expression of bax, caspase-3 activity, P38, Interlukin-1β (Il-1β), and tumor necrosis factor alpha (TNF-α) genes and DNA damage in the brain and liver were measured. Hens treated with E. coli showed significant (P≤0.05) increase of body temperature by 1.2 ᴼC and plasma corticosterone by 3 folds compared to the controls. Further, hens injected with E.Coli showed markedly over-expression of HSP-70 and increase DNA damage in brain and liver. These results were synchronized with activating cell death program since our data showed significant (P≤0.05) high expression of bax and caspase-3 activity genes in the brain and liver. These results were related to remarkable over-inflammation gene expression of P38, IL-1β, and TNF-α in brain and liver. In conclusion, our results indicate that endotoxic shock induces inflammatory physiological response and triggers cell death program by promoting P38, IL-1β, and TNF-α gene expression in the brain and liver.

Keywords: chicken, DNA damage, Escherichia coli, gene expression, inflammation

Procedia PDF Downloads 319
955 Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya

Abstract:

The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.

Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses

Procedia PDF Downloads 293
954 Lamb Waves Propagation in Elastic-Viscoelastic Three-Layer Adhesive Joints

Authors: Pezhman Taghipour Birgani, Mehdi Shekarzadeh

Abstract:

In this paper, the propagation of lamb waves in three-layer joints is investigated using global matrix method. Theoretical boundary value problem in three-layer adhesive joints with perfect bond and traction free boundary conditions on their outer surfaces is solved to find a combination of frequencies and modes with the lowest attenuation. The characteristic equation is derived by applying continuity and boundary conditions in three-layer joints using global matrix method. Attenuation and phase velocity dispersion curves are obtained with numerical solution of this equation by a computer code for a three-layer joint, including an aluminum repair patch bonded to the aircraft aluminum skin by a layer of viscoelastic epoxy adhesive. To validate the numerical solution results of the characteristic equation, wave structure curves are plotted for a special mode in two different frequencies in the adhesive joint. The purpose of present paper is to find a combination of frequencies and modes with minimum attenuation in high and low frequencies. These frequencies and modes are recognizable by transducers in inspections with Lamb waves because of low attenuation level.

Keywords: three-layer adhesive joints, viscoelastic, lamb waves, global matrix method

Procedia PDF Downloads 366
953 Preparation of Catalyst-Doped TiO2 Nanotubes by Single Step Anodization and Potential Shock

Authors: Hyeonseok Yoo, Kiseok Oh, Jinsub Choi

Abstract:

Titanium oxide nanotubes have attracted great attention because of its photocatalytic activity and large surface area. For enhancing electrochemical properties, catalysts should be doped into the structure because titanium oxide nanotubes themselves have low electroconductivity and catalytic activity. It has been reported that Ru and Ir doped titanium oxide electrodes exhibit high efficiency and low overpotential in the oxygen evolution reaction (OER) for water splitting. In general, titanium oxide nanotubes with high aspect ratio cannot be easily doped by conventional complex methods. Herein, two types of facile routes, namely single step anodization and potential shock, for Ru doping into high aspect ratio titanium oxide nanotubes are introduced in detail. When single step anodization was carried out, stability of electrodes were increased. However, onset potential was shifted to anodic direction. On the other hand, when high potential shock voltage was applied, a large amount of ruthenium/ruthenium oxides were doped into titanium oxide nanotubes and thick barrier oxide layers were formed simultaneously. Regardless of doping routes, ruthenium/ ruthenium oxides were homogeneously doped into titanium oxide nanotubes. In spite of doping routes, doping in aqueous solution generally led to incorporate high amount of Ru in titanium oxide nanotubes, compared to that in non-aqueous solution. The amounts of doped catalyst were analyzed by X-ray photoelectron spectroscopy (XPS). The optimum condition for water splitting was investigated in terms of the amount of doped Ru and thickness of barrier oxide layer.

Keywords: doping, potential shock, single step anodization, titanium oxide nanotubes

Procedia PDF Downloads 425
952 Stationary Energy Partition between Waves in a Carbyne Chain

Authors: Svetlana Nikitenkova, Dmitry Kovriguine

Abstract:

Stationary energy partition between waves in a one dimensional carbyne chain at ambient temperatures is investigated. The study is carried out by standard asymptotic methods of nonlinear dynamics in the framework of classical mechanics, based on a simple mathematical model, taking into account central and noncentral interactions between carbon atoms. Within the first-order nonlinear approximation analysis, triple-mode resonant ensembles of quasi-harmonic waves are revealed. Any resonant triad consists of a single primary high-frequency longitudinal mode and a pair of secondary low-frequency transverse modes of oscillations. In general, the motion of the carbyne chain is described by a superposition of resonant triads of various spectral scales. It is found that the stationary energy distribution is obeyed to the classical Rayleigh–Jeans law, at the expense of the proportional amplitude dispersion, except a shift in the frequency band, upwards the spectrum.

Keywords: resonant triplet, Rayleigh–Jeans law, amplitude dispersion, carbyne

Procedia PDF Downloads 410
951 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock

Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng

Abstract:

Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.

Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel

Procedia PDF Downloads 223
950 Consideration of Starlight Waves Redshift as Produced by Friction of These Waves on Its Way through Space

Authors: Angel Pérez Sánchez

Abstract:

In 1929, a light redshift was discovered in distant galaxies and was interpreted as produced by galaxies moving away from each other at high speed. This interpretation led to the consideration of a new source of energy, which was called Dark Energy. Redshift is a loss of light wave frequency produced by galaxies moving away at high speed, but the loss of frequency can also be produced by the friction of light waves on their way to Earth. This friction is impossible because outer space is empty, but if it were not empty and a medium existed in this empty space, it would be possible. The consequences would be extraordinary because Universe acceleration and Dark Energy would be in doubt. This article presents evidence that empty space is actually a medium occupied by different particles, among them the most significant would-be Graviton or Higgs Boson, because let's not forget that gravity also affects empty space.

Keywords: Big Bang, dark energy, doppler effect, redshift, starlight frequency reduction, universe acceleration

Procedia PDF Downloads 37
949 Robot Control by ERPs of Brain Waves

Authors: K. T. Sun, Y. H. Tai, H. W. Yang, H. T. Lin

Abstract:

This paper presented the technique of robot control by event-related potentials (ERPs) of brain waves. Based on the proposed technique, severe physical disabilities can free browse outside world. A specific component of ERPs, N2P3, was found and used to control the movement of robot and the view of camera on the designed brain-computer interface (BCI). Users only required watching the stimuli of attended button on the BCI, the evoked potentials of brain waves of the target button, N2P3, had the greatest amplitude among all control buttons. An experimental scene had been constructed that the robot required walking to a specific position and move the view of camera to see the instruction of the mission, and then completed the task. Twelve volunteers participated in this experiment, and experimental results showed that the correct rate of BCI control achieved 80% and the average of execution time was 353 seconds for completing the mission. Four main contributions included in this research: (1) find an efficient component of ERPs, N2P3, for BCI control, (2) embed robot's viewpoint image into user interface for robot control, (3) design an experimental scene and conduct the experiment, and (4) evaluate the performance of the proposed system for assessing the practicability.

Keywords: severe physical disabilities, robot control, event-related potentials (ERPs), brain-computer interface (BCI), brain waves

Procedia PDF Downloads 346
948 Wave Energy: Efficient Conversion of the Big Waves

Authors: Md. Moniruzzaman

Abstract:

The energy of ocean waves across a large part of the earth is inexhaustible. The whole world will benefit if this endless energy can be used in an easy way. The coastal countries will easily be able to meet their own energy needs. The purpose of this article is to use the infinite energy of the ocean wave in a simple way. i.e. a method of efficient use of wave energy. The paper starts by discussing various forces acting on a floating object and, afterward, about the method. And then a calculation for a 73.39MW hydropower from the tidal wave. Used some sketches/pictures. Finally, the conclusion states the possibilities and advantages.

Keywords: anchor, electricity, floating object, pump, ship city, wave energy

Procedia PDF Downloads 56
947 Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media

Authors: Karen B. Ghazaryan

Abstract:

Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out.

Keywords: surface shear waves, magneto-electro-elastic composites, piezoactive crystals, functionally graded elastic materials

Procedia PDF Downloads 192
946 Effect of Piston and its Weight on the Performance of a Gun Tunnel via Computational Fluid Dynamics

Authors: A. A. Ahmadi, A. R. Pishevar, M. Nili

Abstract:

As the test gas in a gun tunnel is non-isentropically compressed and heated by a light weight piston. Here, first consideration is the optimum piston weight. Although various aspects of the influence of piston weight on gun tunnel performance have been studied, it is not possible to decide from the existing literature what piston weight is required for optimum performance in various conditions. The technique whereby the piston is rapidly brought to rest at the end of the gun tunnel barrel, and the resulted peak pressure is equal in magnitude to the final equilibrium pressure, is called the equilibrium piston technique. The equilibrium piston technique was developed to estimate the equilibrium piston mass; but this technique cannot give an appropriate estimate for the optimum piston weight. In the present work, a gun tunnel with diameter of 3 in. is described and its performance is investigated numerically to obtain the effect of piston and its weight. Numerical results in the present work are in very good agreement with experimental results. Significant influence of the existence of a piston is shown by comparing the gun tunnel results with results of a conventional shock tunnel in the same dimension and same initial condition. In gun tunnel, an increase of around 250% in running time is gained relative to shock tunnel. Also, Numerical results show that equilibrium piston technique is not a good way to estimate suitable piston weight and there will be a lighter piston which can increase running time of the gun tunnel around 60%.

Keywords: gun tunnel, hypersonic flow, piston, shock tunnel

Procedia PDF Downloads 348
945 The Plasma Additional Heating Systems by Electron Cyclotron Waves

Authors: Ghoutia Naima Sabri, Tayeb Benouaz

Abstract:

The interaction between wave and electron cyclotron movement when the electron passes through a layer of resonance at a fixed frequency results an Electron Cyclotron (EC) absorption in Tokamak plasma and dependent magnetic field. This technique is the principle of additional heating (ECRH) and the generation of non-inductive current drive (ECCD) in modern fusion devices. In this paper we are interested by the problem of EC absorption which used a microscopic description of kinetic theory treatment versus the propagation which used the cold plasma description. The power absorbed depends on the optical depth which in turn depends on coefficient of absorption and the order of the excited harmonic for O-mode or X-mode. There is another possibility of heating by dissipation of Alfven waves, based on resonance of cold plasma waves, the shear Alfven wave (SW) and the compressional Alfven wave (FW). Once the (FW) power is coupled to (SW), it stays on the magnetic surface and dissipates there, which cause the heating of bulk plasmas.

Keywords: electron cyclotron, heating, plasma, tokamak

Procedia PDF Downloads 474
944 Basics of Gamma Ray Burst and Its Afterglow

Authors: Swapnil Kumar Singh

Abstract:

Gamma-ray bursts (GRB's), short and intense pulses of low-energy γ rays, have fascinated astronomers and astrophysicists since their unexpected discovery in the late sixties. GRB'sare accompanied by long-lasting afterglows, and they are associated with core-collapse supernovae. The detection of delayed emission in X-ray, optical, and radio wavelength, or "afterglow," following a γ-ray burst can be described as the emission of a relativistic shell decelerating upon collision with the interstellar medium. While it is fair to say that there is strong diversity amongst the afterglow population, probably reflecting diversity in the energy, luminosity, shock efficiency, baryon loading, progenitor properties, circumstellar medium, and more, the afterglows of GRBs do appear more similar than the bursts themselves, and it is possible to identify common features within afterglows that lead to some canonical expectations. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave, and radio). It is a slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas. In X-ray wavelengths, the GRB afterglow fades quickly at first, then transitions to a less-steep drop-off (it does other stuff after that, but we'll ignore that for now). During these early phases, the X-ray afterglow has a spectrum that looks like a power law: flux F∝ E^β, where E is energy and beta is some number called the spectral index. This kind of spectrum is characteristic of synchrotron emission, which is produced when charged particles spiral around magnetic field lines at close to the speed of light. In addition to the outgoing forward shock that ploughs into the interstellar medium, there is also a so-called reverse shock, which propagates backward through the ejecta. In many ways," reverse" shock can be misleading; this shock is still moving outward from the restframe of the star at relativistic velocity but is ploughing backward through the ejecta in their frame and is slowing the expansion. This reverse shock can be dynamically important, as it can carry comparable energy to the forward shock. The early phases of the GRB afterglow still provide a good description even if the GRB is highly collimated since the individual emitting regions of the outflow are not in causal contact at large angles and so behave as though they are expanding isotropically. The majority of afterglows, at times typically observed, fall in the slow cooling regime, and the cooling break lies between the optical and the X-ray. Numerous observations support this broad picture for afterglows in the spectral energy distribution of the afterglow of the very bright GRB. The bluer light (optical and X-ray) appears to follow a typical synchrotron forward shock expectation (note that the apparent features in the X-ray and optical spectrum are due to the presence of dust within the host galaxy). We need more research in GRB and Particle Physics in order to unfold the mysteries of afterglow.

Keywords: GRB, synchrotron, X-ray, isotropic energy

Procedia PDF Downloads 62
943 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

Keywords: electro-rheological fluid, semi-active vibration control, shock absorber, type 2 fuzzy control

Procedia PDF Downloads 411
942 Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors

Authors: João Madureira, Ricardo Lagido, Inês Sousa, Fraunhofer Portugal

Abstract:

Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU.

Keywords: inertial measurement unit (IMU), global positioning system (GPS), smartphone, surfing performance

Procedia PDF Downloads 378
941 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity

Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro

Abstract:

The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).

Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet

Procedia PDF Downloads 380
940 Analyzing the Effects of Supply and Demand Shocks in the Spanish Economy

Authors: José M Martín-Moreno, Rafaela Pérez, Jesús Ruiz

Abstract:

In this paper we use a small open economy Dynamic Stochastic General Equilibrium Model (DSGE) for the Spanish economy to search for a deeper characterization of the determinants of Spain’s macroeconomic fluctuations throughout the period 1970-2008. In order to do this, we distinguish between tradable and non-tradable goods to take into account the fact that the presence of non-tradable goods in this economy is one of the largest in the world. We estimate a DSGE model with supply and demand shocks (sectorial productivity, public spending, international real interest rate and preferences) using Kalman Filter techniques. We find the following results. First of all, our variance decomposition analysis suggests that 1) the preference shock basically accounts for private consumption volatility, 2) the idiosyncratic productivity shock accounts for non-tradable output volatility, and 3) the sectorial productivity shock along with the international interest rate both greatly account for tradable output. Secondly, the model closely replicates the time path observed in the data for the Spanish economy and finally, the model captures the main cyclical qualitative features of this economy reasonably well.

Keywords: business cycle, DSGE models, Kalman filter estimation, small open economy

Procedia PDF Downloads 389
939 Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure

Authors: Ali Reza Tahavvor, Saeed Hosseini, Afshin Karimzadeh Fard

Abstract:

In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.

Keywords: cavity, natural convection, Nusselt number, wavy wall

Procedia PDF Downloads 428
938 Analysis of Reflection Coefficients of Reflected and Transmitted Waves at the Interface Between Viscous Fluid and Hygro-Thermo-Orthotropic Medium

Authors: Anand Kumar Yadav

Abstract:

Purpose – The purpose of this paper is to investigate the fluctuation of amplitude ratios of various transmitted and reflected waves. Design/methodology/approach – The reflection and transmission of plane waves on the interface between an orthotropic hygro-thermo-elastic half-space (OHTHS) and a viscous-fluid half-space (VFHS) were investigated in this study with reference to coupled hygro-thermo-elasticity. Findings – The interface, where y = 0, is struck by the principal (P) plane waves as they travel through the VFHS. Two waves are reflected in VFHS, and four waves are transmitted in OHTHS as a result namely longitudinal displacement, Pwave − , thermal diffusion TDwave − and moisture diffusion mDwave − and shear vertical SV wave. Expressions for the reflection and transmitted coefficient are developed for the incidence of a hygrothermal plane wave. It is noted that these ratios are graphically displayed and are observed under the influence of coupled hygro-thermo-elasticity. Research limitations/implications – There isn't much study on the model under consideration, which combines OHTHS and VFHS with coupled hygro-thermo-elasticity, according to the existing literature Practical implications – The current model can be applied in many different areas, such as soil dynamics, nuclear reactors, high particle accelerators, earthquake engineering, and other areas where linked hygrothermo-elasticity is important. In a range of technical and geophysical settings, wave propagation in a viscous fluid-thermoelastic medium with various characteristics, such as initial stress, magnetic field, porosity, temperature, etc., gives essential information regarding the presence of new and modified waves. This model may prove useful in modifying earthquake estimates for experimental seismologists, new material designers, and researchers. Social implications – Researchers may use coupled hygro-thermo-elasticity to categories the material, where the parameter is a new indication of its ability to conduct heat in interaction with diverse materials. Originality/value – The submitted text is the sole creation of the team of writers, and all authors equally contributed to its creation.

Keywords: hygro-thermo-elasticity, viscous fluid, reflection coefficient, transmission coefficient, moisture concentration

Procedia PDF Downloads 38
937 Measurement of Viscosity and Moisture of Oil in Supradistribution Transformers Using Ultrasonic Waves

Authors: Ehsan Kadkhodaie, Shahin Parvar, Soroush Senemar, Mostafa Shriat, Abdolrasoul Malekpour

Abstract:

The role of oil in supra distribution transformers is so critical and, several standards in determining the quality of oil have been offered. So far, moisture, viscosity and insulation protection of the oil have been measured based on mechanical and chemical methods and systems such as kart fisher, falling ball and TDM 4000 that most of these techniques are destructive and have many problems such as pollution. In this study, due to the properties of oil and also physical behavior of ultrasound wave new method was designed to in the determination of oil indicators including viscosity and moisture. The results show the oil viscosity can be found from the relationship μ = 42.086/√EE and moisture from (PLUS+) = −15.65 (PPM) + 26040 relationship.

Keywords: oil, viscosity, moisture, ultrasonic waves

Procedia PDF Downloads 545