Search results for: shock isolation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1285

Search results for: shock isolation

1225 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study

Authors: Richard Renou, Laurent Soulard

Abstract:

Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.

Keywords: densification, molecular dynamics simulations, shock loading, silica glass

Procedia PDF Downloads 198
1224 A Dislocation-Based Explanation to Quasi-Elastic Release in Shock Loaded Aluminum

Authors: Song L. Yao, Ji D. Yu, Xiao Y. Pei

Abstract:

An explanation is introduced to study the quasi-elastic release phenomenon in shock compressed aluminum. A dislocation-based model, taking into account of dislocation substructures and evolutions, is applied to simulate the elastic-plastic response of both single crystal and polycrystalline aluminum. Simulated results indicate that dislocation immobilization during dynamic deformation results in a smooth increase of yield stress, which leads to the quasi-elastic release. While the generation of dislocations caused by plastic release wave results in the appearance of transition point between the quasi-elastic release and the plastic release in the profile. The quantities of calculated shear strength and dislocation density are in accordance with experimental result, which demonstrates the accuracy of our simulations.

Keywords: dislocation density, quasi-elastic release, wave profile, shock wave

Procedia PDF Downloads 249
1223 A New Low Cost Seismic Response Controlling Structures with Semi Base Isolation Devices

Authors: M. Ezati Kooshki, A. Abbaszadeh Shahri

Abstract:

A number of devices used to control seismic structures have been developed during the past decades. One of the effective ways to reduce seismic forces transmitted to the buildings is through the base isolation systems, but the use of these devices is currently limited to large and expensive buildings. This study was an attempt to introduce an effective and low cost way to protect of structures against grand motions by a semi base isolation system. In this new way, structures were not completely decoupled of bases and the natural frequency of structures was changed due to earthquake by changing the horizontal stiffness; therefore, ground excitation energy was dissipated before entering the structures. For analyzing the dynamic behavior, the new method used finite element software (ABAQUS 6-10-1). This investigation introduced a new package of semi base isolation devices with a new material constitutive, but common in automobile industries, seeking to evaluate the effects of additional new devices on the seismic response when compared with structures without additional devises for different ground motions. The proposed semi base isolation devices were applied to a one story frame and the time history analysis was conducted on the record of Kobe earthquake (1995). The results showed that the efficiency reduced the floor acceleration and displacement, as well as velocity.

Keywords: semi base isolation system, finite element, natural frequency, horizontal stiffness

Procedia PDF Downloads 367
1222 The Effectiveness of Logotherapy in Alleviating Social Isolation for Visually Impaired Students

Authors: Mohamed M. Elsherbiny, Ahmed T. Helal Ibrahim

Abstract:

Social isolation is one of the common problems faced visual impaired students especially in new situations. It refers to lack of interactions with others (students, staff members, and others) and dissatisfaction of social networks with others. In addition, it means "a lack of quantity and quality of social contacts". The situation became more complicated if we know that visual impaired students at Sultan Qaboos University were in special schools for the blind completely away from any integration with regular student, which may lead to isolation for being with regular students for the first time. Because the researcher is an academic advisor for all blind students in the College of Arts and Social Sciences at Sultan Qaboos University, he has noted (from the regular meetings with them) some aspects of isolation and many complaints from staff which motivated the researcher to try to alleviate the problem. Logotherapy is an important therapy used in clinical social work with various problems to help children and young people who are facing problems related to the lack of meaning in their life. So, the aim of the therapy is to find meaning in life and to be satisfied with that life. The basic meaning for visual impaired students in this study is to provide opportunities to build relationships and friendships with others and help them to be satisfied about interactions with their networks. The study aimed to identify whether there is a relationship between the use of logotherapy and alleviating social isolation for visual impaired students. This study is considered one of the quasi-experimental studies, the researcher has used experimental method. The researcher used one design which is before and after experiment on two groups, one control (did not apply to the therapy) and experimental group which is applied to the therapy. About the study tools, social isolation scale (SIS) was used to assess the degree of isolation. The sample was (20) of the visually impaired students at the College of Arts and Social Sciences, Sultan Qaboos University. The results showed the effectiveness of logotherapy in alleviating isolation for students.

Keywords: social isolation, logotherapy, visually impaired, disability

Procedia PDF Downloads 342
1221 An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions

Authors: X. Wang, T. J. Craft, H. Iacovides

Abstract:

When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh.

Keywords: SWTBLIs, skin-friction, turbulence modeling, wall function

Procedia PDF Downloads 311
1220 Isolation and Synthesis of 1’-S-1’-Acetoxycavicol Acetate as Potent Antidandruff Agent

Authors: M. Vijaya Bhaskar Reddy

Abstract:

The air-dried and powdered methanol solvent extraction of the rhizomes of Alpinia galangal is subjected to bio-assay guided fractionation and isolation yielded a known compound namely, 1'-S-1'-Acetoxychavicol acetate (1). The isolated known compound has been identified based on the physical, spectral data (IR, ¹H, ¹³C, NMR and mass spectroscopy) and comparison with an authentic sample. Finally isolated 1'-S-1'-Acetoxychavicol acetate (1) was confirmed by synthesis. The crude methanol extract and identified known compound (1) were tested for antidandruff property against Malassezia furfur showed with MIC 1000 µg/mL and 7.81 µg/mL, respectively.

Keywords: Alpinia galanga, isolation, 1'-S-1'-Acetoxychavicol acetate, antidandruff activity, Malassezia furfur

Procedia PDF Downloads 129
1219 Performance Analysis of Curved U-Slot Patch Antenna with Enhanced Bandwidth and Isolation for Mimo Systems

Authors: Umesh Kumar, Arun Kumar Shukla, B. V. V. Ravindra Babu

Abstract:

The paper presents a compact tri band Curved U-Slot patch antenna with improved bandwidth and isolation characteristics. The proposed antenna excited by coaxial feed resonates at tri band of 2.8 GHz, 4.1 GHz and 5.7 GHz for VSWR ≤ 1.5 with an improved bandwidth of 99.7% and also for getting high gain antenna of 11.31 dB. A 2×2 MIMO is developed using the proposed antenna giving an excellent isolation of 28 dB between the two antennas. The simulation results of return loss, Mutual Coupling, Gain, VSWR, Surface Current Distribution and Electrical Distribution are presented. By keeping the substrate thickness constant over various dielectric constants, simulations were carried out using MATLAB® and HFSS (High Frequency Structure Simulator) software.

Keywords: performance analysis, curved U-slot patch, antenna with enhanced bandwidth, isolation for mimo systems

Procedia PDF Downloads 550
1218 Alterations of Malondialdehyde and Heat Shock Protein-27 in Sheep with Naturally Infected Liver Cystic Echinococcosis

Authors: K. Azimzadeh, S. Rasouli

Abstract:

The present study investigates whether malondialdehyde (MDA) and heat shock protein-27 (HSP-27) are altered in sheep with cystic echinococcosis (CE). For this purpose, forty parasitized and thirty healthy sheep were selected based on severe cystic form observation in liver and lack of blood parasite along with no cystic conformation in carcass respectively. The results revealed a significant decrease (p<0.01) in albumin (Alb) and total plasma protein (TPP) and a significant increase (p<0.01) in HSP-27, MDA, total bilirubin and unconjugated bilirubin in the infected group compared with healthy ones.The results indicate low levels of TPP and Alb reveal liver damage in suffered sheep and MDA elevation demonstrates oxidative stress in infected group. In addition, HSP-27 enhancement may attribute to disease-induced stress conditions.

Keywords: malondialdehyde, heat shock protein-27, Echinococcosis, blood parasites

Procedia PDF Downloads 580
1217 A Study of Police Culture Themes Towards the Public Among South African Police Service

Authors: Nkosingiphile M. Mbhele, Jean Steyn

Abstract:

A focus group discussion was implemented, which comprised of senior South African Police Service managers and police academics in South Africa. The measurement of solidarity, isolation, and cynicism among functional South African Police Service officials and a thirty-item questionnaire came about by reviewing the literature. This research uses a survey format to assess the police culture theme of solidarity, isolation, and cynicism among South African Police Service officers in 9 South African provinces. Although a survey format is used in research, it engages in a quasi-experimental pre-test/post-test repeated measures research (longitudinal) design. Although there are differences among South African Police Service police (SAPS) officers, overall, there are signs of solidarity, isolation, and cynicism among SAPS members. Attitudes of solidarity, isolation, and cynicism are present among most police officials and have been presented from the start of training and held, maintained, or strengthened for the next years of their SAPS careers. This issue is problematic to society with regard to community-orientated policing since they have to interact with the members of the community. To author’s best knowledge, longitudinal studies of police culture are rare to find; not much has been researched on this topic. However, this paper offers to bridge that gap by providing answers to longitudinal police attitudes towards the public within the police culture themes of isolation and cynicism attitudes.

Keywords: South African police service, police culture, solidarity, isolation, cynicism, public

Procedia PDF Downloads 112
1216 Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Ziraguen O. Williams

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 111
1215 To Examine Perceptions and Associations of Shock Food Labelling and to Assess the Impact on Consumer Behaviour: A Quasi-Experimental Approach

Authors: Amy Heaps, Amy Burns, Una McMahon-Beattie

Abstract:

Shock and fear tactics have been used to encourage consumer behaviour change within the UK regarding lifestyle choices such as smoking and alcohol abuse, yet such measures have not been applied to food labels to encourage healthier purchasing decisions. Obesity levels are continuing to rise within the UK, despite efforts made by government and charitable bodies to encourage consumer behavioural changes, which will have a positive influence on their fat, salt, and sugar intake. We know that taking extreme measures to shock consumers into behavioural changes has worked previously; for example, the anti-smoking television adverts and new standardised cigarette and tobacco packaging have reduced the numbers of the UK adult population who smoke or encouraged those who are currently trying to quit. The USA has also introduced new front-of-pack labelling, which is clear, easy to read, and includes concise health warnings on products high in fat, salt, or sugar. This model has been successful, with consumers reducing purchases of products with these warning labels present. Therefore, investigating if shock labels would have an impact on UK consumer behaviour and purchasing decisions would help to fill the gap within this research field. This study aims to develop an understanding of consumer’s initial responses to shock advertising with an interest in the perceived impact of long-term effect shock advertising on consumer food purchasing decisions, behaviour, and attitudes and will achieve this through a mixed methodological approach taken with a sample size of 25 participants ages ranging from 22 and 60. Within this research, shock mock labels were developed, including a graphic image, health warning, and get-help information. These labels were made for products (available within the UK) with large market shares which were high in either fat, salt, or sugar. The use of online focus groups and mouse-tracking experiments results helped to develop an understanding of consumer’s initial responses to shock advertising with interest in the perceived impact of long-term effect shock advertising on consumer food purchasing decisions, behaviour, and attitudes. Preliminary results have shown that consumers believe that the use of graphic images, combined with a health warning, would encourage consumer behaviour change and influence their purchasing decisions regarding those products which are high in fat, salt and sugar. Preliminary main findings show that graphic mock shock labels may have an impact on consumer behaviour and purchasing decisions, which will, in turn, encourage healthier lifestyles. Focus group results show that 72% of participants indicated that these shock labels would have an impact on their purchasing decisions. During the mouse tracking trials, this increased to 80% of participants, showing that more exposure to shock labels may have a bigger impact on potential consumer behaviour and purchasing decision change. In conclusion, preliminary results indicate that graphic shock labels will impact consumer purchasing decisions. Findings allow for a deeper understanding of initial emotional responses to these graphic labels. However, more research is needed to test the longevity of these labels on consumer purchasing decisions, but this research exercise is demonstrably the foundation for future detailed work.

Keywords: consumer behavior, decision making, labelling legislation, purchasing decisions, shock advertising, shock labelling

Procedia PDF Downloads 39
1214 Isolation, Characterization, and Optimization of Immobilized L-Asparginase- Anticancer Enzyme from Aspergillus.Niger

Authors: Supriya Chatla, Anjana Male, Srikala Kamireddy

Abstract:

L-asparaginase (E.C.3.5.1.1) is an anti-cancer enzyme that has been purified and characterized for decades to study and evaluate its anti-carcinogenic activity against Hodgkin’s lymphoma. The present investigation deals with screening, isolation and optimization of L-asparaginase giving fungal strain of soil samples from different areas of AP, India. L-Aspariginase activity was estimated on the basis of the pink color surrounding the growing colony. A total of 132 colonies were screened and isolated from different samples. Based on the zone diameter, L-asparaginase activity is determined, L- asparaginase activity is optimized at 28oc and Immobilized Aspariginase had more potency than the free enzymes.

Keywords: aspariginase, anticancer enzyme, Isolation, optimization

Procedia PDF Downloads 48
1213 Isolement and Identification of Major Constituents from Essential Oil of Launaea nudicaulis

Authors: M. Yakoubi, N. Belboukhari, A. Cheriti, K. Sekoum

Abstract:

Launaea nudicaulis (L.) Hook.f. is a desert, spontaneous plant and endemic to northem Sahara, which belongs to the Asteraceae family. This species exists in the region of Bechar (Local name; El-Rghamma). In our knowledge, no work has been founded, except studies showing the antimicrobial and antifungal activity of methalonic extract of this plant. The present paper describes the chemical composition of the essential oil from Launaea nudicaulis and qualification of isolation and identification of some pure products by column chromatography. The essential oil from the aerial parts of Launaea nudicaulis (Asteraceae) was obtained by hydroditillation in 0.4% yield, led to isolation of four several new products. The isolation is made by column chromatography and followed by GC-IK and GC-MS analysis.

Keywords: Launaea nudicaulis, asteraceae, essential oil, column chromatography, GC-FID, GC-MS

Procedia PDF Downloads 271
1212 Performance of Buildings with Base-Isolation System under Geometric Irregularities

Authors: Firoz Alam Faroque, Ankur Neog

Abstract:

Earthquake causes significant loss of lives and severe damage to infrastructure. Base isolator is one of the most suitable solutions to make a building earthquake resistant. Base isolation consists of installing an isolator along with the steel plates covered with pads of strong material like steel, rubber, etc. In our study, we have used lead rubber bearing (LRB). The basic idea of seismic isolation is based on the reduction of the earthquake-induced inertia forces by shifting the fundamental period of the structure out of dangerous resonance range, and concentration of the deformation and energy dissipation demands at the isolation and energy dissipation systems, which are designed for this purpose. In this paper, RC frame buildings have been modeled and analyzed by response spectrum method using ETABS software. The LRB used in the model is designed as per uniform building code (UBC) 97. It is found that time period for the base isolated structures are higher than that of the fixed base structure and the value of base shear significantly reduces in the case of base-isolated buildings. It has also been found that buildings with vertical irregularities give better performance as compared to building with plan irregularities using base isolators.

Keywords: base isolation, base shear, irregularities in buildings, lead rubber bearing (LRB)

Procedia PDF Downloads 295
1211 Design and Simulation of Step Structure RF MEMS Switch for K Band Applications

Authors: G. K. S. Prakash, Rao K. Srinivasa

Abstract:

MEMS plays an important role in wide range of applications like biological, automobiles, military and communication engineering. This paper mainly investigates on capacitive shunt RF MEMS switch with low actuation voltage and low insertion losses. To trim the pull-in voltage, a step structure has introduced to trim air gap between the beam and the dielectric layer with that pull in voltage is trim to 2.9 V. The switching time of the proposed switch is 39.1μs, and capacitance ratio is 67. To get more isolation, we have used aluminum nitride as dielectric material instead of silicon nitride (Si₃N₄) and silicon dioxide (SiO₂) because aluminum nitride has high dielectric constant (εᵣ = 9.5) increases the OFF capacitance and eventually increases the isolation of the switch. The results show that the switch is ON state involves return loss (S₁₁) less than -25 dB up to 40 GHz and insertion loss (S₂₁) is more than -1 dB up to 35 GHz. In OFF state switch shows maximum isolation (S₂₁) of -38 dB occurs at a frequency of 25-27 GHz for K band applications.

Keywords: RF MEMS, actuation voltage, isolation loss, switches

Procedia PDF Downloads 335
1210 Tetraploid Induction in the Yellowtail Tetra Astyanax altiparanae

Authors: Nivaldo Ferreira do Nascimento, Matheus Pereira-Santos, Nycolas Levy-Pereira, José Augusto Senhorini, George Shigueki Yasui, Laura Satiko Okada Nakaghi

Abstract:

Tetraploid individuals, which could produce diploid gametes, can be used for production of 100% triploid fish. Therefore, the aim of this study was to develop a tetraploidization protocol for A. altiparanae. We tested the effect of heat shock (40 °C; 2 min) at 16, 18, 20, 22, 24 and 26 minutes post fertilization (mpf). Untreated eggs were used as control. After hatching, ploidy status of the larvae was checked by flow cytometry. No difference were observed for the hatching rate between all treatments (P = 0.5974). However, we observed an increase in the larval abnormality in the heat shock treatments, in special at 22 (82.17 ± 6.66%) 24 (78.31 ±7.28%) and 26 mpf (79.01 ± 7.85%) in comparison with the control group (12.87 ± 4.46%). No tetraploid was observed at 16 and 18 mpf. The higher number of tetraploid individuals (52/55) was observed at 26 mpf. Our results showed that high percentages of tetraploids are obtained by heat shock (40°C; 2min) at 26 mpf, which could enable the mass production of triploid individuals in A. altiparanae.

Keywords: chromosome manipulation, polyploidy, flow cytometry, tetraploidization

Procedia PDF Downloads 299
1209 Efficient Microspore Isolation Methods for High Yield Embryoids and Regeneration in Rice (Oryza sativa L.)

Authors: S. M. Shahinul Islam, Israt Ara, Narendra Tuteja, Sreeramanan Subramaniam

Abstract:

Through anther and microspore culture methods, complete homozygous plants can be produced within a year as compared to the long inbreeding method. Isolated microspore culture is one of the most important techniques for rapid development of haploid plants. The efficiency of this method is influenced by several factors such as cultural conditions, growth regulators, plant media, pretreatments, physical and growth conditions of the donor plants, pollen isolation procedure, etc. The main purpose of this study was to improve the isolated microspore culture protocol in order to increase the efficiency of embryoids, its regeneration and reducing albinisms. Under this study we have tested mainly three different microspore isolation procedures by glass rod, homozeniger and by blending and found the efficiency on gametic embryogenesis. There are three types of media viz. washing, pre-culture and induction was used. The induction medium as AMC (modified MS) supplemented by 2, 4-D (2.5 mg/l), kinetin (0.5 mg/l) and higher amount of D-Manitol (90 g/l) instead of sucrose and two types of amino acids (L-glutamine and L-serine) were used. Out of three main microspore isolation procedure by homogenizer isolation (P4) showed best performance on ELS induction (177%) and green plantlets (104%) compared with other techniques. For all cases albinisims occurred but microspore isolation from excised anthers by glass rod and homogenizer showed lesser numbers of albino plants that was also one of the important findings in this study.

Keywords: androgenesis, pretreatment, microspore culture, regeneration, albino plants, Oryza sativa

Procedia PDF Downloads 313
1208 Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices

Authors: Kaan Yamanturk, Cihan Dogruoz

Abstract:

Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones.

Keywords: maximum considered earthquake, moment resisting frame, seismic isolator, seismic design

Procedia PDF Downloads 121
1207 The Effect of Nanofiber Web on Thermal Conductivity, Air and Water Vapor Permeability

Authors: Ilkay Ozsev Yuksek, Nuray Ucar, Zeynep Esma Soygur, Yasemin Kucuk

Abstract:

In this study, composite fabrics with polyacrylonitrile electrospun nanofiber deposited onto quilted polyester fabric have been produced in order to control the isolation properties such as water vapor permeability, air permeability and thermal conductivity. Different nanofiber webs were manufactured by changing polymer concentration from 10% to 16% and by changing the deposition time from 1 to 3 hours. Presence of nanofiber layer on the quilted fabric results to an increase of an isolation, i.e., a decrease of the moisture vapor transport rates at 20%, decrease of thermal conductivity at 15% and a decrease of air permeability values at 50%.

Keywords: nanofiber/fabric composites, electrospinning, isolation, thermal conductivity, moisture vapor transport, air permeability

Procedia PDF Downloads 283
1206 Surface Nanocrystalline and Hardening Effects of Ti–Al–V Alloy by Electropulsing Ultrasonic Shock

Authors: Xiaoxin Ye, Guoyi Tang

Abstract:

The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It’s indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It’s different from conventional experiments and theory. It’s discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it’s supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

Keywords: titanium alloys, electropulsing, ultrasonic shock, microhardness, nanocrystalline

Procedia PDF Downloads 264
1205 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters

Authors: S. Ghasemi, K. Khorasani

Abstract:

In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.

Keywords: component, formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault

Procedia PDF Downloads 408
1204 Effectiveness of Shock Wave Therapy Versus Intermittent Mechanical Traction on Mechanical Low Back Pain and Disabilities

Authors: Ahmed Assem Abd El Rahim

Abstract:

Background: Mechanical low back pain is serious physical and social health problem. Purpose: To examine impact of shock wave therapy versus intermittent mechanical traction on mechanical LBP, and disabilities. Subjects: 60 mechanical LBP male studied cases years old 20-35 years were assigned randomly into 3 groups, Picked up from Sohag university orthopedic hospital outpatient clinic. Methods: (Study Group) A: 20 studied cases underwent shock wave therapy plus conventional physical therapy. (Study Group) B: twenty studied cases underwent intermittent mechanical traction plus conventional physical therapy. (Control Group) C: 20 patients underwent conventional physical therapy alone. Three sessions were applied weekly for four weeks. Pain was quantified using McGill Pain Questionnaire, Roland Morris Disability Questionnaire was used for measuring disability, and the ROM was evaluated by (BROM) device pre- & post-therapy. Results: Groups (A, B & C) found a reduction in pain & disability & rise in their in flexion and extension ROM after end of 4 weeks of program. Mean values of pain scale after therapy were 15.3, 9.47, and 23.07 in groups A, B, & C. mean values of Disability scale after therapy were 8.44, 4.87, 11.8in groups A, B & C. mean values of ROM of flexion were 25.53, 29.06, & 23.9 in groups A, B & C. mean values of ROM of extension were 11.73, 15.53 & 9.85 in groups A, B & C. studied cases who received intermittent mechanical traction & conventional physical therapy (group B), found reduction in pain & disability & improvement in ROM of flexion & extension value (P<0.001) after therapy program. Conclusion: Shock wave therapy and intermittent mechanical traction, as well as conventional physical treatment, can be beneficial in studied cases with mechanical LBP.

Keywords: mechanical low back pain, shock wave, mechanical, low back pain

Procedia PDF Downloads 26
1203 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures

Authors: Michał Lidner, Zbigniew SzcześNiak

Abstract:

The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.

Keywords: adiabatic process, air shock wave, explosive, finite volume method

Procedia PDF Downloads 158
1202 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems

Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen

Abstract:

Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.

Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis

Procedia PDF Downloads 538
1201 The Observable Method for the Regularization of Shock-Interface Interactions

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined.

Keywords: compressible flow simulation, inviscid regularization, Richtmyer-Meshkov instability, shock-bubble interactions.

Procedia PDF Downloads 323
1200 Serum Granulocyte Colony Stimulating Factor is a Potent Stimulator of Hematopoeitic Progenitor Cells Mobilization in Trauma Hemorrhagic Shock

Authors: Manoj Kumar, Sujata Mohanty, D. N. Rao, Arul Selvi, Sanjeev K. Bhoi

Abstract:

Background: Hematopoietic progenitor cells (HPC) mobilized from bone marrow to peripheral blood has been observed in severe trauma and hemorrhagic shock patients. Granulocyte-colony stimulating factor (G-CSF) is a potent stimulator that mobilized HPC from bone marrow to peripheral blood. Objective: Our aim of the study was to investigate the serum G-CSF levels and correlate with HPC and outcome. Methods: Peripheral blood sample from 50 hemorrhagic shock patients was collected on arrival for determination of G-CSF and peripheral blood HPC (PBHPC) and compared with healthy control (n=15). Determination of serum levels of G-CSF by sandwich ELISA and PBHPC by Sysmex XE-2100. Data were categorized by age, sex, Injury Severity Score (ISS), and laboratory data was prospectively collected. Data are expressed as mean±SD and median (min, max). Results: Significantly increased the serum level of G-CSF (264.8 vs. 79.1 pg/ml) and peripheral blood HPC (0.1 vs. 0.01 %) in the T/HS patients when compared with control group. Conclusions: Our studies suggest serum G-CSF elevated in T/HS patients. The elevated in G-CSF was also associated with mobilization of HPC from BM to peripheral blood HPC. Increased the levels of G-CSF in T/HS may play a significant role in the alteration of the hematopoietic compartment.

Keywords: granulocyte colony stimulating factor, G-CSF, hematopoietic progenitor cells, HPC, trauma hemorrhagic shock, T/HS, outcome

Procedia PDF Downloads 304
1199 Study on Control Techniques for Adaptive Impact Mitigation

Authors: Rami Faraj, Cezary Graczykowski, Błażej Popławski, Grzegorz Mikułowski, Rafał Wiszowaty

Abstract:

Progress in the field of sensors, electronics and computing results in more and more often applications of adaptive techniques for dynamic response mitigation. When it comes to systems excited with mechanical impacts, the control system has to take into account the significant limitations of actuators responsible for system adaptation. The paper provides a comprehensive discussion of the problem of appropriate design and implementation of adaptation techniques and mechanisms. Two case studies are presented in order to compare completely different adaptation schemes. The first example concerns a double-chamber pneumatic shock absorber with a fast piezo-electric valve and parameters corresponding to the suspension of a small unmanned aerial vehicle, whereas the second considered system is a safety air cushion applied for evacuation of people from heights during a fire. For both systems, it is possible to ensure adaptive performance, but a realization of the system’s adaptation is completely different. The reason for this is technical limitations corresponding to specific types of shock-absorbing devices and their parameters. Impact mitigation using a pneumatic shock absorber corresponds to much higher pressures and small mass flow rates, which can be achieved with minimal change of valve opening. In turn, mass flow rates in safety air cushions relate to gas release areas counted in thousands of sq. cm. Because of these facts, both shock-absorbing systems are controlled based on completely different approaches. Pneumatic shock-absorber takes advantage of real-time control with valve opening recalculated at least every millisecond. In contrast, safety air cushion is controlled using the semi-passive technique, where adaptation is provided using prediction of the entire impact mitigation process. Similarities of both approaches, including applied models, algorithms and equipment, are discussed. The entire study is supported by numerical simulations and experimental tests, which prove the effectiveness of both adaptive impact mitigation techniques.

Keywords: adaptive control, adaptive system, impact mitigation, pneumatic system, shock-absorber

Procedia PDF Downloads 58
1198 Dynamic Shock Bank Liquidity Analysis

Authors: C. Recommandé, J. C. Blind, A. Clavel, R. Gourichon, V. Le Gal

Abstract:

Simulations are developed in this paper with usual DSGE model equations. The model is based on simplified version of Smets-Wouters equations in use at European Central Bank which implies 10 macro-economic variables: consumption, investment, wages, inflation, capital stock, interest rates, production, capital accumulation, labour and credit rate, and allows take into consideration the banking system. Throughout the simulations, this model will be used to evaluate the impact of rate shocks recounting the actions of the European Central Bank during 2008.

Keywords: CC-LM, Central Bank, DSGE, liquidity shock, non-standard intervention

Procedia PDF Downloads 424
1197 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring

Procedia PDF Downloads 442
1196 Seismic Behavior of Existing Reinforced Concrete Buildings in California under Mainshock-Aftershock Scenarios

Authors: Ahmed Mantawy, James C. Anderson

Abstract:

Numerous cases of earthquakes (main-shocks) that were followed by aftershocks have been recorded in California. In 1992 a pair of strong earthquakes occurred within three hours of each other in Southern California. The first shock occurred near the community of Landers and was assigned a magnitude of 7.3 then the second shock occurred near the city of Big Bear about 20 miles west of the initial shock and was assigned a magnitude of 6.2. In the same year, a series of three earthquakes occurred over two days in the Cape-Mendocino area of Northern California. The main-shock was assigned a magnitude of 7.0 while the second and the third shocks were both assigned a value of 6.6. This paper investigates the effect of a main-shock accompanied with aftershocks of significant intensity on reinforced concrete (RC) frame buildings to indicate nonlinear behavior using PERFORM-3D software. A 6-story building in San Bruno and a 20-story building in North Hollywood were selected for the study as both of them have RC moment resisting frame systems. The buildings are also instrumented at multiple floor levels as a part of the California Strong Motion Instrumentation Program (CSMIP). Both buildings have recorded responses during past events such as Loma-Prieta and Northridge earthquakes which were used in verifying the response parameters of the numerical models in PERFORM-3D. The verification of the numerical models shows good agreement between the calculated and the recorded response values. Then, different scenarios of a main-shock followed by a series of aftershocks from real cases in California were applied to the building models in order to investigate the structural behavior of the moment-resisting frame system. The behavior was evaluated in terms of the lateral floor displacements, the ductility demands, and the inelastic behavior at critical locations. The analysis results showed that permanent displacements may have happened due to the plastic deformation during the main-shock that can lead to higher displacements during after-shocks. Also, the inelastic response at plastic hinges during the main-shock can change the hysteretic behavior during the aftershocks. Higher ductility demands can also occur when buildings are subjected to trains of ground motions compared to the case of individual ground motions. A general conclusion is that the occurrence of aftershocks following an earthquake can lead to increased damage within the elements of an RC frame buildings. Current code provisions for seismic design do not consider the probability of significant aftershocks when designing a new building in zones of high seismic activity.

Keywords: reinforced concrete, existing buildings, aftershocks, damage accumulation

Procedia PDF Downloads 256