Search results for: separation tank
1620 Computational Investigation of the Performance of Oil and Water Separation Tanks
Authors: Deng-Jr Peng, Deborah Ibrahimi, George E. Varelis
Abstract:
The separation of oil and water is essential for oil production, as high separation efficacy benefits the commercial value of the production asset while reducing the impact of effluent disposal on the environment. Gravity separation tanks play a crucial role in achieving the required water specifications before disposal. The water specification is typically assessed based on two key parameters: Salt-in-Crude (SIC) and Oil-in-Water (OIW), which serve as practical measures. Since SIC and OIW are related to the oil particle size distributions within the separation tank, computational fluid dynamics (CFD) techniques are employed to determine SIC and OIW across various separation tank configurations, aiming to optimise separation performance efficiency. This approach leverages computational power to reduce costly separation trials in practice, thereby saving capital expenditures (CAPEX) and minimising waiting times. Advanced CFD models are generated to simulate the separation process in a single tank, utilising the population balance model (PBM) and interfacial area transport equations (IATEs) and accounting for particle coalescence and breakup mechanisms. The CFD predictions are initially benchmarked against historical field measurements and are found to be in close agreement. Such comparisons enhance the confidence in the CFD predictions. Subsequently, further analyses are conducted to evaluate the performance of the separation tank under both parallel and sequential configurations. The results identify the optimal configuration for separation tank performance based on the relationships between SIC/OIW and particle size distributions.Keywords: CFD, separation tank, oil and water, particle size distribution
Procedia PDF Downloads 01619 Protection of Floating Roof Petroleum Storage Tanks against Lightning Strokes
Authors: F. M. Mohamed, A. Y. Abdelaziz
Abstract:
The subject of petroleum storage tank fires has gained a great deal of attention due to the high cost of petroleum, and the consequent disruption of petroleum production; therefore, much of the current research has focused on petroleum storage tank fires. Also, the number of petroleum tank fires is oscillating between 15 and 20 fires per year. About 33% of all tank fires are attributed to lightning. Floating roof tanks (FRT’s) are especially vulnerable to lightning. To minimize the likelihood of a fire, the API RP 545 recommends three major modifications to floating roof tanks. This paper was inspired by a stroke of lightning that ignited a fire in a crude oil storage tank belonging to an Egyptian oil company, and is aimed at providing an efficient lightning protection system to the tank under study, in order to avoid the occurrence of such phenomena in the future and also, to give valuable recommendations to be applied to floating roof tank projects.Keywords: crude oil, fire, floating roof tank, lightning protection system
Procedia PDF Downloads 2921618 Terminal Ballistic Analysis of Non-Filled and Water-Filled Tank
Authors: M. R. Aziz, W. Kuntjoro, N. V. David
Abstract:
This paper presents the ballistic terminal study of the non-filled and water-filled aluminum tank. The objective was to determine the failure stages for both cases. The tank was impacted by fragment simulating projectile (FSP) with 260 m/s for non-filled and 972 m/s for water-filled. The aluminum tank was 3 mm thick, 150 mm wide and 750 mm long. The ends of the tank were closed with two polymethyl methacrylate (PMMA) windows. The test was conducted at the Science and Technology Research Institute for Defense (STRIDE) Batu Arang, Selangor, Malaysia. The results showed four main stages for non-filled tank, which were first contact between FSP and the tank, partially perforated, fully perforated with FSP and plug still intact and lastly fully perforated with FSP and plug separated. Meanwhile, for the water-filled tank, there were seven main stages, which were first contact between FSP and the tank, partial perforation, full perforation, drag phase, cavity phase, bounce wave event and the collapse of the cavity.Keywords: fragment simulating projectile, high speed camera, tensile test, terminal ballistic
Procedia PDF Downloads 3071617 Tank Barrel Surface Damage Detection Algorithm
Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský
Abstract:
The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank
Procedia PDF Downloads 1441616 Liquid Sulphur Storage Tank
Authors: Roya Moradifar, Naser Agharezaee
Abstract:
In this paper corrosion in the liquid sulphur storage tank at South pars gas complex phases 2&3 is presented. This full hot insulated field-erected storage tanks are used for the temporary storage of 1800m3 of molten sulphur. Sever corrosion inside the tank roof was observed during over haul inspections, in the direction of roof gradient. Investigation shown, in spite of other parts of tank there was no insulation around these manholes. Internal steam coils do not maintain a sufficiently high tank roof temperature in the vapor space. Sulphur and formation of liquid water at cool metal surface, this combination leads to the formation of iron sulfide. By employing a distributed external heating system, the temperatures of any point of the tank roof should be based on ambient dew point and the liquid storage solidification point. Also other construction and operation of tank is more important. This paper will review potential corrosion mechanism and operational case study which illustrate the importance of heating systems.Keywords: tank, steam, corrosion, sulphur
Procedia PDF Downloads 5741615 Improving the Residence Time of a Rectangular Contact Tank by Varying the Geometry Using Numerical Modeling
Authors: Yamileth P. Herrera, Ronald R. Gutierrez, Carlos, Pacheco-Bustos
Abstract:
This research aims at the numerical modeling of a rectangular contact tank in order to improve the hydrodynamic behavior and the retention time of the water to be treated with the disinfecting agent. The methodology to be followed includes a hydraulic analysis of the tank to observe the fluid velocities, which will allow evidence of low-speed areas that may generate pathogenic agent incubation or high-velocity areas, which may decrease the optimal contact time between the disinfecting agent and the microorganisms to be eliminated. Based on the results of the numerical model, the efficiency of the tank under the geometric and hydraulic conditions considered will be analyzed. This would allow the performance of the tank to be improved before starting a construction process, thus avoiding unnecessary costs.Keywords: contact tank, numerical models, hydrodynamic modeling, residence time
Procedia PDF Downloads 1741614 Numerical Analysis of Sloshing Dynamics in Liquid Hydrogen Sloshing Tank with Rib Structure
Authors: Ujjwal Shrestha, Young-Do Choi
Abstract:
The demand for clean and renewable energy sources is increasing rapidly. Liquid hydrogen is considered the most viable option to replace fossil fuels. When liquid hydrogen is transported from one place to another, the movement of a partially filled liquid hydrogen tank causes sloshing. Sloshing induces dynamic pressure on the storage tank wall, which leads to excessive stress and deformation of the tank walls. The numerical analysis is conducted using Reynolds averaged Navier-Stokes (RANS) and volume of the fluid model to investigate the 3D sloshing dynamics of liquid hydrogen. The sloshing dynamics are influenced by the frequency and amplitude of loading conditions, hydrogen filling level, the geometry of the tank, and wave motion. The 30%, 50%, and 90% hydrogen filling levels are selected to evaluate the sloshing dynamics. The pure surge and the combined surge and sway motions are exerted to visualize the free surface movement. Fluid-structure analysis was conducted to understand the impact of sloshing dynamics on the tank walls. Finally, the rib structure is applied in the tank to reduce sloshing dynamics.Keywords: sloshing, liquid hydrogen tank, filling level, rib structure, FSI analysis
Procedia PDF Downloads 11613 Study of Heat Transfer by Natural Convection in Overhead Storage Tank of LNG
Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed
Abstract:
During the period storage of liquefied natural gas, stability is necessarily affected by natural convection along the walls of the tank with thermal insulation is not perfectly efficient. In this paper, we present the numerical simulation of heat transfert by natural convection double diffusion,in unsteady laminar regime in a storage tank. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The gas is just on the surface of the liquid phase. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas
Procedia PDF Downloads 4871612 Onboard Heat, Pressure and Boil-Off Gas Treatment for Stacked NGH Tank Containers
Authors: Hee Jin Kang
Abstract:
Despite numerous studies on the reserves and availability of natural gas hydrates, the technology of transporting natural gas hydrates in large quantities to sea has not been put into practical use. Several natural gas hydrate transport technologies presented by the International Maritime Organization (IMO) are under preparation for commercialization. Among them, NGH tank container concept modularized transportation unit to prevent sintering effect during sea transportation. The natural gas hydrate can be vaporized in a certain part during the transportation. Unprocessed BOG increases the pressure inside the tank. Also, there is a risk of fire if you export the BOG out of the tank without proper handling. Therefore, in this study, we have studied the concept of technology to properly process BOG to modularize natural gas hydrate and to transport it to sea for long distance. The study is expected to contribute to the practical use of NGH tank container, which is a modular transport concept proposed to solve the sintering problem that occurs when transporting natural gas hydrate in the form of bulk cargo.Keywords: Natural gas hydrate, tank container, marine transportation, boil-off gas
Procedia PDF Downloads 3431611 Study the Sloshing Phenomenon in the Tank Filled Partially with Liquid Using Computational Fluid Dynamics (CFD) Simulation
Authors: Amit Kumar, Jaikumar V, Pradeep AG, Shivakumar Bhavi
Abstract:
Reducing sloshing is one of the major challenges in industries where transporting of liquid involved. The present study investigates the sloshing effect for different liquid levels 25%, 50%, and 75% of the tank capacity. CFD simulation for three different liquid levels has been carried out using a time-based multiphase Volume of fluid (VOF) scheme. Baffles were introduced to examine the sloshing effect inside the tank. Results were compared against the baseline case to assess the effectiveness of baffles. Maximum liquid height over the period of the simulation was considered as the parameter for measuring the sloshing effect inside the tank. It was found that the addition of baffles reduced the sloshing effect inside the tank as compared to the baseline model.Keywords: sloshing, CFD, VOF, baffles
Procedia PDF Downloads 2601610 Foundation Retrofitting of Storage Tank under Seismic Load
Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade, E. Izadi, M. Hossein Zade
Abstract:
The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased.Keywords: steel tank, soil-structure, sandy soil, seismic load
Procedia PDF Downloads 4261609 Study the Sloshing Phenomenon in the Tank Filled Partially with Liquid Using Computational Fluid Dynamics (CFD) Simulation
Authors: Amit Kumar, Jaikumar V., Pradeep A. G., Shivakumar Bhavi
Abstract:
Amit Kumar, Jaikumar V, Pradeep AG, Shivakumar Bhavi Reducing sloshing is one of the major challenges in industries where transporting of liquid is involved. The present study investigates the sloshing effect for different liquid levels of 50% of the tank capacity. CFD simulation for two different baffle configurations has been carried out using a time-based multiphase Volume of fluid (VOF) scheme. Baffles were introduced to examine the sloshing effect inside the tank. Results were compared against the baseline case to assess the effectiveness of baffles; maximum liquid height over the period of the simulation was considered as the parameter for measuring the sloshing effect inside the tank. It was found that the addition of baffles reduced the sloshing effect inside the tank as compared to the baseline model.Keywords: CFD, sloshing, VOF, multiphase
Procedia PDF Downloads 1981608 Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank
Authors: Nahia H. Sassine, Frédéric-Victor Donzé, Arnaud Bruch, Barthélemy Harthong
Abstract:
Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. For instance, when rocks are used as storage material, the tank wall expands more than the solid medium during charge process, a gap is created between the rocks and tank walls and the filler material settles down to fill it. During discharge, the tank contracts against the bed, resulting in thermal stresses that may exceed the wall tank yield stress and generate plastic deformation. This phenomenon is repeated over the cycles and the tank will be slowly ratcheted outward until it fails. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material. Besides the study of the influence of different thermal configurations on the storage tank response, other parameters are varied, such as the internal angle of friction of the granular material, the dispersion of particles diameters as well as the tank’s dimensions. Then, their influences on the kinematics of the granular bed submitted to thermal cycles are highlighted.Keywords: discrete element method (DEM), thermal cycles, thermal energy storage, thermocline
Procedia PDF Downloads 4111607 Numerical Study of Sloshing in a Flexible Tank
Authors: Wissem Tighidet, Faïçal Naït Bouda, Moussa Allouche
Abstract:
The numerical study of the Fluid-Structure Interaction (FSI) in a partially filled flexible tank submitted to a horizontal harmonic excitation motion. It is investigated by using two-way Fluid-Structure Interaction (FSI) in a flexible tank by Coupling between the Transient Structural (Mechanical) and Fluid Flow (Fluent) in ANSYS-Workbench Student version. The Arbitrary Lagrangian-Eulerian (ALE) formulation is adopted to solve with the finite volume method, the Navier-Stokes equations in two phases in a moving domain. The Volume of Fluid (VOF) method is applied to track the free surface. However, the equations of the dynamics of the structure are solved with the finite element method assuming a linear elastic behavior. To conclude, the Fluid-Structure Interaction (IFS) has a vital role in the analysis of the dynamic behavior of the rectangular tank. The results indicate that the flexibility of the tank walls has a significant impact on the amplitude of tank sloshing and the deformation of the free surface as well as the effect of liquid sloshing on wall deformation.Keywords: arbitrary lagrangian-eulerian, fluid-structure interaction, sloshing, volume of fluid
Procedia PDF Downloads 1131606 A New Criterion for Removal of Fouling Deposit
Abstract:
The key to improve surface cleaning of the fouling is understanding of the mechanism of separation process of the deposit from the surface. The authors give basic principles of characterization of separation process and introduce a corresponding criterion. The developed criterion is a measure for the moment of separation of the deposit from the surface. For this purpose a new measurement technique is described.Keywords: cleaning, fouling, separation, criterion
Procedia PDF Downloads 4591605 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model
Authors: Quy Dang Nguyen, Reza Nakhaie Jazar
Abstract:
The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation
Procedia PDF Downloads 991604 Hydrothermal Synthesis of ZIF-7 Crystals and Their Composite ZIF-7/CS Membranes for Water/Ethanol Separation
Authors: Kai-Sheng Ji, Yi-Feng Lin
Abstract:
The pervaporation process for solvent and water separation has attracted research attention due to its lower energy consumption compared with conventional distillation processes. The membranes used for the pervaporation approach should exhibit high flux and separation factors. In this study, the ZIF-7 crystal particles were successfully incorporated into chitosan (CS) membranes to form ZIF-7/CS mixed-matrix membranes. The as-prepared ZIF-7/CS mixed-matrix membranes were used to separate mixtures of water/ethanol at 25℃ in the pervaporation process. The mixed-matrix membranes with different ZIF-7 wt% incorporation showed better separation efficiency than the pristine CS membranes because of the smaller pore size of the mixed-matrix membranes. The separation factor and the flux of the ZIF-7/CS membranes clearly exceed the upper limit of the previously reported CS-based and mixed-matrix membranes.Keywords: pervaporation, chitosan, ZIF-7, memberane separation
Procedia PDF Downloads 4361603 Study of Cahn-Hilliard Equation to Simulate Phase Separation
Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa
Abstract:
An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.Keywords: Cahn-Hilliard equation, miscibility gap, phase separation, dimensional domains
Procedia PDF Downloads 5191602 The Threshold Values of Soil Water Index for Landslides on Country Road No.89
Authors: Ji-Yuan Lin, Yu-Ming Liou, Yi-Ting Chen, Chen-Syuan Lin
Abstract:
Soil water index obtained by tank model is now commonly used in soil and sand disaster alarm system in Japan. Comparing with the rainfall trigging index in Taiwan, the tank model is easy to predict the slope water content on large-scale landslide. Therefore, this study aims to estimate the threshold value of large-scale landslide using the soil water index Sixteen typhoons and heavy rainfall events, were selected to establish the, to relationship between landslide event and soil water index. Finally, the proposed threshold values for landslides on country road No.89 are suggested in this study. The study results show that 95% landslide cases occurred in soil water index more than 125mm, and 30% of the more serious slope failure occurred in the soil water index is greater than 250mm. Beside, this study speculates when soil water index more than 250mm and the difference value between second tank and third tank less than -25mm, it leads to large-scale landslide more probably.Keywords: soil water index, tank model, landslide, threshold values
Procedia PDF Downloads 3901601 Sound Quality Analysis of Sloshing Noise from a Rectangular Tank
Authors: Siva Teja Golla, B. Venkatesham
Abstract:
The recent technologies in hybrid and high-end cars have subsided the noise from major sources like engines and transmission systems. This resulted in the unmasking of the previously subdued noises. These noises are becoming noticeable to the passengers, causing annoyance to them and affecting the perceived quality of the vehicle. Sloshing in the fuel tank is one such source of noise. Sloshing occurs due to the excitations undergone by the fuel tank due to the vehicle's movement. Sloshing noise occurs due to the interaction of the fluid with the surrounding tank walls or with the fluid itself. The noise resulting from the interaction of the fluid with the structure is ‘Hit noise’, and the noise due to fluid-fluid interaction is ‘Splash noise’. The type of interactions the fluid undergoes inside the tank, and the type of noise generated depends on a variety of factors like the fill level of the tank, type of fluid, presence of objects like baffles inside the tank, type and strength of the excitation, etc. There have been studies done to understand the effect of each of these parameters on the generation of different types of sloshing noises. But little work is done in the psychoacoustic aspect of these sounds. The psychoacoustic study of the sloshing noises gives an understanding of the level of annoyance it can cause to the passengers and helps in taking necessary measures to address it. In view of this, the current paper focuses on the calculation of the psychoacoustic parameters like loudness, sharpness, roughness and fluctuation strength for the sloshing noise. As the noise generation mechanisms for the hit and splash noises are different, these parameters are calculated separately for them. For this, the fluid flow regimes that predominantly cause the hit-and-splash noises are to be separately emulated inside the tank. This is done through a reciprocating test rig, which imposes reciprocating excitation to a rectangular tank filled with the fluid. By varying the frequency of excitation, the fluid flow regimes with the predominant generation of hit-and-splash noises can be separately created inside the tank. These tests are done in a quiet room and the noise generated is captured using microphones and is used for the calculation of psychoacoustic parameters of the sloshing noise. This study also includes the effect of fill level and the presence of baffles inside the tank on these parameters.Keywords: sloshing, hit noise, splash noise, sound quality
Procedia PDF Downloads 361600 Comparisons Growth Indices of Huso huso Prebroodstock Rearing Environments (Pond and Concrete Tank) for Production of Meat
Authors: Mohamad Ali Yazdani Sadati, Mir Hamed Sayed Hassani, Mahmoud Shakorian, Rezvanollah Kazemi, Bahareh Younes Haghighi
Abstract:
The efficiency of two rearing environments in culture and effect on growth performance of beluga (Huso huso) were investigated. In accordance two group of three years Huso huso ((Average weight of 9.93±0.305 and 10±0.5Kg) density (0.5 and 25 kg/m2)) with 3 replicate were stocked in two culture environment and reared with formulated diet including protein 43% and energy 22 MJ/ kg for 12 month from 2014.6.19 to 2015.9.10 A.D. In the end of rearing period, indices of Final weight, final biomass, daily growth and body percent weight fish reared in cement tank (20.1±0.6, 2016.66±5.77,0.112±0.00239 and 102.35±1.1kg) were significantly higher than fish reared in pond (17.4±0.4, 1746.66±7.2, 0.082±0.118 and 74.15±4.71 kg), respectively P < 0.05). Food efficiency ratio between two group was not significantly different (P > 0.05). The result of this study indicated that except of primary cost of building concrete tank, Huso huso prebroodstocking in cement tank is better than pond for result of increasing growth rate in culture rearing and more effective management.Keywords: cement tank, earthen pond, Huso huso, prebroodstocking
Procedia PDF Downloads 3311599 Computational Fluid Dynamics (CFD) Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines
Authors: Worrapol Koranuntachai, Tonkid Chantrasmi, Udomkiat Nontakaew
Abstract:
Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics
Procedia PDF Downloads 1381598 Assessing Nutrient Concentration and Trophic Status of Brahma Sarover at Kurukshetra, India
Authors: Shailendra Kumar Patidar
Abstract:
Eutrophication of surface water is one of the most widespread environmental problems at present. Large number of pilgrims and tourists visit sacred artificial tank known as “Brahma Sarover” located at Kurukshetra, India to take holy dip and perform religious ceremonies. The sources of pollutants include impurities in feed water, mass bathing, religious offerings and windblown particulate matter. Studies so far have focused mainly on assessing water quality for bathing purpose by using physico-chemical and bacteriological parameters. No effort has been made to assess nutrient concentration and trophic status of the tank to take more appropriate measures for improving water quality on long term basis. In the present study, total nitrogen, total phosphorous and chlorophyll a measurements have been done to assess the nutrient level and trophic status of the tank. The results show presence of high concentration of nutrients and Chlorophyll a indicating mesotrophic and eutrophic state of the tank. Phosphorous has been observed as limiting nutrient in the tank water.Keywords: Brahma Sarover, eutrophication, nutrients, trophic status
Procedia PDF Downloads 3761597 Coupled Analysis with Fluid and Flexible Multibody Dynamics of 6-DOF Platform with Liquid Sloshing Tank
Authors: Sung-Pill Kim, Dae-Gyu Sung, Hee-Sung Shin, Jong-Chun Park
Abstract:
When a sloshing tank filled partially with liquid is excited with the motion of platform, it can be observed that the center of mass inside the tank is changed and impact loads is instantaneously applied to the wall, which causes dynamic loads additionally to the supporting links of platform. In this case, therefore, the dynamic behavior of platform associated with fluid motion should be considered in the early stage of design for safety and economics of the system. In this paper, the dynamic loads due to liquid sloshing motion in a rectangular tank which is loaded up on the upper deck of a Stewart platform are simulated using a coupled analysis of Moving Particle Simulation (MPS) and Flexible Multi-Body Dynamics (FMBD). The co-simulation is performed using two commercial softwares, Recurdyn for solving FMBD and Particleworks for analyzing fluid motion based on MPS method. For validating the present coupled system, a rectangular sloshing tank being enforced with inline sway motion by 1-DOF motion platform is assumed, and time-varied free-surface elevation and reaction force at a fixed joint are compared with experiments.Keywords: dynamic loads, liquid sloshing tank, Stewart platform, moving particle semi-implicit (MPS) method, flexible multi-body dynamics (FMBD)
Procedia PDF Downloads 7151596 Sustainable Separation of Nicotine from Its Aqueous Solutions
Authors: Zoran Visak, Joana Lopes, Vesna Najdanovic-Visak
Abstract:
Within this study, the separation of nicotine from its aqueous solutions, using inorganic salt sodium chloride or ionic liquid (molten salt) ECOENG212® as salting-out media, was carried out. Thus, liquid-liquid equilibria of the ternary solutions (nicotine+water+NaCl) and (nicotine+water+ECOENG212®) were determined at ambient pressure, 0.1 MPa, at three temperatures. The related phase diagrams were constructed in two manners: by adding the determined cloud-points and by the chemical analysis of phases in equilibrium (tie-line data). The latter were used to calculate two important separation parameters - partition coefficients of nicotine and separation factors. The impacts of the initial compositions of the mother solutions and of temperature on the liquid-liquid phase separation and partition coefficients were analyzed and discussed. The results obtained clearly showed that both investigated salts are good salting-out media for the efficient and sustainable separation of nicotine from its solutions with water. However, when compared, sodium chloride exhibited much better separation performance than the ionic liquid.Keywords: nicotine, liquid-liquid separation, inorganic salt, ionic liquid
Procedia PDF Downloads 3161595 Design of Dry Chemical Fire Extinguisher Inspection Equipment in Order to Reduce Ergonomic Risks for Fire Extinguisher Inspectors
Authors: Sitrapee Changmuenwai, Sudaratana Wongweragiat
Abstract:
It is important that a dry chemical fire extinguisher must be inspected for its readiness. For each inspection, the inspectors need to turn the fire extinguisher tank upside down to let the chemical inside the tank move and prevent solidification, which would make the tank not ready for usage when needed. Each tank weighs approximately 16 kg. The inspectors have to turn each tank upside down twice (2 minutes/round). They need to put the tanks over their shoulder close to their ear in order to hear the chemical flow inside the tank or use their hands to feel it. The survey and questionnaire 'The Questionnaire Know Body', which includes neck, left shoulder, upper and lower right arms suggest that all 12 security staffs have the same fatigues. The current dry chemical fire extinguisher inspection affects various ergonomic health problems. Rapid Entire Body Assessment (REBA) is used for evaluation of posture risks so that the working postures may be redesigned or corrected. The dry chemical fire extinguisher inspection equipment has been developed to reduce ergonomic health risks for the inspectors. A REBA analysis has been performed again, and the risk score has been decreased from 13 to 3. In addition, feedbacks from the first trial of the developed equipment show that there are demands to increase the installation in order to reduce the ergonomic health risks.Keywords: dry chemical fire extinguisher inspection equipment, ergonomic, REBA, rapid entire body assessment
Procedia PDF Downloads 1261594 Thermal Analysis and Experimental Procedure of Integrated Phase Change Material in a Storage Tank
Authors: Chargui Ridha, Agrebi Sameh
Abstract:
The integration of phase change materials (PCM) for the storage of thermal energy during the period of sunshine before being released during the night is a complement of free energy to improve the system formed by a solar collector, tank storage, and a heat exchanger. This paper is dedicated to the design of a thermal storage tank based on a PCM-based heat exchanger. The work is divided into two parts: an experimental part using paraffin as PCM was carried out within the Laboratory of Thermal Processes of Borj Cedria in order to improve the performance of the system formed by the coupling of a flat solar collector and a thermal storage tank and to subsequently determine the influence of PCM on the whole system. This phase is based on the measurement instrumentation, namely, a differential scanning calorimeter (DSC) and the thermal analyzer (hot disk: HOT DISK) in order to determine the physical properties of the paraffin (PCM), which has been chosen. The second phase involves the detailed design of the PCM heat exchanger, which is incorporated into a thermal storage tank and coupled with a solar air collector installed at the Research and Technology Centre of Energy (CRTEn). A numerical part based on the TRANSYS and Fluent software, as well as the finite volume method, was carried out for the storage reservoir systems in order to determine the temperature distribution in each chosen system.Keywords: phase change materials, storage tank, heat exchanger, flat plate collector
Procedia PDF Downloads 1001593 The Effects of Early Maternal Separation on Risky Choice in Rats
Authors: Osvaldo Collazo, Cristiano Valerio Dos Santos
Abstract:
Early maternal separation has been shown to bring about many negative effects on behavior in rats. In the present study, we evaluated the effects of early maternal separation on risky choice in rats. One group of male and female Wistar rats was exposed to an early maternal separation protocol while a control group was left undisturbed. Then both groups were exposed to a series of behavioral tests, including a test of risky choice, where one alternative offered a constant reward while the other offered a variable reward. There was a difference between groups when they chose between a variable and a constant reward delay, but no other difference was significant. These results suggest that early maternal separation may be related to a greater preference for shorter delays, which is characteristic of more impulsive choices.Keywords: early maternal separation, impulsivity, risky choice, variability
Procedia PDF Downloads 2621592 Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG
Authors: R. Hariti, M. Saighi, H. Saidani-Scott
Abstract:
A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values.Keywords: tank, storage, liquefied natural gas, natural convection, thermal radiation, numerical simulation
Procedia PDF Downloads 5451591 From a Distance: A Grounded Theory Study of Incarcerated Filipino Elderly's Separation Anxiety
Authors: Allan B. de Guzman, Rochelle Gabrielle R. Gatan, Ira Bianca Mae G. Gesmundo, Astley Justine H. Golosinda
Abstract:
Background: While in prison, the elderly, like the younger prisoners, face specific problems and deprivations arising directly from their imprisonment, one of which is forced separation from family and loved ones. Despite the numerous studies that examined the impact of separation and separation anxiety on the emotions and behavior of young individuals, little is known about separation anxiety in the elderly population. Objective: This grounded theory study purports to describe the process of separation anxiety among incarcerated Filipino elderly men. Method: Individual interviews and participant observations were conducted with 25 incarcerated elderly Filipino men who are first-time prisoners, sentenced to lifetime imprisonment and were analyzed using constant comparative method. Results: Following Strauss and Corbin’s protocol, a four-part process emerged to describe the studied layer of human experience. The Tectonic Model of Separation Anxiety among incarcerated Filipino elderly men comprises of four phases: Winkling, Wilting, Weeding, and Weaving. Conclusion: This study has inductively and creatively explored the process of separation anxiety among the Filipino incarcerated elderly men. Findings of this study invite nurses and other clinicians to identify developmentally appropriate strategies and interventions for this vulnerable and neglected sector of society.Keywords: elderly, grounded theory, separation anxiety, Filipino, incarcerated
Procedia PDF Downloads 367