Search results for: rhizospheric oxygen release
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2591

Search results for: rhizospheric oxygen release

11 Experimental Study on Granulated Steel Slag as an Alternative to River Sand

Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth

Abstract:

River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.

Keywords: steel slag, river sand, granulated slag, environmental

Procedia PDF Downloads 223
10 Prospects of Acellular Organ Scaffolds for Drug Discovery

Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen

Abstract:

Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.

Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering

Procedia PDF Downloads 271
9 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 242
8 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 311
7 Amino Acid Based Biodegradable Poly (Ester-Amide)s and Their Potential Biomedical Applications as Drug Delivery Containers and Antibacterial

Authors: Nino Kupatadze, Tamar Memanishvili, Natia Ochkhikidze, David Tugushi, Zaal Kokaia, Ramaz Katsarava

Abstract:

Amino acid-based Biodegradable poly(ester-amide)s (PEAs) have gained considerable interest as a promising materials for numerous biomedical applications. These polymers reveal a high biocompatibility and easily form small particles suitable for delivery various biological, as well as elastic bio-erodible films serving as matrices for constructing antibacterial coatings. In the present work we have demonstrated a potential of the PEAs for two applications: 1. cell therapy for stroke as vehicles for delivery and sustained release of growth factors, 2. bactericidal coating as prevention biofilm and applicable in infected wound management. Stroke remains the main cause of adult disability with limited treatment options. Although stem cell therapy is a promising strategy, it still requires improvement of cell survival, differentiation and tissue modulation. .Recently, microspheres (MPs) made of biodegradable polymers have gained significant attention for providing necessary support of transplanted cells. To investigate this strategy in the cell therapy of stroke, MPs loaded with transcription factors Wnt3A/BMP4 were prepared. These proteins have been shown to mediate the maturation of the cortical neurons. We have suggested that implantation of these materials could create a suitable microenvironment for implanted cells. Particles with spherical shape, porous surface, and 5-40 m in size (monitored by scanning electron microscopy) were made on the basis of the original PEA composed of adipic acid, L-phenylalanine and 1,4-butanediol. After 4 months transplantation of MPs in rodent brain, no inflammation was observed. Additionally, factors were successfully released from MPs and affected neuronal cell differentiation in in vitro. The in vivo study using loaded MPs is in progress. Another severe problem in biomedicine is prevention of surgical devices from biofilm formation. Antimicrobial polymeric coatings are most effective “shields” to protect surfaces/devices from biofilm formation. Among matrices for constructing the coatings preference should be given to bio-erodible polymers. Such types of coatings will play a role of “unstable seating” that will not allow bacteria to occupy the surface. In other words, bio-erodible coatings would be discomfort shelter for bacteria that along with releasing “killers of bacteria” should prevent the formation of biofilm. For this purpose, we selected an original biodegradable PEA composed of L-leucine, 1,6-hexanediol and sebacic acid as a bio-erodible matrix, and nanosilver (AgNPs) as a bactericidal agent (“killer of bacteria”). Such nanocomposite material is also promising in treatment of superficial wound and ulcer. The solubility of the PEA in ethanol allows to reduce AgNO3 to NPs directly in the solution, where the solvent served as a reductive agent, and the PEA served as NPs stabilizer. The photochemical reduction was selected as a basic method to form NPs. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscope (TEM), and dynamic light scattering (DLS). According to the UV-data and TEM data the photochemical reduction resulted in spherical AgNPs with wide particle size distribution with a high contribution of the particles below 10 nm that are known as responsible for bactericidal activity of AgNPs. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within ca. 50 nm.

Keywords: biodegradable polymers, microparticles, nanocomposites, stem cell therapy, stroke

Procedia PDF Downloads 369
6 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 16
5 The Effect of Using Emg-based Luna Neurorobotics for Strengthening of Affected Side in Chronic Stroke Patients - Retrospective Study

Authors: Surbhi Kaura, Sachin Kandhari, Shahiduz Zafar

Abstract:

Chronic stroke, characterized by persistent motor deficits, often necessitates comprehensive rehabilitation interventions to improve functional outcomes and mitigate long-term dependency. Luna neurorobotic devices, integrated with EMG feedback systems, provide an innovative platform for facilitating neuroplasticity and functional improvement in stroke survivors. This retrospective study aims to investigate the impact of EMG-based Luna neurorobotic interventions on the strengthening of the affected side in chronic stroke patients. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. Stroke is a debilitating condition that, when not effectively treated, can result in significant deficits and lifelong dependency. Common issues like neglecting the use of limbs can lead to weakness in chronic stroke cases. In rehabilitation, active patient participation significantly activates the sensorimotor network during motor control, unlike passive movement. This study aims to assess how electromyographic triggering (EMG-triggered) robotic treatments affect walking, ankle muscle force after an ischemic stroke, and the coactivation of agonist and antagonist muscles, which contributes to neuroplasticity with the assistance of biofeedback using robotics. Methods: The study utilized robotic techniques based on electromyography (EMG) for daily rehabilitation in long-term stroke patients, offering feedback and monitoring progress. Each patient received one session per day for two weeks, with the intervention group undergoing 45 minutes of robot-assisted training and exercise at the hospital, while the control group performed exercises at home. Eight participants with impaired motor function and gait after stroke were involved in the study. EMG-based biofeedback exercises were administered through the LUNA neuro-robotic machine, progressing from trigger and release mode to trigger and hold, and later transitioning to dynamic mode. Assessments were conducted at baseline and after two weeks, including the Timed Up and Go (TUG) test, a 10-meter walk test (10m), Berg Balance Scale (BBG), and gait parameters like cadence, step length, upper limb strength measured by EMG threshold in microvolts, and force in Newton meters. Results: The study utilized a scale to assess motor strength and balance, illustrating the benefits of EMG-biofeedback following LUNA robotic therapy. In the analysis of the left hemiparetic group, an increase in strength post-rehabilitation was observed. The pre-TUG mean value was 72.4, which decreased to 42.4 ± 0.03880133 seconds post-rehabilitation, with a significant difference indicated by a p-value below 0.05, reflecting a reduced task completion time. Similarly, in the force-based task, the pre-knee dynamic force in Newton meters was 18.2NM, which increased to 31.26NM during knee extension post-rehabilitation. The post-student t-test showed a p-value of 0.026, signifying a significant difference. This indicated an increase in the strength of knee extensor muscles after LUNA robotic rehabilitation. Lastly, at baseline, the EMG value for ankle dorsiflexion was 5.11 (µV), which increased to 43.4 ± 0.06 µV post-rehabilitation, signifying an increase in the threshold and the patient's ability to generate more motor units during left ankle dorsiflexion. Conclusion: This study aimed to evaluate the impact of EMG and dynamic force-based rehabilitation devices on walking and strength of the affected side in chronic stroke patients without nominal data comparisons among stroke patients. Additionally, it provides insights into the inclusion of EMG-triggered neurorehabilitation robots in the daily rehabilitation of patients.

Keywords: neurorehabilitation, robotic therapy, stroke, strength, paralysis

Procedia PDF Downloads 34
4 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology

Procedia PDF Downloads 48
3 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk

Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg

Abstract:

Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.

Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions

Procedia PDF Downloads 125
2 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation

Procedia PDF Downloads 56
1 Glycyrrhizic Acid Inhibits Lipopolysaccharide-Stimulated Bovine Fibroblast-Like Synoviocyte, Invasion through Suppression of TLR4/NF-κB-Mediated Matrix Metalloproteinase-9 Expression

Authors: Hosein Maghsoudi

Abstract:

Rheumatois arthritis (RA) is progressive inflammatory autoimmune diseases that primarily affect the joints, characterized by synovial hyperplasia and inflammatory cell infiltration, deformed and painful joints, which can lead tissue destruction, functional disability systemic complications, and early dead and socioeconomic costs. The cause of rheumatoid arthritis is unknown, but genetic and environmental factors are contributory and the prognosis is guarded. However, advances in understanding the pathogenesis of the disease have fostered the development of new therapeutics, with improved outcomes. The current treatment strategy, which reflects this progress, is to initiate aggressive therapy soon after diagnosis and to escalate the therapy, guided by an assessment of disease activity, in pursuit of clinical remission. The pathobiology of RA is multifaceted and involves T cells, B cells, fibroblast-like synoviocyte (FLSc) and the complex interaction of many pro-inflammatory cytokine. Novel biologic agents that target tumor necrosis or interlukin (IL)-1 and Il-6, in addition T- and B-cells inhibitors, have resulted in favorable clinical outcomes in patients with RA. Despite this, at least 30% of RA patients are résistance to available therapies, suggesting novel mediators should be identified that can target other disease-specific pathway or cell lineage. Among the inflammatory cell population that might participated in RA pathogenesis, FLSc are crucial in initiaing and driving RA in concert of cartilage and bone by secreting metalloproteinase (MMPs) into the synovial fluid and by direct invasion into extracellular matrix (ECM), further exacerbating joint damage. Invasion of fibroblast-like synoviocytes (FLSc) is critical in the pathogenesis of rheumatoid-arthritis. The metalloproteinase (MMPs) and activator of Toll-like receptor 4 (TLR4)/nuclear factor- κB pthway play a critical role in RA-FLS invasion induced by lipopolysaccharide (LPS). The present study aimed to explore the anti-invasion activity of Glycyrrhizic Acid as a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in Bovine fibroblast-like synoviocyte ex- vitro, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Results showed that Glycyrrhizic Acid suppressed LPS-stimulated bovine FLS migration and invasion by inhibition MMP-9 expression and activity. In addition our results revealed that Glycyrrhizic Acid inhibited the transcriptional activity of MMP-9 by suppression the nbinding activity of NF- κB in the MMP-9 promoter pathway. The extract of licorice (Glycyrrhiza glabra L.) has been widely used for many centuries in the traditional Chinese medicine as native anti-allergic agent. Glycyrrhizin (GL), a triterpenoidsaponin, extracted from the roots of licorice is the most effective compound for inflammation and allergic diseases in human body. The biological and pharmacological studies revealed that GL possesses many pharmacological effects, such as anti-inflammatory, anti-viral and liver protective effects, and the biological effects, such as induction of cytokines (interferon-γ and IL-12), chemokines as well as extrathymic T and anti-type 2 T cells. GL is known in the traditional Chinese medicine for its anti-inflammatory effect, which is originally described by Finney in 1959. The mechanism of the GL-induced anti-inflammatory effect is based on different pathways of the GL-induced selective inhibition of the prostaglandin E2 production, the CK-II- mediated activation of both GL-binding lipoxygenas (gbLOX; 17) and PLA2, an anti-thrombin action of GL and production of the reactive oxygen species (ROS; GL exerts liver protection properties by inhibiting PLA2 or by the hydroxyl radical trapping action, leading to the lowering of serum alanine and aspartate transaminase levels. The present study was undertaken to examine the possible mechanism of anti-inflammatory properties GL on IL-1beta and TNF-alpha signalling pathways in bovine fibroblast-like synoviocyte ex-vivo, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Our results clearly showed that treatment of bovine fibroblast-like synoviocyte with GL suppressed LPS-induced cell migration and invasion. Furthermore, it revealed that GL inhibited the transcription activity of MMP-9 by suppressing the binding activity of NF-κB in the MM-9 promoter. MMP-9 is an important ECM-degrading enzyme and overexpression of MMPs in important of RA-FLSs. LPS can stimulate bovine FLS to secret MMPs, and this induction is regulated at the transcription and translational levels. In this study, LPS treatment of bovine FLS caused an increase in MMP-2 and MMP-9 levels. The increase in MMP-9 expression and secretion was inhibited by ex- vitro. Furthermore, these effects were mimicked by MMP-9 siRNA. These result therefore indicate the the inhibition of LPS-induced bovine FLS invasion by GL occurs primarily by inhibiting MMP-9 expression and activity. Next we analyzed the functional significance of NF-κB transcription of MMP-9 activation in Bovine FLSs. Results from EMSA showed that GL suppressed LPS-induced NF-κB binding to the MMP-9 promotor, as NF-κB regulates transcriptional activation of multiple inflammatory cytokines, we predicted that GL might target NF-κB to suppress MMP-9 transcription by LPS. Myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-κB and apoptotic signaling pathways, GL inhibited the expression of TLR4 and MYD88. These results demonstrated that GL suppress LPS-induced MMP-9 expression through the inhibition of the induced TLR4/NFκB signaling pathway. Taken together, our results provide evidence that GL exerts anti-inflammatory effects by inhibition LPS-induced bovine FLSs migration and invasion, and the mechanisms may involve the suppression of TLR4/NFκB –mediated MMP-9 expression. Although further work is needed to clarify the complicated mechanism of GL-induced anti-invasion of bovine FLSs, GL might be used as a further anti-invasion drug with therapeutic efficacy in the treatment of immune-mediated inflammatory disease such as RA.

Keywords: glycyrrhizic acid, bovine fibroblast-like synoviocyte, tlr4/nf-κb, metalloproteinase-9

Procedia PDF Downloads 361