Search results for: quadratic field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8483

Search results for: quadratic field

8483 Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728

Authors: Siti Noor Farwina Anwar, Hailiza Kamarulhaili

Abstract:

In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field.

Keywords: efficiently computable endomorphism, elliptic scalar multiplication, j-invariant 1728, quadratic field

Procedia PDF Downloads 199
8482 Cryptography Over Sextic Extension with Cubic Subfield

Authors: A. Chillali, M. Sahmoudi

Abstract:

In this paper we will give a method for encoding the elements of the ring of integers of sextic extension, namely L = Q(a,b) which is a rational quadratic over cubic field K =Q(a ) where a^{2} is a rational square free integer and b is a root of irreducible polynomiale of degree 3.

Keywords: coding, integral bases, sextic, quadratic

Procedia PDF Downloads 297
8481 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo

Abstract:

Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 186
8480 A Low-Latency Quadratic Extended Domain Modular Multiplier for Bilinear Pairing Based on Non-Least Positive Multiplication

Authors: Yulong Jia, Xiang Zhang, Ziyuan Wu, Shiji Hu

Abstract:

The calculation of bilinear pairing is the core of the SM9 algorithm, which relies on the underlying prime domain algorithm and the quadratic extension domain algorithm. Among the field algorithms, modular multiplication operation is the most time-consuming part. Therefore, the underlying modular multiplication algorithm is optimized to maximize the operation speed of bilinear pairings. This paper uses a modular multiplication method based on non-least positive (NLP) combined with Karatsuba and schoolbook multiplication to improve the Montgomery algorithm. At the same time, according to the characteristics of multiplication operation in the quadratic extension domain, a quadratic extension domain FP2-NLP modular multiplication algorithm for bilinear pairings is proposed, which effectively reduces the operation time of modular multiplication in the quadratic extension domain. The sub-expanded domain Fp₂ -NLP modular multiplication algorithm effectively reduces the operation time of modular multiplication under the second-expanded domain. The multiplication unit in the quadratic extension domain is implemented using SMIC55nm process, and two different implementation architectures are designed to cope with different application scenarios. Compared with the existing related literature, The output latency of this design can reach a minimum of 15 cycles. The shortest time for calculating the (AB+CD)r⁻¹ mod form is 37.5ns, and the comprehensive area-time product (AT) is 11400. The final R-ate pairing algorithm hardware accelerator consumes 2670k equivalent logic gates and 1.8ms computing time in 55nm process.

Keywords: sm9, hardware, NLP, Montgomery

Procedia PDF Downloads 5
8479 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem

Authors: Dávid Csercsik, Péter Kádár

Abstract:

In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.

Keywords: optimization, MATLAB, quadratic programming, economic dispatch

Procedia PDF Downloads 549
8478 Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems

Authors: Elham Kazemi

Abstract:

Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem.

Keywords: Quadratic Assignment Problem (QAP), Discrete Cuckoo Optimization Algorithm (DCOA), meta-heuristic algorithms, optimization algorithms

Procedia PDF Downloads 517
8477 Sliding Mode Controlled Quadratic Boost Converter

Authors: Viji Vijayakumar, R. Divya, A. Vivek

Abstract:

This paper deals with a quadratic boost converter which belongs to cascade boost family, controlled by sliding mode controller. In the cascade boost family, quadratic boost converter is the best trade-off when circuit complexity and modulator saturation is considered. Sliding mode control being a nonlinear control results in a robust and stable system when applied to switching converters which are inherently variable structured systems. The stability of this system is analyzed through Lyapunov’s approach. Analysis is done for load regulation, line regulation and step response of the system. Also these results are compared with that of PID controller based system.

Keywords: DC-DC converter, quadratic boost converter, sliding mode control, PID control

Procedia PDF Downloads 993
8476 The Application of Pareto Local Search to the Single-Objective Quadratic Assignment Problem

Authors: Abdullah Alsheddy

Abstract:

This paper presents the employment of Pareto optimality as a strategy to help (single-objective) local search escaping local optima. Instead of local search, Pareto local search is applied to solve the quadratic assignment problem which is multi-objectivized by adding a helper objective. The additional objective is defined as a function of the primary one with augmented penalties that are dynamically updated.

Keywords: Pareto optimization, multi-objectivization, quadratic assignment problem, local search

Procedia PDF Downloads 466
8475 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation

Authors: Sarun Phibanchon, Yuttakarn Rattanachai

Abstract:

The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.

Keywords: soliton, ion-acoustic waves, plasma, spectral method

Procedia PDF Downloads 411
8474 Licensing in a Hotelling Model with Quadratic Transportation Costs

Authors: Fehmi Bouguezzi

Abstract:

This paper studies optimal licensing regimes in a linear Hotelling model where firms are located at the end points of the city and where the transportation cost is not linear but quadratic. We study for that a more general cost function and we try to compare the findings with the results of the linear cost. We find the same optimal licensing regimes. A per unit royalty is optimal when innovation is not drastic and no licensing is better when innovation is drastic. We also find that no licensing is always better than fixed fee licensing.

Keywords: Hotelling model, technology transfer, patent licensing, quadratic transportation cost

Procedia PDF Downloads 349
8473 A Quadratic Approach for Generating Pythagorean Triples

Authors: P. K. Rahul Krishna, S. Sandeep Kumar, Jayanthi Sunder Raj

Abstract:

The article explores one of the important relations between numbers-the Pythagorean triples (triplets) which finds its application in distance measurement, construction of roads, towers, buildings and wherever Pythagoras theorem finds its application. The Pythagorean triples are numbers, that satisfy the condition “In a given set of three natural numbers, the sum of squares of two natural numbers is equal to the square of the other natural number”. There are numerous methods and equations to obtain the triplets, which have their own merits and demerits. Here, quadratic approach for generating triples uses the hypotenuse leg difference method. The advantage is that variables are few and finally only three independent variables are present.

Keywords: arithmetic progression, hypotenuse leg difference method, natural numbers, Pythagorean triplets, quadratic equation

Procedia PDF Downloads 206
8472 Dynamic Economic Load Dispatch Using Quadratic Programming: Application to Algerian Electrical Network

Authors: A. Graa, I. Ziane, F. Benhamida, S. Souag

Abstract:

This paper presents a comparative analysis study of an efficient and reliable quadratic programming (QP) to solve economic load dispatch (ELD) problem with considering transmission losses in a power system. The proposed QP method takes care of different unit and system constraints to find optimal solution. To validate the effectiveness of the proposed QP solution, simulations have been performed using Algerian test system. Results obtained with the QP method have been compared with other existing relevant approaches available in literatures. Experimental results show a proficiency of the QP method over other existing techniques in terms of robustness and its optimal search.

Keywords: economic dispatch, quadratic programming, Algerian network, dynamic load

Procedia PDF Downloads 565
8471 Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy.

Keywords: controller, Stewart platform, docking operation, spacecraft

Procedia PDF Downloads 51
8470 Optimal Linear Quadratic Digital Tracker for the Discrete-Time Proper System with an Unknown Disturbance

Authors: Jason Sheng-Hong Tsai, Faezeh Ebrahimzadeh, Min-Ching Chung, Shu-Mei Guo, Leang-San Shieh, Tzong-Jiy Tsai, Li Wang

Abstract:

In this paper, we first construct a new state and disturbance estimator using discrete-time proportional plus integral observer to estimate the system state and the unknown external disturbance for the discrete-time system with an input-to-output direct-feedthrough term. Then, the generalized optimal linear quadratic digital tracker design is applied to construct a proportional plus integral observer-based tracker for the system with an unknown external disturbance to have a desired tracking performance. Finally, a numerical simulation is given to demonstrate the effectiveness of the new application of our proposed approach.

Keywords: non-minimum phase system, optimal linear quadratic tracker, proportional plus integral observer, state and disturbance estimator

Procedia PDF Downloads 502
8468 A Comparison of Sequential Quadratic Programming, Genetic Algorithm, Simulated Annealing, Particle Swarm Optimization for the Design and Optimization of a Beam Column

Authors: Nima Khosravi

Abstract:

This paper describes an integrated optimization technique with concurrent use of sequential quadratic programming, genetic algorithm, and simulated annealing particle swarm optimization for the design and optimization of a beam column. In this research, the comparison between 4 different types of optimization methods. The comparison is done and it is found out that all the methods meet the required constraints and the lowest value of the objective function is achieved by SQP, which was also the fastest optimizer to produce the results. SQP is a gradient based optimizer hence its results are usually the same after every run. The only thing which affects the results is the initial conditions given. The initial conditions given in the various test run were very large as compared. Hence, the value converged at a different point. Rest of the methods is a heuristic method which provides different values for different runs even if every parameter is kept constant.

Keywords: beam column, genetic algorithm, particle swarm optimization, sequential quadratic programming, simulated annealing

Procedia PDF Downloads 386
8467 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters

Authors: C. Gebauer, C. Henke, R. Vossen

Abstract:

Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.

Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator

Procedia PDF Downloads 149
8466 Universality and Synchronization in Complex Quadratic Networks

Authors: Anca Radulescu, Danae Evans

Abstract:

The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.

Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity

Procedia PDF Downloads 308
8465 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia

Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes

Abstract:

Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.

Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling

Procedia PDF Downloads 46
8464 Iterative Linear Quadratic Regulator (iLQR) vs LQR Controllers for Quadrotor Path Tracking

Authors: Wesam Jasim, Dongbing Gu

Abstract:

This paper presents an iterative linear quadratic regulator optimal control technique to solve the problem of quadrotors path tracking. The dynamic motion equations are represented based on unit quaternion representation and include some modelled aerodynamical effects as a nonlinear part. Simulation results prove the ability and effectiveness of iLQR to stabilize the quadrotor and successfully track different paths. It also shows that iLQR controller outperforms LQR controller in terms of fast convergence and tracking errors.

Keywords: iLQR controller, optimal control, path tracking, quadrotor UAVs

Procedia PDF Downloads 447
8463 Thermal End Effect on the Isotachophoretic Separation of Analytes

Authors: Partha P. Gopmandal, S. Bhattacharyya

Abstract:

We investigate the thermal end effect on the pseudo-steady state behavior of the isotachophoretic transport of ionic species in a 2-D microchannel. Both ends of the channel are kept at a constant temperature which may lead to significant changes in electrophoretic migration speed. A mathematical model based on Nernst-Planck equations for transport of ions coupled with the equation for temperature field is considered. In addition, the charge conservation equations govern the potential field due to the external electric field. We have computed the equations for ion transport, potential and temperature in a coupled manner through the finite volume method. The diffusive terms are discretized via central difference scheme, while QUICK (Quadratic Upwind Interpolation Convection Kinematics) scheme is used to discretize the convective terms. We find that the thermal end effect has significant effect on the isotachophoretic (ITP) migration speed of the analyte. Our result shows that the ITP velocity for temperature dependent case no longer varies linearly with the applied electric field. A detailed analysis has been made to provide a range of the key parameters to minimize the Joule heating effect on ITP transport of analytes.

Keywords: finite volume method, isotachophoresis, QUICK scheme, thermal effect

Procedia PDF Downloads 272
8462 Support Vector Regression with Weighted Least Absolute Deviations

Authors: Kang-Mo Jung

Abstract:

Least squares support vector machine (LS-SVM) is a penalized regression which considers both fitting and generalization ability of a model. However, the squared loss function is very sensitive to even single outlier. We proposed a weighted absolute deviation loss function for the robustness of the estimates in least absolute deviation support vector machine. The proposed estimates can be obtained by a quadratic programming algorithm. Numerical experiments on simulated datasets show that the proposed algorithm is competitive in view of robustness to outliers.

Keywords: least absolute deviation, quadratic programming, robustness, support vector machine, weight

Procedia PDF Downloads 527
8461 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters

Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu

Abstract:

Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.

Keywords: induction heating, LQR controller, skin depth, temperature field

Procedia PDF Downloads 41
8460 On the Determinants of Women’s Intrahousehold Decision-Making Power and the Impact of Diverging from Community Standards: A Generalised Ordered Logit Approach

Authors: Alma Sobrevilla

Abstract:

Using panel data from Mexico, this paper studies the determinants of women’s intrahousehold decision-making power using a generalised ordered logit model. Fixed effects estimations are also carried out to solve potential endogeneity coming from unobservable time-invariant factors. Finally, the paper analyses quadratic and community divergence effects of education on power. Results show heterogeneity in the effect of each of the determinants across different levels of decision-making power and suggest the presence of a significant quadratic effect of education. Having more education than the community average has a negative effect on power, supporting the notion that women tend to compensate their success outside the household with submissive attitudes at home.

Keywords: women, decision-making power, intrahousehold, Mexico

Procedia PDF Downloads 353
8459 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control

Procedia PDF Downloads 138
8458 Enhancing Predictive Accuracy in Pharmaceutical Sales through an Ensemble Kernel Gaussian Process Regression Approach

Authors: Shahin Mirshekari, Mohammadreza Moradi, Hossein Jafari, Mehdi Jafari, Mohammad Ensaf

Abstract:

This research employs Gaussian Process Regression (GPR) with an ensemble kernel, integrating Exponential Squared, Revised Matern, and Rational Quadratic kernels to analyze pharmaceutical sales data. Bayesian optimization was used to identify optimal kernel weights: 0.76 for Exponential Squared, 0.21 for Revised Matern, and 0.13 for Rational Quadratic. The ensemble kernel demonstrated superior performance in predictive accuracy, achieving an R² score near 1.0, and significantly lower values in MSE, MAE, and RMSE. These findings highlight the efficacy of ensemble kernels in GPR for predictive analytics in complex pharmaceutical sales datasets.

Keywords: Gaussian process regression, ensemble kernels, bayesian optimization, pharmaceutical sales analysis, time series forecasting, data analysis

Procedia PDF Downloads 71
8457 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator

Authors: J. Ritonja

Abstract:

Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.

Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification

Procedia PDF Downloads 247
8456 A Quadratic Model to Early Predict the Blastocyst Stage with a Time Lapse Incubator

Authors: Cecile Edel, Sandrine Giscard D'Estaing, Elsa Labrune, Jacqueline Lornage, Mehdi Benchaib

Abstract:

Introduction: The use of incubator equipped with time-lapse technology in Artificial Reproductive Technology (ART) allows a continuous surveillance. With morphocinetic parameters, algorithms are available to predict the potential outcome of an embryo. However, the different proposed time-lapse algorithms do not take account the missing data, and then some embryos could not be classified. The aim of this work is to construct a predictive model even in the case of missing data. Materials and methods: Patients: A retrospective study was performed, in biology laboratory of reproduction at the hospital ‘Femme Mère Enfant’ (Lyon, France) between 1 May 2013 and 30 April 2015. Embryos (n= 557) obtained from couples (n=108) were cultured in a time-lapse incubator (Embryoscope®, Vitrolife, Goteborg, Sweden). Time-lapse incubator: The morphocinetic parameters obtained during the three first days of embryo life were used to build the predictive model. Predictive model: A quadratic regression was performed between the number of cells and time. N = a. T² + b. T + c. N: number of cells at T time (T in hours). The regression coefficients were calculated with Excel software (Microsoft, Redmond, WA, USA), a program with Visual Basic for Application (VBA) (Microsoft) was written for this purpose. The quadratic equation was used to find a value that allows to predict the blastocyst formation: the synthetize value. The area under the curve (AUC) obtained from the ROC curve was used to appreciate the performance of the regression coefficients and the synthetize value. A cut-off value has been calculated for each regression coefficient and for the synthetize value to obtain two groups where the difference of blastocyst formation rate according to the cut-off values was maximal. The data were analyzed with SPSS (IBM, Il, Chicago, USA). Results: Among the 557 embryos, 79.7% had reached the blastocyst stage. The synthetize value corresponds to the value calculated with time value equal to 99, the highest AUC was then obtained. The AUC for regression coefficient ‘a’ was 0.648 (p < 0.001), 0.363 (p < 0.001) for the regression coefficient ‘b’, 0.633 (p < 0.001) for the regression coefficient ‘c’, and 0.659 (p < 0.001) for the synthetize value. The results are presented as follow: blastocyst formation rate under cut-off value versus blastocyst rate formation above cut-off value. For the regression coefficient ‘a’ the optimum cut-off value was -1.14.10-3 (61.3% versus 84.3%, p < 0.001), 0.26 for the regression coefficient ‘b’ (83.9% versus 63.1%, p < 0.001), -4.4 for the regression coefficient ‘c’ (62.2% versus 83.1%, p < 0.001) and 8.89 for the synthetize value (58.6% versus 85.0%, p < 0.001). Conclusion: This quadratic regression allows to predict the outcome of an embryo even in case of missing data. Three regression coefficients and a synthetize value could represent the identity card of an embryo. ‘a’ regression coefficient represents the acceleration of cells division, ‘b’ regression coefficient represents the speed of cell division. We could hypothesize that ‘c’ regression coefficient could represent the intrinsic potential of an embryo. This intrinsic potential could be dependent from oocyte originating the embryo. These hypotheses should be confirmed by studies analyzing relationship between regression coefficients and ART parameters.

Keywords: ART procedure, blastocyst formation, time-lapse incubator, quadratic model

Procedia PDF Downloads 306
8455 Loss Allocation in Radial Distribution Networks for Loads of Composite Types

Authors: Sumit Banerjee, Chandan Kumar Chanda

Abstract:

The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.

Keywords: composite type, deregulation, loss allocation, radial distribution networks

Procedia PDF Downloads 286
8454 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model

Authors: Xiang Zhang, David Rey, S. Travis Waller

Abstract:

Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.

Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning

Procedia PDF Downloads 299