Search results for: pull actuator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 340

Search results for: pull actuator

280 Load Transfer of Steel Pipe Piles in Warming Permafrost

Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani

Abstract:

As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.

Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost

Procedia PDF Downloads 79
279 Characteristic Matrix Faults for Flight Control System

Authors: Thanh Nga Thai

Abstract:

A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.

Keywords: fault detection and identification, sensor faults, actuator faults, flight control system

Procedia PDF Downloads 389
278 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 313
277 Approximate Spring Balancing for the Arm of a Humanoid Robot to Reduce Actuator Torque

Authors: Apurva Patil, Ashay Aswale, Akshay Kulkarni, Shubham Bharadiya

Abstract:

The potential benefit of gravity compensation of linkages in mechanisms using springs to reduce actuator requirements is well recognized, but practical applications have been elusive. Although existing methods provide exact spring balance, they require additional masses or auxiliary links, or all the springs used originate from the ground, which makes the resulting device bulky and space-inefficient. This paper uses a method of static balancing of mechanisms with conservative loads such as gravity and spring loads using non-zero-free-length springs with child–parent connections and no auxiliary links. Application of this method to the developed arm of a humanoid robot is presented here. Spring balancing is particularly important in this case because the serial chain of linkages has to work against gravity.This work involves approximate spring balancing of the open-loop chain of linkages using minimization of potential energy variance. It uses the approach of flattening the potential energy distribution over the workspace and fuses it with numerical optimization. The results show the considerable reduction in actuator torque requirement with practical spring design and arrangement. Reduced actuator torque facilitates the use of lower end actuators which are generally smaller in weight and volume thereby lowering the space requirements and the total weight of the arm. This is particularly important for humanoid robots where the parent actuator has to handle the weight of the subsequent actuators as well. Actuators with lower actuation requirements are more energy efficient, thereby reduce the energy consumption of the mechanism. Lower end actuators are lower in cost and facilitate the development of low-cost devices. Although the method provides only an approximate balancing, it is versatile, flexible in choosing appropriate control variables that are relevant to the design problem and easy to implement. The true potential of this technique lies in the fact that it uses a very simple optimization to find the spring constant, free-length of the spring and the optimal attachment points subject to the optimization constraints. Also, it uses physically realizable non-zero-free-length springs directly, thereby reducing the complexity involved in simulating zero-free-length springs from non-zero-free-length springs. This method allows springs to be attached to the preceding parent link, which makes the implementation of spring balancing practical. Because auxiliary linkages can be avoided, the resultant arm of the humanoid robot is compact. The cost benefits and reduced complexity can be significant advantages in the development of this arm of the humanoid robot.

Keywords: actuator torque, child-parent connections, spring balancing, the arm of a humanoid robot

Procedia PDF Downloads 220
276 Single Chip Controller Design for Piezoelectric Actuators with Mixed Signal FPGA

Authors: Han-Bin Park, Taesam Kang, SunKi Hong, Jeong Hoi Gu

Abstract:

The piezoelectric material is being used widely for actuators due to its large power density with simple structure. It can generate a larger force than the conventional actuators with the same size. Furthermore, the response time of piezoelectric actuators is very short, and thus, it can be used for very fast system applications with compact size. To control the piezoelectric actuator, we need analog signal conditioning circuits as well as digital microcontrollers. Conventional microcontrollers are not equipped with analog parts and thus the control system becomes bulky compared with the small size of the piezoelectric devices. To overcome these weaknesses, we are developing one-chip micro controller that can handle analog and digital signals simultaneously using mixed signal FPGA technology. We used the SmartFusion™ FPGA device that integrates ARM®Cortex-M3, analog interface and FPGA fabric in a single chip and offering full customization. It gives more flexibility than traditional fixed-function microcontrollers with the excessive cost of soft processor cores on traditional FPGAs. In this paper we introduce the design of single chip controller using mixed signal FPGA, SmartFusion™[1] device. To demonstrate its performance, we implemented a PI controller for power driving circuit and a 5th order H-infinity controller for the system with piezoelectric actuator in the FPGA fabric. We also demonstrated the regulation of a power output and the operation speed of a 5th order H-infinity controller.

Keywords: mixed signal FPGA, PI control, piezoelectric actuator, SmartFusion™

Procedia PDF Downloads 497
275 Active Vibration Reduction for a Flexible Structure Bonded with Sensor/Actuator Pairs on Efficient Locations Using a Developed Methodology

Authors: Ali H. Daraji, Jack M. Hale, Ye Jianqiao

Abstract:

With the extensive use of high specific strength structures to optimise the loading capacity and material cost in aerospace and most engineering applications, much effort has been expended to develop intelligent structures for active vibration reduction and structural health monitoring. These structures are highly flexible, inherently low internal damping and associated with large vibration and long decay time. The modification of such structures by adding lightweight piezoelectric sensors and actuators at efficient locations integrated with an optimal control scheme is considered an effective solution for structural vibration monitoring and controlling. The size and location of sensor and actuator are important research topics to investigate their effects on the level of vibration detection and reduction and the amount of energy provided by a controller. Several methodologies have been presented to determine the optimal location of a limited number of sensors and actuators for small-scale structures. However, these studies have tackled this problem directly, measuring the fitness function based on eigenvalues and eigenvectors achieved with numerous combinations of sensor/actuator pair locations and converging on an optimal set using heuristic optimisation techniques such as the genetic algorithms. This is computationally expensive for small- and large-scale structures subject to optimise a number of s/a pairs to suppress multiple vibration modes. This paper proposes an efficient method to determine optimal locations for a limited number of sensor/actuator pairs for active vibration reduction of a flexible structure based on finite element method and Hamilton’s principle. The current work takes the simplified approach of modelling a structure with sensors at all locations, subjecting it to an external force to excite the various modes of interest and noting the locations of sensors giving the largest average percentage sensors effectiveness measured by dividing all sensor output voltage over the maximum for each mode. The methodology was implemented for a cantilever plate under external force excitation to find the optimal distribution of six sensor/actuator pairs to suppress the first six modes of vibration. It is shown that the results of the optimal sensor locations give good agreement with published optimal locations, but with very much reduced computational effort and higher effectiveness. Furthermore, it is shown that collocated sensor/actuator pairs placed in these locations give very effective active vibration reduction using optimal linear quadratic control scheme.

Keywords: optimisation, plate, sensor effectiveness, vibration control

Procedia PDF Downloads 204
274 Muscle Activation Comparisons in a Lat Pull down Exercise with Machine Weights, Resistance Bands and Body Weight Exercises

Authors: Trevor R. Higgins

Abstract:

The aim of this study was to compare muscle activation of the latissimus dorsi between pin-loaded machine (Lat Pull Down), resistance band (Lat Pull Down) and body-weight (Chin Up) exercises. A convenient sample of male college students with >2 years resistance training experience volunteered for the study. A paired t-test with repeated measures designs was carried out on results from EMG analysis. EMG analysis was conducted with Trigno wireless sensors (Delsys) placed laterally on the latissimus dorsi (left and right) of each participant. By conventional criteria the two-tailed P value suggested that differences between pin-loaded and body-weight was not significantly different (p = 0.93) and differences between pin-loaded and resistance band was not significantly different (p = 0.17) in muscle activity. In relation to conventional criteria the two-tailed P value suggested differences between body-weight and resistance band was not quite significantly different (p = 0.06) in muscle activity. However, effect size trends indicated that both body-weight and pin-loaded exercises where more effective in stimulating muscle electrical activity than a resistance band with male college athletes with >2 years resistance training experience. Although, resistance bands have increased in popularity in health and fitness centres, that for well-trained participants, they may not be effective in stimulating muscles of the latissimus dorsi. Therefore, when considering equipment and exercise selection for experienced resistance training participants pin-loaded machines and body-weight should be prescribed.

Keywords: pin-loaded, resistance bands, body weight, EMG analysis

Procedia PDF Downloads 240
273 Adhesion Performance According to Lateral Reinforcement Method of Textile

Authors: Jungbhin You, Taekyun Kim, Jongho Park, Sungnam Hong, Sun-Kyu Park

Abstract:

Reinforced concrete has been mainly used in construction field because of excellent durability. However, it may lead to reduction of durability and safety due to corrosion of reinforcement steels according to damage of concrete surface. Recently, research of textile is ongoing to complement weakness of reinforced concrete. In previous research, only experiment of longitudinal length were performed. Therefore, in order to investigate the adhesion performance according to the lattice shape and the embedded length, the pull-out test was performed on the roving with parameter of the number of lateral reinforcement, the lateral reinforcement length and the lateral reinforcement spacing. As a result, the number of lateral reinforcement and the lateral reinforcement length did not significantly affect the load variation depending on the adhesion performance, and only the load analysis results according to the reinforcement spacing are affected.

Keywords: adhesion performance, lateral reinforcement, pull-out test, textile

Procedia PDF Downloads 332
272 Investigation on Pull-Out-Behavior and Interface Critical Parameters of Polymeric Fibers Embedded in Concrete and Their Correlation with Particular Fiber Characteristics

Authors: Michael Sigruener, Dirk Muscat, Nicole Struebbe

Abstract:

Fiber reinforcement is a state of the art to enhance mechanical properties in plastics. For concrete and civil engineering, steel reinforcements are commonly used. Steel reinforcements show disadvantages in their chemical resistance and weight, whereas polymer fibers' major problems are in fiber-matrix adhesion and mechanical properties. In spite of these facts, longevity and easy handling, as well as chemical resistance motivate researches to develop a polymeric material for fiber reinforced concrete. Adhesion and interfacial mechanism in fiber-polymer-composites are already studied thoroughly. For polymer fibers used as concrete reinforcement, the bonding behavior still requires a deeper investigation. Therefore, several differing polymers (e.g., polypropylene (PP), polyamide 6 (PA6) and polyetheretherketone (PEEK)) were spun into fibers via single screw extrusion and monoaxial stretching. Fibers then were embedded in a concrete matrix, and Single-Fiber-Pull-Out-Tests (SFPT) were conducted to investigate bonding characteristics and microstructural interface of the composite. Differences in maximum pull-out-force, displacement and slope of the linear part of force vs displacement-function, which depicts the adhesion strength and the ductility of the interfacial bond were studied. In SFPT fiber, debonding is an inhomogeneous process, where the combination of interfacial bonding and friction mechanisms add up to a resulting value. Therefore, correlations between polymeric properties and pull-out-mechanisms have to be emphasized. To investigate these correlations, all fibers were introduced to a series of analysis such as differential scanning calorimetry (DSC), contact angle measurement, surface roughness and hardness analysis, tensile testing and scanning electron microscope (SEM). Of each polymer, smooth and abraded fibers were tested, first to simulate the abrasion and damage caused by a concrete mixing process and secondly to estimate the influence of mechanical anchoring of rough surfaces. In general, abraded fibers showed a significant increase in maximum pull-out-force due to better mechanical anchoring. Friction processes therefore play a major role to increase the maximum pull-out-force. The polymer hardness affects the tribological behavior and polymers with high hardness lead to lower surface roughness verified by SEM and surface roughness measurements. This concludes into a decreased maximum pull-out-force for hard polymers. High surface energy polymers show better interfacial bonding strength in general, which coincides with the conducted SFPT investigation. Polymers such as PEEK or PA6 show higher bonding strength in smooth and roughened fibers, revealed through high pull-out-force and concrete particles bonded on the fiber surface pictured via SEM analysis. The surface energy divides into dispersive and polar part, at which the slope is correlating with the polar part. Only polar polymers increase their SFPT-function slope due to better wetting abilities when showing a higher bonding area through rough surfaces. Hence, the maximum force and the bonding strength of an embedded fiber is a function of polarity, hardness, and consequently surface roughness. Other properties such as crystallinity or tensile strength do not affect bonding behavior. Through the conducted analysis, it is now feasible to understand and resolve different effects in pull-out-behavior step-by-step based on the polymer properties itself. This investigation developed a roadmap on how to engineer high adhering polymeric materials for fiber reinforcement of concrete.

Keywords: fiber-matrix interface, polymeric fibers, fiber reinforced concrete, single fiber pull-out test

Procedia PDF Downloads 86
271 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping

Authors: Kamand Bagherian, Nariman Niknejad

Abstract:

A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.

Keywords: active damping, discrete-time nonlinear controller, disturbance tracking algorithm, oscillation transmitting support, position control, stability robustness, vibration isolation

Procedia PDF Downloads 78
270 Modelling of Rate-Dependent Hysteresis of Polypyrrole Dual Sensing-Actuators for Precise Position Control

Authors: Johanna Schumacher, Toribio F. Otero, Victor H. Pascual

Abstract:

Bending dual sensing-actuators based on electroactive polymers are faradaic motors meaning the consumed charge determines the actuator’s tip position. During actuation, consumed charges during oxidation and reduction result in different tip positions showing dynamic hysteresis effects with errors up to 25%. For a precise position control of these actuators, the characterization of the hysteresis effect due to irreversible reactions is crucial. Here, the investigation and modelling of dynamic hysteresis effects of polypyrrole-dodezylbenzenesulfonate (PPyDBS) actuators under ambient working conditions are presented. The hysteresis effect is studied for charge consumption at different frequencies and a rate-dependent hysteresis model is derived. The hysteresis model is implemented as closed loop system and is verified experimentally.

Keywords: dual sensing-actuator, electroactive polymers, hysteresis, position control

Procedia PDF Downloads 362
269 Creation of Processes for a Safety Element Out of Context for an Actuator Circuit Control Module

Authors: Hassan Noun, Christian Urban-Seelmann, Mohamed Abdelfattah, Guillaume Zeller, Rajesh G., Iryna Mozgova, Roland Lachmayer

Abstract:

Several modules in automotive are usually modified and adapted for various project-specific applications. Due to a standardized safety concept, high reusability is accessible. A safety element out of context (SEooC) according to ISO 26262 can be a suitable approach. Based on the same safety concept and analysis, common modules can reach high usability. For developing according to a module out of context, an appropriate and detailed development approach is required. This paper shows how to derive these development processes for platform modules. Therefore, the detailed approach to the safety element out of context is derived. The aim is to create a detailed workflow for all phases of the development and integration of any kind of system modules. As an application example, an automotive project for an actuator control module is considered.

Keywords: functional safety, engineering processes, system engineering, electronic engineering

Procedia PDF Downloads 120
268 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 156
267 European and Scandinavian Tourists' Perceptions and Desire to Travel in Ranong Province

Authors: Wipanee Maen-In

Abstract:

The objectives of the research are i) to study the motivations of european and scandinavian tourists who select Ranong province as their destinations ii) to study their perception towards the Ranong Province and iii) to study the visitors’ decision making while visiting Ranong Province. The samples of the study are 220 European and Scandinavian tourists’ visitors at the Ranong by accidental sampling and in clouding online questionnaires for 53 sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the motivation level of the visitors is considered prominent, the average score of the motivational factors ranks higher than the average of the pull factors to visit the Ranong province when considering the factors analysis, the research shows that the reason that most tourists visit the Ranong is for relaxation while the purity of the natural mineral hot springs is the most important pull factor.

Keywords: European and Scandinavian, Ranong province, tourists’ perceptions, visitors’ decision making

Procedia PDF Downloads 201
266 Development of a New Piezoelectrically Actuated Micropump for Liquid and Gas

Authors: Chiang-Ho Cheng, An-Shik Yang, Chih-Jer Lin, Chun-Ying Lee

Abstract:

This paper aims to present the design, fabrication and test of a novel piezoelectric actuated, check-valves embedded micropump having the advantages of miniature size, light weight and low power consumption. This device is designed to pump gases and liquids with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump, the displacement of the piezoelectric actuator and the deformation of the check valve, simultaneously. The micropump with check valve 0.4 mm in thickness obtained higher output performance under the sinusoidal waveform of 120 Vpp. The micropump achieved the maximum pumping rates of 42.2 ml/min and back pressure of 14.0 kPa at the corresponding frequency of 28 and 20 Hz. The presented micropump is able to pump gases with a pumping rate of 196 ml/min at operating frequencies of 280 Hz under the sinusoidal waveform of 120 Vpp.

Keywords: actuator, check-valve, micropump, piezoelectric

Procedia PDF Downloads 408
265 Determination of the Pull-Out/ Holding Strength at the Taper-Trunnion Junction of Hip Implants

Authors: Obinna K. Ihesiulor, Krishna Shankar, Paul Smith, Alan Fien

Abstract:

Excessive fretting wear at the taper-trunnion junction (trunnionosis) apparently contributes to the high failure rates of hip implants. Implant wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the taper-trunnion surface. This results in a type of metal poisoning referred to as metallosis. The consequences of metal poisoning include; osteolysis (bone loss), osteoarthritis (pain), aseptic loosening of the prosthesis and revision surgery. Follow up after revision surgery, metal debris particles are commonly found in numerous locations. Background: A stable connection between the femoral ball head (taper) and stem (trunnion) is necessary to prevent relative motions and corrosion at the taper junction. Hence, the importance of component assembly cannot be over-emphasized. Therefore, the aim of this study is to determine the influence of head-stem junction assembly by press fitting and the subsequent disengagement/disassembly on the connection strength between the taper ball head and stem. Methods: CoCr femoral heads were assembled with High stainless hydrogen steel stem (trunnion) by Push-in i.e. press fit; and disengaged by Pull-out test. The strength and stability of the two connections were evaluated by measuring the head pull-out forces according to ISO 7206-10 standards. Findings: The head-stem junction strength linearly increases with assembly forces.

Keywords: wear, modular hip prosthesis, taper head-stem, force assembly and disassembly

Procedia PDF Downloads 371
264 An Experimental Investigation of Bond Properties of Reinforcements Embedded in Geopolymer Concrete

Authors: Jee-Sang Kim, Jong Ho Park

Abstract:

Geopolymer concretes are a new class of construction materials that have emerged as an alternative to Ordinary Portland cement concrete. Considerable researches have been carried out on material development of geopolymer concrete, however, a few studies have been reported on the structural use of them. This paper presents the bond behaviors of reinforcement embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strengths of concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16, and 25 mm are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure bond strength and slips between concrete and reinforcements. The average bond strengths decreased from 23.06MPa to 17.26 MPa, as the diameters of reinforcements increased from 10mm to 25mm. The compressive strength levels of geopolymer concrete showed no significant influence on bond strengths in this study. Also, the bond-slip relations between geopolymer concrete and reinforcement are derived using non-linear regression analysis for various experimental conditions.

Keywords: bond-slip relation, bond strength, geopolymer concrete, pull-out test

Procedia PDF Downloads 319
263 Modelling of Factors Affecting Bond Strength of Fibre Reinforced Polymer Externally Bonded to Timber and Concrete

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

In recent years, fibre reinforced polymers as applications of strengthening materials have received significant attention by civil engineers and environmentalists because of their excellent characteristics. Currently, these composites have become a mainstream technology for strengthening of infrastructures such as steel, concrete and more recently, timber and masonry structures. However, debonding is identified as the main problem which limit the full utilisation of the FRP material. In this paper, a preliminary analysis of factors affecting bond strength of FRP-to-concrete and timber bonded interface has been conducted. A novel theoretical method through regression analysis has been established to evaluate these factors. Results of proposed model are then assessed with results of pull-out tests and satisfactory comparisons are achieved between measured failure loads (R2 = 0.83, P < 0.0001) and the predicted loads (R2 = 0.78, P < 0.0001).

Keywords: debonding, fibre reinforced polymers (FRP), pull-out test, stepwise regression analysis

Procedia PDF Downloads 208
262 Development of Underactuated Robot Hand Using Cross Section Deformation Spring

Authors: Naoki Saito, Daisuke Kon, Toshiyuki Sato

Abstract:

This paper describes an underactuated robot hand operated by low-power actuators. It can grasp objects of various shapes using easy operations. This hand is suitable for use as a lightweight prosthetic hand that can grasp various objects using few input channels. To realize operations using a low-power actuator, a cross section deformation spring is proposed. The design procedure of the underactuated robot finger is proposed to realize an adaptive grasping movement. The validity of this mechanism and design procedure are confirmed through an object grasping experiment. Results demonstrate the effectiveness of a cross section deformation spring in reducing the actuator power. Moreover, adaptive grasping movement is realized by an easy operation.

Keywords: robot hand, underactuated mechanism, cross-section deformation spring, prosthetic hand

Procedia PDF Downloads 345
261 A Study on Unidirectional Analog Output Voltage Inverter for Capacitive Load

Authors: Sun-Ki Hong, Nam-HeeByeon, Jung-Seop Lee, Tae-Sam Kang

Abstract:

For Common R or R-L load to apply arbitrary voltage, the bridge traditional inverters don’t have any difficulties by PWM method. However for driving some piezoelectric actuator, arbitrary voltage not a pulse but a steady voltage should be applied. Piezoelectric load is considered as R-C load and its voltage does not decrease even though the applied voltage decreases. Therefore it needs some special inverter with circuit that can discharge the capacitive energy. Especially for unidirectional arbitrary voltage driving like as sine wave, it becomes more difficult problem. In this paper, a charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator is proposed. The circuit has charging and discharging switches for increasing and decreasing output voltage. With the proposed simple circuit, the load voltage can have any unidirectional level with tens of bandwidth because the load voltage can be adjusted by switching the charging and discharging switch appropriately. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: DC-DC converter, analog output voltage, sinusoidal drive, piezoelectric load, discharging circuit

Procedia PDF Downloads 358
260 One Step Further: Pull-Process-Push Data Processing

Authors: Romeo Botes, Imelda Smit

Abstract:

In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.

Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list

Procedia PDF Downloads 218
259 Design and Simulation of Step Structure RF MEMS Switch for K Band Applications

Authors: G. K. S. Prakash, Rao K. Srinivasa

Abstract:

MEMS plays an important role in wide range of applications like biological, automobiles, military and communication engineering. This paper mainly investigates on capacitive shunt RF MEMS switch with low actuation voltage and low insertion losses. To trim the pull-in voltage, a step structure has introduced to trim air gap between the beam and the dielectric layer with that pull in voltage is trim to 2.9 V. The switching time of the proposed switch is 39.1μs, and capacitance ratio is 67. To get more isolation, we have used aluminum nitride as dielectric material instead of silicon nitride (Si₃N₄) and silicon dioxide (SiO₂) because aluminum nitride has high dielectric constant (εᵣ = 9.5) increases the OFF capacitance and eventually increases the isolation of the switch. The results show that the switch is ON state involves return loss (S₁₁) less than -25 dB up to 40 GHz and insertion loss (S₂₁) is more than -1 dB up to 35 GHz. In OFF state switch shows maximum isolation (S₂₁) of -38 dB occurs at a frequency of 25-27 GHz for K band applications.

Keywords: RF MEMS, actuation voltage, isolation loss, switches

Procedia PDF Downloads 337
258 Developing a Comprehensive Model for the Prevention of Tension Neck Syndrome: A Focus on Musculoskeletal Disorder Prevention Strategies

Authors: Behnaz Sohani, Ifeoluwa Joshua Adigun, Amir Rahmani, Khaled Goher

Abstract:

This paper provides initial results on the efficacy of the designed ergonomic-oriented neck support to mitigate and alleviate tension neck syndrome musculoskeletal disorder. This is done using both simulations and measurements. Tension Neck Syndrome Musculoskeletal Disorder (TNS MSD) causes discomfort in the muscles around the neck and shoulder. TNS MSD is one of the leading causes of early retirement. This research focuses on the design of an adaptive neck supporter by integrating a soft actuator massager to help deliver a soothing massage. The massager and adaptive neck supporter prototype were validated by finite element analysis prior to fabrication to envisage the feasibility of the design concept. Then a prototype for the massager was fabricated and tested for concept validation. Future work will be focused on fabricating the full-scale prototype and upgrading and optimizing the design concept for the adaptive neck supporter.

Keywords: adaptive neck supporter, tension neck syndrome, musculoskeletal disorder, soft actuator massager, soft robotics

Procedia PDF Downloads 74
257 Scalar Modulation Technique for Six-Phase Matrix Converter Fed Series-Connected Two-Motor Drives

Authors: A. Djahbar, M. Aillerie, E. Bounadja

Abstract:

In this paper we treat a new structure of a high-power actuator which is used to either industry or electric traction. Indeed, the actuator is constituted by two induction motors, the first is a six-phase motor connected in series with another three-phase motor via the stators. The whole is supplied by a single static converter. Our contribution in this paper is the optimization of the system supply source. This is feeding the multimotor group by a direct converter frequency without using the DC-link capacitor. The modelling of the components of multimotor system is presented first. Only the first component of stator currents is used to produce the torque/flux of the first machine in the group. The second component of stator currents is considered as additional degrees of freedom and which can be used for power conversion for the other connected motors. The decoupling of each motor from the group is obtained using the direct vector control scheme. Simulation results demonstrate the effectiveness of the proposed structure.

Keywords: induction machine, motor drives, scalar modulation technique, three-to-six phase matrix converter

Procedia PDF Downloads 523
256 The Technique of Mobilization of the Colon for Pull-Through Procedure in Hirschsprung's Disease

Authors: Medet K. Khamitov, Marat M. Ospanov, Vasiliy M. Lozovoy, Zhenis N. Sakuov, Dastan Z. Rustemov

Abstract:

With a high rectosigmoid transitional zone in children with Hirschsprung’s disease, the upper rectal, sigmoid, left colon arteries are ligated during the pull-through of the descending part of the colon. As a result, the inferior mesenteric artery ceases to participate in the blood supply to the descending part of the colon. As a result, the reduced colon is supplied with blood only by the middle colon artery, which originates from the superior mesenteric artery. Insufficiency of blood supply to the reduced colon is the cause of the development of chronic hypoxia of the intestinal wall or necrosis of the reduced descending colon. Some surgeons prefer to preserve the left colon artery. However, it is possible to stretch the mesentery, which can lead to bowel retraction to anastomotic leaks and stenosis. Chronic hypoxia of the reduced colon, in turn, is the cause of acquired (secondary) aganglionosis. The highest frequency of anastomotic leaks is observed in children older than five years. The purpose is to reduce the risk of complications in the pull-through procedure of the descending part of the colon in patients with Hirschsprung’s disease by ensuring its sufficient mobility and maintaining blood supply to the lower mesenteric artery. Methodology and events. Two children aged 5 and 7 years with Hirschsprung’s disease were operated under the conditions of the hospital in Nur-Sultan. The diagnosis was made using x-ray contrast enema and histological examination. Operational technique. After revision of the left part of the colon and assessment of the architectonics of its blood vessels, parietal mobilization of the affected sigmoid and rectum was performed on laparotomy access, while maintaining the arterial and venous terminal arcades of the sigmoid vessels. Then, the descending branch of the left colon artery was crossed (if there is an insufficient length of the reduced intestine, the left colonic artery itself may also be crossed). This manipulation provides additional mobility of the pull-through descending part of the colon. The resulting "windows" in the mesentery of the reduced intestine were sutured to prevent the development of an internal hernia. Formed a full-blooded, sufficiently long transplant from the transverse loops of the splenic angle and the descending parts of the colon with blood supply from the upper and lower mesenteric artery, freely, without tension, is reduced to the rectal zone with the coloanal anastomosis 1.5 cm above the dentate line. Results. The postoperative period was uneventful. Patients were discharged on the 7th day. The observation was carried out for six months. In no case, there was a bowel retraction, anastomotic leak, anastomotic stenosis, or other complications. Conclusion. The presented technique of mobilization of the colon for the pull-through procedure in a high transitional rectosigmoid zone of Hirschsprung’s disease allows to maintain normal blood supply to the distal part of the colon and to avoid the tension of the colon. The technique allows reducing the risk of anastomotic leak, bowel necrosis, chronic ischemia, to exclude colon retraction and anastomotic stenosis.

Keywords: blood supply, children, colon mobilization, Hirschsprung's disease, pull-through

Procedia PDF Downloads 122
255 Evaluation of Wind Fragility for Set Anchor Used in Sign Structure in Korea

Authors: WooYoung Jung, Buntheng Chhorn, Min-Gi Kim

Abstract:

Recently, damage to domestic facilities by strong winds and typhoons are growing. Therefore, this study focused on sign structure among various vulnerable facilities. The evaluation of the wind fragility was carried out considering the destruction of the anchor, which is one of the various failure modes of the sign structure. The performance evaluation of the anchor was carried out to derive the wind fragility. Two parameters were set and four anchor types were selected to perform the pull-out and shear tests. The resistance capacity was estimated based on the experimental results. Wind loads were estimated using Monte Carlo simulation method. Based on these results, we derived the wind fragility according to anchor type and wind exposure category. Finally, the evaluation of the wind fragility was performed according to the experimental parameters such as anchor length and anchor diameter. This study shows that the depth of anchor was more significant for the safety of structure compare to diameter of anchor.

Keywords: sign structure, wind fragility, set anchor, pull-out test, shear test, Monte Carlo simulation

Procedia PDF Downloads 263
254 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage

Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou

Abstract:

The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.

Keywords: low-frequency noise, random telegraph noise, dynamic variation, SRRV

Procedia PDF Downloads 149
253 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms

Authors: Henni Mansour Abdelwaheb

Abstract:

This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.

Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties

Procedia PDF Downloads 45
252 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

Authors: Apidet Booranawong, Wiklom Teerapabkajorndet

Abstract:

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.

Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio

Procedia PDF Downloads 307
251 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage

Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour

Abstract:

This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.

Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage

Procedia PDF Downloads 431