Search results for: progressive phase distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9392

Search results for: progressive phase distribution

9272 Bubble Growth in a Two Phase Upward Flow in a Miniature Tube

Authors: R. S. Hassani, S. Chikh, L. Tadrist, S. Radev

Abstract:

A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.

Keywords: two phase flow, bubble growth, mini-channel, generation frequency

Procedia PDF Downloads 403
9271 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase

Authors: P. Abachi, S. Karami, K. Purazrang

Abstract:

The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.

Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering

Procedia PDF Downloads 338
9270 Implementation of Real-Time Multiple Sound Source Localization and Separation

Authors: Jeng-Shin Sheu, Qi-Xun Zheng

Abstract:

This paper mainly discusses a method of separating speech when using a microphone array without knowing the number and direction of sound sources. In recent years, there have been many studies on the method of separating signals by using masking, but most of the separation methods must be operated under the condition of a known number of sound sources. Such methods cannot be used for real-time applications. In our method, this paper uses Circular-Integrated-Cross-Spectrum to estimate the statistical histogram distribution of the direction of arrival (DOA) to obtain the number of sound sources and sound in the mixed-signal Source direction. In calculating the relevant parameters of the ring integrated cross-spectrum, the phase (Phase of the Cross-Power Spectrum) and phase rotation factors (Phase Rotation Factors) calculated by the cross power spectrum of each microphone pair are used. In the part of separating speech, it uses the DOA weighting and shielding separation method to calculate the sound source direction (DOA) according to each T-F unit (time-frequency point). The weight corresponding to each T-F unit can be used to strengthen the intensity of each sound source from the T-F unit and reduce the influence of the remaining sound sources, thereby achieving voice separation.

Keywords: real-time, spectrum analysis, sound source localization, sound source separation

Procedia PDF Downloads 122
9269 Advancements in Dielectric Materials: A Comprehensive Study on Properties, Synthesis, and Applications

Authors: M. Mesrar, T. Lamcharfi, Nor-S. Echatoui, F. Abdi

Abstract:

The solid-state reaction method was used to synthesize ferroelectric systems with lead-free properties, specifically (1-x-y)(Na₀.₅Bi₀.₅)TiO₃-xBaTiO₃-y(K₀.₅ Bi₀.₅)TiO₃. To achieve a pure perovskite phase, the optimal calcination temperature was determined to be 1000°C for 4 hours. X-ray diffraction (XRD) analysis identified the presence of the morphotropic phase boundary (MPB) in the (1-x-y)NBT xBT-yKBT ceramics for specific molar compositions, namely (0.95NBT-0.05BT, 0.84NBT-0.16KBT, and 0.79NBT-0.05BT-0.16KBT). To enhance densification, the sintering temperature was set at 1100°C for 4 hours. Scanning electron microscopy (SEM) images exhibited homogeneous distribution and dense packing of the grains in the ceramics, indicating a uniform microstructure. These materials exhibited favorable characteristics, including high dielectric permittivity, low dielectric loss, and diffused phase transition behavior. The ceramics composed of 0.79NBT-0.05BT-0.16KBT exhibited the highest piezoelectric constant (d33=148 pC/N) and electromechanical coupling factor (kp = 0.292) among all compositions studied. This enhancement in piezoelectric properties can be attributed to the presence of the morphotropic phase boundary (MPB) in the material. This study presents a comprehensive approach to improving the performance of lead-free ferroelectric systems of composition 0.79(Na₀.₅Bi₀.₅)Ti O₃-0.05BaTiO₃-0.16(K₀.₅Bi₀.₅)TiO₃.

Keywords: solid-state method, (1-x-y)NBT-xBT-yKBT, morphotropic phase boundary, Raman spectroscopy, dielectric properties

Procedia PDF Downloads 24
9268 Methods of Variance Estimation in Two-Phase Sampling

Authors: Raghunath Arnab

Abstract:

The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details.

Keywords: auxiliary information, two-phase sampling, varying probability sampling, unbiased estimators

Procedia PDF Downloads 562
9267 Potentiostatic Electrodeposition of Cu₂O Films as P-Type Electrode at Room Temperature

Authors: M. M. Moharam, E. M. Elsayed, M. M. Rashad

Abstract:

Single phase Cu₂O films have been prepared via an electrodeposition technique onto ITO glass substrates at room temperature. Likewise, Cu₂O films were deposited using a potentiostatic process from an alkaline electrolyte containing copper (II) nitrate and 1M sodium citrate. Single phase Cu₂O films were electrodeposited at a cathodic deposition potential of 500mV for a reaction period of 90 min, and pH of 12 to yield a film thickness of 0.49 µm. The mechanism for nucleation of Cu₂O films was found to vary with deposition potential. Applying the Scharifker and Hills model at -500 and -600 mV to describe the mechanism of nucleation for the electrochemical reaction, the nucleation mechanism consisted of a mix between instantaneous and progressive growth mechanisms at -500 mV, while above -600 mV the growth mechanism was instantaneous. Using deposition times from 30 to 90 min at -500 mV deposition potential, pure Cu2O films with different microstructures were electrodeposited. Changing the deposition time from 30 to 90 min varied the microstructure from cubic to more complex polyhedra. The transmittance of electrodeposited Cu₂O films ranged from 20-70% in visible range, and samples exhibited a 2.4 eV band gap. The electrical resistivity for electrodeposited Cu₂O films was found to decrease with increasing deposition time from 0.854 x 105 Ω-cm at 30 min to 0.221 x 105 Ω-cm at 90 min without any thermal treatment following the electrodeposition process.

Keywords: Cu₂O, electrodeposition, film thickness, characterization, optical properties

Procedia PDF Downloads 182
9266 Analysis of Injection-Lock in Oscillators versus Phase Variation of Injected Signal

Authors: M. Yousefi, N. Nasirzadeh

Abstract:

In this paper, behavior of an oscillator under injection of another signal has been investigated. Also, variation of output signal amplitude versus injected signal phase variation, the effect of varying the amplitude of injected signal and quality factor of the oscillator has been investigated. The results show that the locking time depends on phase and the best locking time happens at 180-degrees phase. Also, the effect of injected lock has been discussed. Simulations show that the locking time decreases with signal injection to bulk. Locking time has been investigated versus various phase differences. The effect of phase and amplitude changes on locking time of a typical LC oscillator in 180 nm technology has been investigated.

Keywords: analysis, oscillator, injection-lock oscillator, phase modulation

Procedia PDF Downloads 322
9265 Progressive View on Quality Management and Research on Improving Services in Railway Transport

Authors: Eva Nedeliakova, Michal Panak

Abstract:

This article describes the results of research focused on progressive view on quality management. It characterizes a research of improving services in railway transport. Improvement of these services has a strong importance in customer considering on the future use of railway transport. The research provides quality characteristics of transportation, defines critical points of technological processes and specifies the quality model supported by software solution. Main principles and results of the research have a significant importance and belong to numerous initiatives aimed to develop and support railway transport.

Keywords: quality, service, software solution, railway transport

Procedia PDF Downloads 321
9264 Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model

Authors: N. Bourayou, A. -H. Meniai, A. Gouaoura

Abstract:

The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium.

Keywords: activity coefficient, Eisen-Joffe, NRTL model, sodium chloride

Procedia PDF Downloads 259
9263 Numerical Analysis of Real-Scale Polymer Electrolyte Fuel Cells with Cathode Metal Foam Design

Authors: Jaeseung Lee, Muhammad Faizan Chinannai, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

In this paper, we numerically investigated the effect of metal foams on a real scale 242.57cm2 (19.1 cm × 12.7 cm) polymer electrolyte membrane fuel cell (PEFCs) using a three-dimensional two-phase PEFC model to substantiate design approach for PEFCs using metal foam as the flow distributor. The simulations were conducted under the practical low humidity hydrogen, and air gases conditions in order to observe the detailed operation result in the PEFCs using the serpentine flow channel in the anode and metal foam design in the cathode. The three-dimensional contours of flow distribution in the channel, current density distribution in the membrane and hydrogen and oxygen concentration distribution are provided. The simulation results revealed that the use of highly porous and permeable metal foam can be beneficial to achieve a more uniform current density distribution and better hydration in the membrane under low inlet humidity conditions. This study offers basic directions to design channel for optimal water management of PEFCs.

Keywords: polymer electrolyte fuel cells, metal foam, real-scale, numerical model

Procedia PDF Downloads 210
9262 Effect of Composition and Cooling Rate on the Solidification Structure of Al-Er Alloy

Authors: Jing Ning, Kunyuan Gao

Abstract:

The microstructure and phase structure of Al-Er alloys with Er content of 10, 20, 30wt% at cooling rate of 60, 40 and 5℃/h were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). Experimental results showed that for solidification of the hypereutectic Al-Er alloys at different conditions, a halo of α-Al appeared around the primary Al₃Er phase. Analysis of the solidification process indicated that after the primary Al₃Er phase formed, the composition of supercooled liquid phase located outside the coupled zone of eutectic growth below the eutectic line, which leaded to the formation of Al halo. With the increase of Er content, the blocky primary Al₃Er phase expanded from 200μm to 1mm in size. With the decrease of cooling rate, the morphology and phase structure of alloy were different. At the cooling rate of 60℃/h, it was obtained the primary Al3Er phase with L1₂ structure, whose profile was straight. Meanwhile, the eutectic structure was flocculent. At the quite slow cooling rate of 5℃/h, it was obtained the primary Al₃Er phase with hR20 structure with irregular jagged profile, and the eutectic structure was approximately strip-shaped. These characteristics were closely related to the cooling rate of solidification. The XRD analysis showed that for Al₃Er phase, the lattice constant a of L1₂ structure was 4.2158Å, and a, c of hR20 structure were 6.0321Å and 35.6290Å, respectively.

Keywords: Al-Er alloy, composition, cooling rate, microstructure

Procedia PDF Downloads 79
9261 Realization of Soliton Phase Characteristics in 10 Gbps, Single Channel, Uncompensated Telecommunication System

Authors: A. Jawahar

Abstract:

In this paper, the dependence of soliton pulses with respect to phase in a 10 Gbps, single channel, dispersion uncompensated telecommunication system was studied. The characteristic feature of periodic soliton interaction was noted at the Interaction point (I=6202.5Km) in one collision length of L=12405.1 Km. The interaction point is located for 10Gbps system with an initial relative spacing (qo) of soliton as 5.28 using Perturbation theory. It is shown that, when two in-phase solitons are launched, they interact at the point I=6202.5 Km, but the interaction could be restricted with introduction of different phase initially. When the phase of the input solitons increases, the deviation of soliton pulses at the I also increases. We have successfully demonstrated this effect in a telecommunication set-up in terms of Quality factor (Q), where the Q=0 for in-phase soliton. The Q was noted to be 125.9, 38.63, 47.53, 59.60, 161.37, and 78.04 for different phases such as 10o, 20o, 30o, 45o, 60o and 90o degrees respectively at Interaction point I.

Keywords: Soliton interaction, Initial relative spacing, phase, Perturbation theory and telecommunication system

Procedia PDF Downloads 441
9260 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 529
9259 Analysis of Different Space Vector Pulse Width Modulation Techniques for a Five-Phase Inverter

Authors: K. A. Chinmaya, M. Udaya Bhaskar

Abstract:

Multiphase motor drives are now a day considered for numerous applications due to the advantages that they offer when compared to their three-phase counterparts. Proper modeling of inverters and motors are important in devising an appropriate control algorithm. This paper develops a complete modeling of a five-phase inverter and five-phase space vector modulation schemes which can be used for five-phase motor drives. A novel modified algorithm is introduced which enables the sinusoidal output voltages up to certain voltage value. The waveforms of phase to neutral voltage are compared with the different modulation techniques and also different modulation indexes in terms of Low-order Harmonic (LH) voltage of 3rd and 7th present. A detailed performance evolution of existing and newly modified schemes is done in terms of Total Harmonic Distortion (THD).

Keywords: multi-phase drives, space vector modulation, voltage source inverter, low order harmonic voltages, total harmonic distortion

Procedia PDF Downloads 369
9258 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency

Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee

Abstract:

Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.

Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system

Procedia PDF Downloads 401
9257 The Effect of Human Capital and Oil Revenue on Income Distribution in Real Sample

Authors: Marjan Majdi, MohammadAli Moradi, Elham Samarikhalaj

Abstract:

Income distribution is one of the most topics in macro economic theories. There are many categories in economy such as income distribution that have the most influenced by economic policies. Human capital has an impact on economic growth and it has significant effect on income distributions. The results of this study confirm that the effects of oil revenue and human capital on income distribution are negative and significant but the value of the estimated coefficient is too small in a real sample in period time (1969-2006).

Keywords: gini coefficient, human capital, income distribution, oil revenue

Procedia PDF Downloads 596
9256 Reliability Analysis in Power Distribution System

Authors: R. A. Deshpande, P. Chandhra Sekhar, V. Sankar

Abstract:

In this paper, we discussed the basic reliability evaluation techniques needed to evaluate the reliability of distribution systems which are applied in distribution system planning and operation. Basically, the reliability study can also help to predict the reliability performance of the system after quantifying the impact of adding new components to the system. The number and locations of new components needed to improve the reliability indices to certain limits are identified and studied.

Keywords: distribution system, reliability indices, urban feeder, rural feeder

Procedia PDF Downloads 744
9255 The Educational Philosophies and Teaching Style Preferences of College Faculty at Selected Universities in the South of Metro Manila

Authors: Grace D. Severo, Lopita U. Jung

Abstract:

This study aimed to determine the educational philosophies and teaching styles of the college faculty of the University of Perpetual Help System DALTA in the campuses of Las-Piñas, Molino, and Calamba, south of Metro Manila. It sought to determine the relationships of educational philosophy and teaching styles of the college faculty vis-à-vis the university system’s educational philosophies and teaching style preferences. A hundred and five faculty members from the Colleges of Education, Arts and Sciences responded to the survey during the academic year 2014-2015. The Philosophy of Adult Education Inventory measured the faculty’s preferred educational philosophies. The Principles of Adult Learning Scale measured the faculty’s teaching style preference. Findings show that there is a similarity between the university system and the faculty members in using the progressive educational philosophy, however both contrasted in the preferred teaching style. Majority of the faculty held progressive educational philosophy but their preference for teacher-centered teaching style did not match. This implies that the majority are certain of having progressive educational philosophy but are not utilizing the learner-centered teaching styles; a high degree of support and commitment to practice a progressive and humanist philosophical orientation in education; and a high degree of support on teacher-centered teaching style promotion from the institution can strengthen a high degree of commitment for the faculty to enunciate their values and practice through these educational philosophies and teaching styles.

Keywords: educational philosophies, teaching styles, philosophy of adult education inventory, principles of adult learning scale

Procedia PDF Downloads 344
9254 Investigating the Effects of Data Transformations on a Bi-Dimensional Chi-Square Test

Authors: Alexandru George Vaduva, Adriana Vlad, Bogdan Badea

Abstract:

In this research, we conduct a Monte Carlo analysis on a two-dimensional χ2 test, which is used to determine the minimum distance required for independent sampling in the context of chaotic signals. We investigate the impact of transforming initial data sets from any probability distribution to new signals with a uniform distribution using the Spearman rank correlation on the χ2 test. This transformation removes the randomness of the data pairs, and as a result, the observed distribution of χ2 test values differs from the expected distribution. We propose a solution to this problem and evaluate it using another chaotic signal.

Keywords: chaotic signals, logistic map, Pearson’s test, Chi Square test, bivariate distribution, statistical independence

Procedia PDF Downloads 57
9253 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems

Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari

Abstract:

The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.

Keywords: phase locked loop, PLL, notch filter, fuzzy logic control, grid connected inverters

Procedia PDF Downloads 120
9252 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 290
9251 Modeling the Current and Future Distribution of Anthus Pratensis under Climate Change

Authors: Zahira Belkacemi

Abstract:

One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. In this study, we used maximum-entropy niche modeling (Maxent) to predict the current and future distribution of Anthus pratensis using climatic variables. The results showed that the species would not be highly affected by the climate change in shifting its distribution; however, the results of this study should be improved by taking into account other predictors, and that the NATURA 2000 protected sites will be efficient at 42% in protecting the species.

Keywords: anthus pratensis, climate change, Europe, species distribution model

Procedia PDF Downloads 107
9250 Experimental Investigation of Air-Water Two-Phase Flow Pattern in T-Junction Microchannel

Authors: N. Rassoul-ibrahim, E. Siahmed, L. Tadrist

Abstract:

Water management plays a crucial role in the performance and durability of PEM fuel cells. Whereas the membrane must be hydrated enough, liquid droplets formed by water in excess can block the flow in the gas distribution channels and hinder the fuel cell performance. The main purpose of this work is to increase the understanding of liquid transport and mixing through mini- or micro-channels for various engineering or medical process applications including cool-ing of equipment according to the operations considered. For that purpose and as a first step, a technique was devel-oped to automatically detect and characterize two-phase flow patterns that may appear in such. The investigation, mainly experimental, was conducted on transparent channel with a 1mm x 1mm square cross section and a 0.3mm x 0.3 mm water injection normal to the gas channel. Three main flow patterns were identified liquid slug, bubble flow and annular flow. A flow map has been built accord-ing to the flow rate of both phases. As a sample the follow-ing figures show representative images of the flow struc-tures observed. An analysis and discussion of the flow pattern, in mini-channel, will be provided and compared to the case old micro-channel. . Keywords: Two phase flow, Clean Energy, Minichannels, Fuel Cells. Flow patterns, Maps.

Keywords: two phase flox, T-juncion, Micro and minichannels, clean energy, flow patterns, maps

Procedia PDF Downloads 46
9249 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data

Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa

Abstract:

A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.

Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation

Procedia PDF Downloads 167
9248 Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders

Authors: Akim Borbuev, Francisco de León

Abstract:

Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.

Keywords: DC power systems, distribution feeders, distribution networks, power transfer capacity

Procedia PDF Downloads 100
9247 2D CFD-PBM Coupled Model of Particle Growth in an Industrial Gas Phase Fluidized Bed Polymerization Reactor

Authors: H. Kazemi Esfeh, V. Akbari, M. Ehdaei, T. N. G. Borhani, A. Shamiri, M. Najafi

Abstract:

In an industrial fluidized bed polymerization reactor, particle size distribution (PSD) plays a significant role in the reactor efficiency evaluation. The computational fluid dynamic (CFD) models coupled with population balance equation (CFD-PBM) have been extensively employed to investigate the flow behavior in the poly-disperse multiphase fluidized bed reactors (FBRs) utilizing ANSYS Fluent code. In this study, an existing CFD-PBM/ DQMOM coupled modeling framework has been used to highlight its potential to analyze the industrial-scale gas phase polymerization reactor. The predicted results reveal an acceptable agreement with the observed industrial data in terms of pressure drop and bed height. The simulated results also indicate that the higher particle growth rate can be achieved for bigger particles. Hence, the 2D CFD-PBM/DQMOM coupled model can be used as a reliable tool for analyzing and improving the design and operation of the gas phase polymerization FBRs.

Keywords: computational fluid dynamics, population balance equation, fluidized bed polymerization reactor, direct quadrature method of moments

Procedia PDF Downloads 340
9246 Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage

Authors: Zarmina Gillani, Nuzhat Huma, Aysha Sameen, Mulazim Hussain Bukhari

Abstract:

Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 °C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturation. Results have shown that temperature significantly (P < 0.05) affects the pH, acidity, non-protein nitrogen (NPN), protein total soluble solids, fat and lactose contents. Significantly (p < 0.05) higher foaming capacity (FC), foam stability (FS), whey protein nitrogen index (WPNI), and a lower turbidity and solubility index (SI) were observed in whey powder processed at 160 °C compared to whey powder processed at 180 °C. During storage of 180 days, slow but progressive changes were noticed on the physicochemical and functional properties of whey powder. Reverse phase-HPLC analysis revealed a significant (P < 0.05) effect of temperature on whey protein contents. Denaturation of β-Lactoglobulin is followed by α-lacalbumin, casein glycomacropeptide (CMP/GMP), and bovine serum albumin (BSA).

Keywords: whey powder, temperature, denaturation, reverse phase, HPLC

Procedia PDF Downloads 270
9245 Estimation of Population Mean under Random Non-Response in Two-Phase Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problem of estimation for population mean, on current (second) occasion in the presence of random non response in two-occasion successive sampling under two phase set-up. Modified exponential type estimators have been proposed, and their properties are studied under the assumptions that numbers of sampling units follow a distribution due to random non response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 488
9244 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be

Procedia PDF Downloads 142
9243 InSAR Times-Series Phase Unwrapping for Urban Areas

Authors: Hui Luo, Zhenhong Li, Zhen Dong

Abstract:

The analysis of multi-temporal InSAR (MTInSAR) such as persistent scatterer (PS) and small baseline subset (SBAS) techniques usually relies on temporal/spatial phase unwrapping (PU). Unfortunately, it always fails to unwrap the phase for two reasons: 1) spatial phase jump between adjacent pixels larger than π, such as layover and high discontinuous terrain; 2) temporal phase discontinuities such as time varied atmospheric delay. To overcome these limitations, a least-square based PU method is introduced in this paper, which incorporates baseline-combination interferograms and adjacent phase gradient network. Firstly, permanent scatterers (PS) are selected for study. Starting with the linear baseline-combination method, we obtain equivalent 'small baseline inteferograms' to limit the spatial phase difference. Then, phase different has been conducted between connected PSs (connected by a specific networking rule) to suppress the spatial correlated phase errors such as atmospheric artifact. After that, interval phase difference along arcs can be computed by least square method and followed by an outlier detector to remove the arcs with phase ambiguities. Then, the unwrapped phase can be obtained by spatial integration. The proposed method is tested on real data of TerraSAR-X, and the results are also compared with the ones obtained by StaMPS(a software package with 3D PU capabilities). By comparison, it shows that the proposed method can successfully unwrap the interferograms in urban areas even when high discontinuities exist, while StaMPS fails. At last, precise DEM errors can be got according to the unwrapped interferograms.

Keywords: phase unwrapping, time series, InSAR, urban areas

Procedia PDF Downloads 122