Search results for: pole perturbation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 284

Search results for: pole perturbation

284 Controller Design Using GA for SMC Systems

Authors: Susy Thomas, Sajju Thomas, Varghese Vaidyan

Abstract:

This paper considers SMCs using linear feedback with switched gains and proposes a method which can minimize the pole perturbation. The method is able to enhance the robustness property of the controller. A pre-assigned neighborhood of the ‘nominal’ positions is assigned and the system poles are not allowed to stray out of these bounds even when parameters variations/uncertainties act upon the system. A quasi SMM is maintained within the assigned boundaries of the sliding surface.

Keywords: parameter variations, pole perturbation, sliding mode control, switching surface, robust switching vector

Procedia PDF Downloads 362
283 A 3Y/3Y Pole-Changing Winding of High-Power Asynchronous Motors

Authors: Gábor Kovács

Abstract:

Requirement for pole-changing motors emerged at the very early times of asynchronous motor design. Different solutions have been elaborated and some of them are generally used. An alternative is the so called 3 Y/3 Y pole-changing winding. This paper deals with high power application of this solution. A complete and comprehensive study is introduced, including features and design guidelines. The method presented in this paper is especially suitable for pole numbers being close to each other. The study also reveals that the method is more advantageous then the existing solutions for high power motors with 1:3 pole ratio. Using this motor, a new and complete drive supply system has been proposed as most appropriate arrangement of high power main naval propulsion drive. Further, the method makes possible to extend the pole ratio to 1:6, 1:9, 1:12, etc. At the end, the proposal is further extended to the here so far missing 1:4, 1:5, 1:7 etc. pole ratios. A complete proposal for the theoretically infinite range has been given in this way.

Keywords: induction motor, pole changing 3Y/3Y, pole phase modulation, pole changing 1:3, 1:6

Procedia PDF Downloads 168
282 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System

Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour

Abstract:

This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.

Keywords: adaptive control, active steering, pole placement, vehicle dynamics

Procedia PDF Downloads 466
281 HPPDFIM-HD: Transaction Distortion and Connected Perturbation Approach for Hierarchical Privacy Preserving Distributed Frequent Itemset Mining over Horizontally-Partitioned Dataset

Authors: Fuad Ali Mohammed Al-Yarimi

Abstract:

Many algorithms have been proposed to provide privacy preserving in data mining. These protocols are based on two main approaches named as: the perturbation approach and the Cryptographic approach. The first one is based on perturbation of the valuable information while the second one uses cryptographic techniques. The perturbation approach is much more efficient with reduced accuracy while the cryptographic approach can provide solutions with perfect accuracy. However, the cryptographic approach is a much slower method and requires considerable computation and communication overhead. In this paper, a new scalable protocol is proposed which combines the advantages of the perturbation and distortion along with cryptographic approach to perform privacy preserving in distributed frequent itemset mining on horizontally distributed data. Both the privacy and performance characteristics of the proposed protocol are studied empirically.

Keywords: anonymity data, data mining, distributed frequent itemset mining, gaussian perturbation, perturbation approach, privacy preserving data mining

Procedia PDF Downloads 504
280 Optimal Perturbation in an Impulsively Blocked Channel Flow

Authors: Avinash Nayak, Debopam Das

Abstract:

The current work implements the variational principle to find the optimum initial perturbation that provides maximum growth in an impulsively blocked channel flow. The conventional method for studying temporal stability has always been through modal analysis. In most of the transient flows, this modal analysis is still followed with the quasi-steady assumption, i.e. change in base flow is much slower compared to perturbation growth rate. There are other studies where transient analysis on time dependent flows is done by formulating the growth of perturbation as an initial value problem. But the perturbation growth is sensitive to the initial condition. This study intends to find the initial perturbation that provides the maximum growth at a later time. Here, the expression of base flow for blocked channel is derived and the formulation is based on the two dimensional perturbation with stream function representing the perturbation quantity. Hence, the governing equation becomes the Orr-Sommerfeld equation. In the current context, the cost functional is defined as the ratio of disturbance energy at a terminal time 'T' to the initial energy, i.e. G(T) = ||q(T)||2/||q(0)||2 where q is the perturbation and ||.|| defines the norm chosen. The above cost functional needs to be maximized against the initial perturbation distribution. It is achieved with the constraint that perturbation follows the basic governing equation, i.e. Orr-Sommerfeld equation. The corresponding adjoint equation is derived and is solved along with the basic governing equation in an iterative manner to provide the initial spatial shape of the perturbation that provides the maximum growth G (T). The growth rate is plotted against time showing the development of perturbation which achieves an asymptotic shape. The effects of various parameters, e.g. Reynolds number, are studied in the process. Thus, the study emphasizes on the usage of optimal perturbation and its growth to understand the stability characteristics of time dependent flows. The assumption of quasi-steady analysis can be verified against these results for the transient flows like impulsive blocked channel flow.

Keywords: blocked channel flow, calculus of variation, hydrodynamic stability, optimal perturbation

Procedia PDF Downloads 419
279 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm

Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma

Abstract:

In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.

Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction

Procedia PDF Downloads 598
278 A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram

Authors: Ramesh Rajagopalan, Adam Dahlstrom

Abstract:

Noise removal techniques play a vital role in the performance of electrocardiographic (ECG) signal processing systems. ECG signals can be corrupted by various kinds of noise such as baseline wander noise, electromyographic interference, and power-line interference. One of the significant challenges in ECG signal processing is the degradation caused by additive 50 or 60 Hz power-line interference. This work investigates the removal of power line interference and suppression of transient response for filtering noise corrupted ECG signals. We demonstrate the effectiveness of Infinite Impulse Response (IIR) notch filter with time varying pole radius for improving the transient behavior. The temporary change in the pole radius of the filter diminishes the transient behavior. Simulation results show that the proposed IIR filter with time varying pole radius outperforms traditional IIR notch filters in terms of mean square error and transient suppression.

Keywords: notch filter, ECG, transient, pole radius

Procedia PDF Downloads 376
277 Suitable Tuning Method Selection for PID Controller Used in Digital Excitation System of Brushless Synchronous Generator

Authors: Deepak M. Sajnekar, S. B. Deshpande, R. M. Mohril

Abstract:

At present many rotary excitation control system are using analog type of Automatic Voltage Regulator which now started to replace with the digital automatic voltage regulator which is provided with PID controller and tuning of PID controller is a challenging task. The cases where digital excitation control system is used tuning of PID controller are still carried out by pole placement method. Tuning of PID controller used for static excitation control system is not challenging because it does not involve exciter time constant. This paper discusses two methods of tuning PID controller i.e. Pole placement method and pole zero cancellation method. GUI prepared for both the methods on the platform of MATLAB. Using this GUI, performance results and time required for tuning for both the methods are compared. Sensitivity of the methods is also presented with parameter variation like loop gain ‘K’ and exciter time constant ‘te’.

Keywords: digital excitation system, automatic voltage regulator, pole placement method, pole zero cancellation method

Procedia PDF Downloads 677
276 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 122
275 Regional Pole Placement by Saturated Power System Stabilizers

Authors: Hisham M. Soliman, Hassan Yousef

Abstract:

This manuscript presents new results on design saturated power system stabilizers (PSS) to assign system poles within a desired region for achieving good dynamic performance. The regional pole placement is accomplished against model uncertainties caused by different load conditions. The design is based on a sufficient condition in the form of linear matrix inequalities (LMI) which forces the saturated nonlinear controller to lie within the linear zone. The controller effectiveness is demonstrated on a single machine infinite bus system.

Keywords: power system stabilizer, saturated control, robust control, regional pole placement, linear matrix inequality (LMI)

Procedia PDF Downloads 562
274 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode

Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi

Abstract:

The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.

Keywords: active magnetic bearing, three pole AMB, hybrid control, Lyapunov function

Procedia PDF Downloads 339
273 Experimental Study of the Fan Electric Drive Based on a Two-Speed Motor in Dynamic Modes

Authors: Makhsud Bobojanov, Dauletbek Rismukhamedov, Furkat Tuychiev, Khusniddin Shamsutdionov

Abstract:

The article presents the results of experimental study of a two-speed asynchronous motor 4A80B6/4U3 with pole-changing winding on a fan drive VSUN 160x74-0.55-4 in static and dynamic modes. A prototype of a pole-changing Motor was made based on the results of the calculation and the performance and mechanical characteristics of the Motor were removed at the experimental stand, as well as useful capacities and other parameters from both poles were determined. In dynamic mode, the curves of changes of torque and current of the stator were removed by direct start, constant speed operation, by switching of speeds and stopping.

Keywords: two speed motor, pole-changing motor, electric drive of fan, dynamic modes

Procedia PDF Downloads 134
272 Quadriceps Muscle Activity in Response to Slow and Fast Perturbations following Fatiguing Exercise

Authors: Nosratollah Hedayatpour, Hamid Reza Taheri, Mehrdad Fathi

Abstract:

Introduction: Quadriceps femoris muscle is frequently involved in various movements e.g., jumping, landing) during sport and/or daily activities. During ballistic movement when individuals are faced with unexpected knee perturbation, fast twitch muscle fibers contribute to force production to stabilize knee joint. Fast twitch muscle fiber is more susceptible to fatigue and therefor may reduce the ability of the quadriceps muscle to stabilize knee joint during fast perturbation. Aim: The aim of this study was to investigate the effect of fatigue on postural response of the knee extensor muscles to fast and slow perturbations. Methods: Fatigue was induced to the quadriceps muscle using a KinCom Isokinetic Dynamometer (Chattanooga, TN). Bipolar surface electromyography (EMG) signals were simultaneously recorded from quadriceps components (vastus medialis, rectus femoris, and vastus lateralis) during pre- and post-fatigue postural perturbation performed at two different velocities of 120 ms and 250 mes. Results: One-way ANOVA showed that maximal voluntary knee extension force and time to task failure, and associated EMG activities were significantly reduced after fatiguing knee exercise (P< 0.05). Two-ways ANOVA also showed that ARV of EMG during backward direction was significantly larger than forward direction (P< 0.05), and during fast-perturbation it was significantly higher than slow-perturbation (P< 0.05). Moreover, ARV of EMG was significantly reduced during post fatigue perturbation, with the largest reduction identified for fast-perturbation compared with slow perturbation (P< 0.05). Conclusion: A larger reduction in muscle activity of the quadriceps muscle was observed during post fatigue fast-perturbation to stabilize knee joint, most likely due to preferential recruitment of fast twitch muscle fiber which are more susceptible to fatigue. This may partly explain that why knee injuries is common after fast ballistic movement.

Keywords: electromyography, fast-slow perturbations, fatigue, quadriceps femoris muscle

Procedia PDF Downloads 522
271 Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity

Authors: Nicolas Thiers, Romain Gers, Olivier Skurtys

Abstract:

In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers.

Keywords: direct numerical simulation, heat transfer enhancement, localized thermal perturbations, natural convection, rectangular differentially-heated cavity

Procedia PDF Downloads 142
270 Exponential Spline Solution for Singularly Perturbed Boundary Value Problems with an Uncertain-But-Bounded Parameter

Authors: Waheed Zahra, Mohamed El-Beltagy, Ashraf El Mhlawy, Reda Elkhadrawy

Abstract:

In this paper, we consider singular perturbation reaction-diffusion boundary value problems, which contain a small uncertain perturbation parameter. To solve these problems, we propose a numerical method which is based on an exponential spline and Shishkin mesh discretization. While interval analysis principle is used to deal with the uncertain parameter, sensitivity analysis has been conducted using different methods. Numerical results are provided to show the applicability and efficiency of our method, which is ε-uniform convergence of almost second order.

Keywords: singular perturbation problem, shishkin mesh, two small parameters, exponential spline, interval analysis, sensitivity analysis

Procedia PDF Downloads 273
269 The Improved Laplace Homotopy Perturbation Method for Solving Non-integrable PDEs

Authors: Noufe H. Aljahdaly

Abstract:

The Laplace homotopy perturbation method (LHPM) is an approximate method that help to compute the approximate solution for partial differential equations. The method has been used for solving several problems in science. It requires the initial condition, so it solves the initial value problem. In physics, when some important terms are taken in account, we may obtain non-integrable partial differential equations that do not have analytical integrals. This type of PDEs do not have exact solution, therefore, we need to compute the solution without initial condition. In this work, we improved the LHPM to be able to solve non-integrable problem, especially the damped PDEs, which are the PDEs that include a damping term which makes the PDEs non-integrable. We improved the LHPM by setting a perturbation parameter and an embedding parameter as the damping parameter and using the initial condition for damped PDE as the initial condition for non-damped PDE.

Keywords: non-integrable PDEs, modified Kawahara equation;, laplace homotopy perturbation method, damping term

Procedia PDF Downloads 99
268 Adjustment of the Whole-Body Center of Mass during Trunk-Flexed Walking across Uneven Ground

Authors: Soran Aminiaghdam, Christian Rode, Reinhard Blickhan, Astrid Zech

Abstract:

Despite considerable studies on the impact of imposed trunk posture on human walking, less is known about such locomotion while negotiating changes in ground level. The aim of this study was to investigate the behavior of the VBCOM in response to a two-fold expected perturbation, namely alterations in body posture and in ground level. To this end, the kinematic data and ground reaction forces of twelve able participants were collected. We analyzed the vertical position of the body center of mass (VBCOM) from the ground determined by the body segmental analysis method relative to the laboratory coordinate system at touchdown and toe-off instants during walking across uneven ground — characterized by perturbation contact (a 10-cm visible drop) and pre- and post-perturbation contacts — in comparison to unperturbed level contact while maintaining three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). The VBCOM was normalized to the distance between the greater trochanter marker and the lateral malleoli marker at the instant of TD. Moreover, we calculated the backward rotation during step-down as the difference of the maximum of the trunk angle in the pre-perturbation contact and the minimal trunk angle in the perturbation contact. Two-way repeated measures ANOVAs revealed contact-specific effects of posture on the VBCOM at touchdown (F = 5.96, p = 0.00). As indicated by the analysis of simple main effects, during unperturbed level and pre-perturbation contacts, no between-posture differences for the VBCOM at touchdown were found. In the perturbation contact, trunk-flexed gaits showed a significant increase of VBCOM as compared to the pre-perturbation contact. In the post-perturbation contact, the VBCOM demonstrated a significant decrease in all gait postures relative to the preceding corresponding contacts with no between-posture differences. Main effects of posture revealed that the VBCOM at toe-off significantly decreased in trunk-flexed gaits relative to the regular erect gait. For the main effect of contact, the VBCOM at toe-off demonstrated changes across perturbation and post-perturbation contacts as compared to the unperturbed level contact. Furthermore, participants exhibited a backward trunk rotation during step-down possibly to control the angular momentum of their whole body. A more pronounced backward trunk rotation (2- to 3-fold compared with level contacts) in trunk-flexed walking contributed to the observed elevated VBCOM during the step-down which may have facilitated drop negotiation. These results may shed light on the interaction between posture and locomotion in able gait, and specifically on the behavior of the body center of mass during perturbed locomotion.

Keywords: center of mass, perturbation, posture, uneven ground, walking

Procedia PDF Downloads 178
267 A Study on the Effect of Rib Structure in Spoke-Type PMSM

Authors: Hyun-Soo Seol, In-Gun Kim, Hyun Seok Hong, Dong-Woo Kang, Ju Lee

Abstract:

Rotor of Spoke-Type PMSM is divided into permanent magnet and rotor core. Moreover, rotor core is composed of pole-piece, Bridge and rib. Piece between the permanent magnet N and S poles is pole-piece. Bridge and rib hold pole-piece. In the case of pole-piece and bridge, it is essential structure of Spoke-Type PMSM. However, Rib can be selected by the designer depending on the operating conditions and constraints. If rib is present in the rotor, rib which acts in the leak path generates a leakage flux. Although the leakage flux reduces the torque in low speed, it expands speed range in high speed. So, there is a relationship of trade off. Viewed from the standpoint of permanent magnet demagnetization, since the magnetic flux by the stator winding leaks to the rib, it is an advantage. In addition, rib affects the safety factor of the rotor. For application required high speed operation, since the securing the safety factor of the rotor is important, rib structure is advantageous. On the other hand, in the case of the application that does not require high speed operation, it is desirable to increase the output power by designing without rib. In this paper, Effects on rib structure is analyzed in detail and this paper provides designer with information about rotor design of spoke-type PMSM according to rib structure.

Keywords: spoke-Type PMSM, rotor shape, rib, operation range

Procedia PDF Downloads 428
266 A Transfer Function Representation of Thermo-Acoustic Dynamics for Combustors

Authors: Myunggon Yoon, Jung-Ho Moon

Abstract:

In this paper, we present a transfer function representation of a general one-dimensional combustor. The input of the transfer function is a heat rate perturbation of a burner and the output is a flow velocity perturbation at the burner. This paper considers a general combustor model composed of multiple cans with different cross sectional areas, along with a non-zero flow rate.

Keywords: combustor, dynamics, thermoacoustics, transfer function

Procedia PDF Downloads 379
265 Stability of Property (gm) under Perturbation and Spectral Properties Type Weyl Theorems

Authors: M. H. M. Rashid

Abstract:

A Banach space operator T obeys property (gm) if the isolated points of the spectrum σ(T) of T which are eigenvalues are exactly those points λ of the spectrum for which T − λI is a left Drazin invertible. In this article, we study the stability of property (gm), for a bounded operator acting on a Banach space, under perturbation by finite rank operators, by nilpotent operators, by quasi-nilpotent operators, or more generally by algebraic operators commuting with T.

Keywords: Weyl's Theorem, Weyl Spectrum, Polaroid operators, property (gm)

Procedia PDF Downloads 177
264 Waste Identification Diagrams Effectiveness: A Case Study in the Manaus Industrial Pole

Authors: José Dinis-Carvalho, Levi Guimarães, Celina Leão, Rui Sousa, Rosa Eliza Vieira, Larissa Thomaz, Kelliane Guerreiro

Abstract:

This research paper investigates the efficacy of waste identification diagrams (WIDs) as a tool for waste reduction and management within the Manaus Industrial Pole. The study focuses on assessing the practical application and effectiveness of WIDs in identifying, categorizing, and mitigating various forms of waste generated across industrial processes. Employing a mixed-methods approach, including a qualitative questionnaire applied to 5 companies and quantitative data analysis with SPSS statistical software, the research evaluates the implementation and impact of WIDs on waste reduction practices in select industries within the Manaus Industrial Pole. The findings contribute to understanding the utility of WIDs as a proactive strategy for waste management, offering insights into their potential for fostering sustainable practices and promoting environmental stewardship in industrial settings. The study also discusses challenges, best practices, and recommendations for optimizing the utilization of WIDs in industrial waste management, thereby addressing the broader implications for sustainable industrial development.

Keywords: waste identification diagram, value stream mapping, overall equipment effectiveness, lean manufacturing

Procedia PDF Downloads 54
263 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities

Authors: J. P. P. Andrade, V. A. F. Campos

Abstract:

This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.

Keywords: F-16 aircraft, linear matrix inequalities, pole placement, robust control

Procedia PDF Downloads 304
262 Performance Comparisons between PID and Adaptive PID Controllers for Travel Angle Control of a Bench-Top Helicopter

Authors: H. Mansor, S. B. Mohd-Noor, T. S. Gunawan, S. Khan, N. I. Othman, N. Tazali, R. B. Islam

Abstract:

This paper provides a comparative study on the performances of standard PID and adaptive PID controllers tested on travel angle of a 3-Degree-of-Freedom (3-DOF) Quanser bench-top helicopter. Quanser, a well-known manufacturer of educational bench-top helicopter has developed Proportional Integration Derivative (PID) controller with Linear Quadratic Regulator (LQR) for all travel, pitch and yaw angle of the bench-top helicopter. The performance of the PID controller is relatively good; however its performance could also be improved if the controller is combined with adaptive element. The objective of this research is to design adaptive PID controller and then compare the performances of the adaptive PID with the standard PID. The controller design and test is focused on travel angle control only. Adaptive method used in this project is self-tuning controller, which controller’s parameters are updated online. Two adaptive algorithms those are pole-placement and deadbeat have been chosen as the method to achieve optimal controller’s parameters. Performance comparisons have shown that the adaptive (deadbeat) PID controller has produced more desirable performance compared to standard PID and adaptive (pole-placement). The adaptive (deadbeat) PID controller attained very fast settling time (5 seconds) and very small percentage of overshoot (5% to 7.5%) for 10° to 30° step change of travel angle.

Keywords: adaptive control, deadbeat, pole-placement, bench-top helicopter, self-tuning control

Procedia PDF Downloads 500
261 Polynomial Chaos Expansion Combined with Exponential Spline for Singularly Perturbed Boundary Value Problems with Random Parameter

Authors: W. K. Zahra, M. A. El-Beltagy, R. R. Elkhadrawy

Abstract:

So many practical problems in science and technology developed over the past decays. For instance, the mathematical boundary layer theory or the approximation of solution for different problems described by differential equations. When such problems consider large or small parameters, they become increasingly complex and therefore require the use of asymptotic methods. In this work, we consider the singularly perturbed boundary value problems which contain very small parameters. Moreover, we will consider these perturbation parameters as random variables. We propose a numerical method to solve this kind of problems. The proposed method is based on an exponential spline, Shishkin mesh discretization, and polynomial chaos expansion. The polynomial chaos expansion is used to handle the randomness exist in the perturbation parameter. Furthermore, the Monte Carlo Simulations (MCS) are used to validate the solution and the accuracy of the proposed method. Numerical results are provided to show the applicability and efficiency of the proposed method, which maintains a very remarkable high accuracy and it is ε-uniform convergence of almost second order.

Keywords: singular perturbation problem, polynomial chaos expansion, Shishkin mesh, two small parameters, exponential spline

Procedia PDF Downloads 160
260 Triple Diffusive Convection in a Vertically Oscillating Oldroyd-B Liquid

Authors: Sameena Tarannum, S. Pranesh

Abstract:

The effect of linear stability analysis of triple diffusive convection in a vertically oscillating viscoelastic liquid of Oldroyd-B type is studied. The correction Rayleigh number is obtained by using perturbation method which gives prospect to control the convection. The eigenvalue is obtained by using perturbation method by adopting Venezian approach. From the study, it is observed that gravity modulation advances the onset of triple diffusive convection.

Keywords: gravity modulation, Oldroyd-b liquid, triple diffusive convection, venezian approach

Procedia PDF Downloads 175
259 Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas

Authors: Hamid Reza Pakzad

Abstract:

In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity.

Keywords: reductive perturbation method, dust ion acoustic shock wave, superthermal electron, dissipative plasmas

Procedia PDF Downloads 312
258 Robust Numerical Method for Singularly Perturbed Semilinear Boundary Value Problem with Nonlocal Boundary Condition

Authors: Habtamu Garoma Debela, Gemechis File Duressa

Abstract:

In this work, our primary interest is to provide ε-uniformly convergent numerical techniques for solving singularly perturbed semilinear boundary value problems with non-local boundary condition. These singular perturbation problems are described by differential equations in which the highest-order derivative is multiplied by an arbitrarily small parameter ε (say) known as singular perturbation parameter. This leads to the existence of boundary layers, which are basically narrow regions in the neighborhood of the boundary of the domain, where the gradient of the solution becomes steep as the perturbation parameter tends to zero. Due to the appearance of the layer phenomena, it is a challenging task to provide ε-uniform numerical methods. The term 'ε-uniform' refers to identify those numerical methods in which the approximate solution converges to the corresponding exact solution (measured to the supremum norm) independently with respect to the perturbation parameter ε. Thus, the purpose of this work is to develop, analyze, and improve the ε-uniform numerical methods for solving singularly perturbed problems. These methods are based on nonstandard fitted finite difference method. The basic idea behind the fitted operator, finite difference method, is to replace the denominator functions of the classical derivatives with positive functions derived in such a way that they capture some notable properties of the governing differential equation. A uniformly convergent numerical method is constructed via nonstandard fitted operator numerical method and numerical integration methods to solve the problem. The non-local boundary condition is treated using numerical integration techniques. Additionally, Richardson extrapolation technique, which improves the first-order accuracy of the standard scheme to second-order convergence, is applied for singularly perturbed convection-diffusion problems using the proposed numerical method. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ε-uniformly convergent. Finally, extensive numerical experiments are conducted which support all of our theoretical findings. A concise conclusion is provided at the end of this work.

Keywords: nonlocal boundary condition, nonstandard fitted operator, semilinear problem, singular perturbation, uniformly convergent

Procedia PDF Downloads 142
257 Response Solutions of 2-Dimensional Elliptic Degenerate Quasi-Periodic Systems With Small Parameters

Authors: Song Ni, Junxiang Xu

Abstract:

This paper concerns quasi-periodic perturbations with parameters of 2-dimensional degenerate systems. If the equilibrium point of the unperturbed system is elliptic-type degenerate. Assume that the perturbation is real analytic quasi-periodic with diophantine frequency. Without imposing any assumption on the perturbation, we can use a path of equilibrium points to tackle with the Melnikov non-resonance condition, then by the Leray-Schauder Continuation Theorem and the Kolmogorov-Arnold-Moser technique, it is proved that the equation has a small response solution for many sufficiently small parameters.

Keywords: quasi-periodic systems, KAM-iteration, degenerate equilibrium point, response solution

Procedia PDF Downloads 86
256 A Novel Method for Solving Nonlinear Whitham–Broer–Kaup Equation System

Authors: Ayda Nikkar, Roghayye Ahmadiasl

Abstract:

In this letter, a new analytical method called homotopy perturbation method, which does not need small parameter in the equation is implemented for solving the nonlinear Whitham–Broer–Kaup (WBK) partial differential equation. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of exact solution has led us to significant consequences. The results reveal that the HPM is very effective, convenient and quite accurate to systems of nonlinear equations. It is predicted that the HPM can be found widely applicable in engineering.

Keywords: homotopy perturbation method, Whitham–Broer–Kaup (WBK) equation, Modified Boussinesq, Approximate Long Wave

Procedia PDF Downloads 309
255 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty

Authors: Mehdi Jalalpour, Mazdak Tootkaboni

Abstract:

We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.

Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization

Procedia PDF Downloads 604