Search results for: passive cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1571

Search results for: passive cooling

1421 The Effect of Mist Cooling on Sexual Behavior and Semen Quality of Sahiwal Bulls

Authors: Khalid Ahmed Elrabie Abdelrasoul

Abstract:

The present study was carried out on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to assess the effect of cooling using mist cooling and fanning on Sahiwal bulls in the dry hot summer season. Fourteen Sahiwal bulls were divided into two groups of seven each. Sexual behavior and semen quality traits considered were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-1 was the control, whereas group-2 (treatment group) bulls were exposed to mist cooling and fanning (thrice a day 15 min each) in the dry hot summer season. Group-2 showed significantly (p < 0.01) higher value in DMT (sec), ES, PS, ITS, LS, semen volume (ml), semen color density, mass activity, initial motility, progressive motility and live sperm.

Keywords: mist cooling, Sahiwal bulls, semen quality, sexual behavior

Procedia PDF Downloads 293
1420 Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling

Authors: A. Rabin, G. Mazor, I. Ladizhenski, R. Shneck, Z.

Abstract:

The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickr’s hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range have a high influence on the hardness of the studied steel.

Keywords: AISI D2, controllable cooling, magnesium sulfate coating, rapid cryogenic heat treatment, temporary porous layer

Procedia PDF Downloads 109
1419 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube

Authors: Shengjun Zhang, Xu Cheng, Feng Shen

Abstract:

The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.

Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy

Procedia PDF Downloads 316
1418 Thermal Comfort Characteristics in an Enclosure with a Radiant Ceiling Heating and Floor Air Heating System

Authors: Seung-Ho Yoo, Jong-Ryeul Sohn

Abstract:

An environmental friendly or efficient heating & cooling systems attract a great attention, due to the energy or environmental problems. Especially the heat balance of human body is about 50% influenced by radiation exchange in built environment. Therefore, a thermal comfort characteristics in a radiant built environment need to be accessed through the development of an efficient evaluation method. Almost of Korean housings use traditionally the radiant floor heating system. A radiant cooling system attracts also many attention nowadays in the viewpoint of energy conservation and comfort. Thermal comfort characteristics in an enclosure with a radiant heating and cooling system are investigated by experiment, thermal sensation vote analysis and mean radiant temperature simulation. Asymmetric radiation between radiant heating ceiling and air heating system in 9 points of room is compared with each other.

Keywords: radiant heating and cooling ceiling, asymmetric radiation, thermal comfort, thermal sensation vote

Procedia PDF Downloads 483
1417 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology

Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury

Abstract:

An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.

Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin

Procedia PDF Downloads 63
1416 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies

Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani

Abstract:

The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a)synthesizing such PTMDs for particular applications and b)evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.

Keywords: active tuned mass damper, high-rise building, multi-frequency tuning, vibration control

Procedia PDF Downloads 59
1415 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates

Authors: J. Iwaro, A. Mwasha, K. Ramsubhag

Abstract:

Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.

Keywords: building envelope, roof, energy consumption, thermal comfort

Procedia PDF Downloads 244
1414 CFD Simulations to Study the Cooling Effects of Different Greening Modifications

Authors: An-Shik Yang, Chih-Yung Wen, Chiang-Ho Cheng, Yu-Hsuan Juan

Abstract:

The objective of this study is to conduct computational fluid dynamic (CFD) simulations for evaluating the cooling efficacy from vegetation implanted in a public park in the Taipei, Taiwan. To probe the impacts of park renewal by means of adding three pavilions and supplementary green areas on urban microclimates, the simulated results have revealed that the park having a higher percentage of green coverage ratio (GCR) tended to experience a better cooling effect. These findings can be used to explore the effects of different greening modifications on urban environments for achieving an effective thermal comfort in urban public spaces.

Keywords: CFD simulations, Green Coverage Ratio, Urban heat island, Urban Public Park

Procedia PDF Downloads 450
1413 Ultra-High Frequency Passive Radar Coverage for Cars Detection in Semi-Urban Scenarios

Authors: Pedro Gómez-del-Hoyo, Jose-Luis Bárcena-Humanes, Nerea del-Rey-Maestre, María-Pilar Jarabo-Amores, David Mata-Moya

Abstract:

A study of achievable coverages using passive radar systems in terrestrial traffic monitoring applications is presented. The study includes the estimation of the bistatic radar cross section of different commercial vehicle models that provide challenging low values which make detection really difficult. A semi-urban scenario is selected to evaluate the impact of excess propagation losses generated by an irregular relief. A bistatic passive radar exploiting UHF frequencies radiated by digital video broadcasting transmitters is assumed. A general method of coverage estimation using electromagnetic simulators in combination with estimated car average bistatic radar cross section is applied. In order to reduce the computational cost, hybrid solution is implemented, assuming free space for the target-receiver path but estimating the excess propagation losses for the transmitter-target one.

Keywords: bistatic radar cross section, passive radar, propagation losses, radar coverage

Procedia PDF Downloads 308
1412 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine

Authors: Allouache Nadia

Abstract:

Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.

Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine

Procedia PDF Downloads 232
1411 Analysis of a Multiejector Cooling System in a Truck at Different Loads

Authors: Leonardo E. Pacheco, Carlos A. Díaz

Abstract:

An alternative way of addressing the difficult to recover the useless heat is through an ejector refrigeration cycle for vehicles applications. A group of thermo-compressor supply the mechanical compressor function at conventional refrigeration compression system. The thermo-compressor group recovers the thermal energy from waste streams (exhaust gases product in internal combustion motors, gases burned in wellhead among others) to eliminate the power consumption of the mechanical compressor. These types of alternative cooling system (air-conditioners) present a kind of advantages in both the increase in energy efficiency and the improvement of the COP of the system being studied from their its mechanical simplicity (decrease of moving parts). An ejector refrigeration cycle represents a significant step forward in the optimization of the efficient use of energy in the process of air conditioning and an alternative to reduce the environmental impacts. On one side, with the energy recycling decreases the temperature of the gases thrown into the atmosphere, which contributes to the principal beneficiaries of the average temperature of the planet. In parallel, mitigating the environmental impact caused by the production and handling of conventional cooling fluids commonly available in the market, causing the destruction of the ozone layer. This work had studied the operation of the multiejector cooling system for a truck with a 420 HP engine at different rotation speed. The operation condition limits and the COP of multi-ejector cooling systems applied in a truck are analyzed for a variable rpm range from to 800–1800 rpm.

Keywords: ejector system, exhaust gas, multiejector cooling system, recovery energy

Procedia PDF Downloads 230
1410 Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel

Authors: J. Mohammadpour, G. E. Lau, S. Cheng, A. Lee

Abstract:

Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer.

Keywords: synthetic jets, microchannel, electronic cooling, computational fluid dynamics

Procedia PDF Downloads 177
1409 Conceptual Solution and Thermal Analysis of the Final Cooling Process of Biscuits in One Confectionary Factory in Serbia

Authors: Duško Salemović, Aleksandar Dedić, Matilda Lazić, Dragan Halas

Abstract:

The paper presents the conceptual solution for the final cooling of the chocolate dressing of biscuits in one confectionary factory in Serbia. The proposed concept solution was derived from the desired technological process of final cooling of biscuits and the required process parameters that were to be achieved, and which were an integral part of the project task. The desired process parameters for achieving proper hardening and coating formation are the exchanged amount of heat in the time unit between the two media (air and chocolate dressing), the speed of air inside the tunnel cooler, and the surface of all biscuits in contact with the air. These parameters were calculated in the paper. The final cooling of chocolate dressing on biscuits could be optimized by changing process parameters and dimensions of the tunnel cooler and looking for the appropriate values for them. The accurate temperature predictions and fluid flow analysis could be conducted by using heat balance and flow balance equations, having in mind the theory of similarity. Furthermore, some parameters were adopted from previous technology processes, such as the inlet temperature of biscuits and input air temperature. A thermal calculation was carried out, and it was demonstrated that the percentage error between the contact surface of the air and the chocolate biscuit topping, which is obtained from the heat balance and geometrically through the proposed conceptual solution, does not exceed 0.67%, which is a very good agreement. This enabled the quality of the cooling process of chocolate dressing applied on the biscuit and the hardness of its coating.

Keywords: chocolate dressing, air, cooling, heat balance

Procedia PDF Downloads 44
1408 The Effect of Wet Cooling Pad Thickness and Geometric Configuration to Enhance Evaporative Cooler Saturation Efficiency: A Review

Authors: Biruk Abate

Abstract:

Evaporative cooling occurs when air with high temperature and reduced humidity passes over a wet porous surface and a higher degree of cooling process is achieved for storage of fruits and vegetables due to greater rate of evaporation. The main objective of this reviewed study is to understand the effect of evaporative surface pad thickness and geometric configuration on the saturation efficiency of evaporative cooler and to state some related factors affecting the performance of the system. From this overview, selection of pad thickness and geometrical shape with suitable characteristics of heat and mass transfer and water holding capacity of the pads was reviewed as these parameters are important for saturation efficiency of evaporative cooling. Increasing the cooling pad thickness through increasing the face velocity increases the effectiveness of wet-bulb saturation. Increasing ambient temperature, inlet air speed and ambient air humidity decreases the wet bulb effectiveness and it increases with increasing length of the pad. Increasing the ambient temperature and inlet air velocity decreases the humidity ratio, but increases with increasing ambient air humidity and lengths of the pad. Increasing the temperature-humidity index is possible with increasing ambient temperature, inlet air velocity, ambient air humidity and pad length. Generally, all materials having a higher wetted surface area per unit volume give higher efficiency. Materials with higher thickness increase the wetted surface area for better mix-up of air and water to give higher efficiency for the same shape and this in turn helps to store fruits and vegetables.

Keywords: Degree of cooling, heat and mass transfer, evaporative cooling, porous surface

Procedia PDF Downloads 96
1407 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 394
1406 Piezoelectric based Passive Vibration Control of Composite Turbine Blade using Shunt Circuit

Authors: Kouider Bendine, Zouaoui Satla, Boukhoulda Farouk Benallel, Shun-Qi Zhang

Abstract:

Turbine blades are subjected to a variety of loads, lead to an undesirable vibration. Such vibration can cause serious damages or even lead to a total failure of the blade. The present paper addresses the vibration control of turbine blade. The study aims to propose a passive vibration control using piezoelectric material. the passive control is effectuated by shunting an RL circuit to the piezoelectric patch in a parallel configuration. To this end, a Finite element model for the blade with the piezoelectric patch is implemented in ANSYS APDL. The model is then subjected to a harmonic frequency-based analysis for the case of control on and off. The results show that the proposed methodology was able to reduce blade vibration by 18%.

Keywords: blade, active piezoelectric vibration control, finite element., shunt circuit

Procedia PDF Downloads 62
1405 The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag

Authors: Jiaxu Huang

Abstract:

The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%.

Keywords: crushing atmosphere, cooling methods, sieving particle size, TiC

Procedia PDF Downloads 104
1404 Effect Of Shading In Evaporatively Cooled Greenhouses In The Mediterranean Region

Authors: Nikolaos Katsoulas, Sofia Faliagka, Athanasios Sapounas

Abstract:

Greenhouse ventilation is an effective way to remove the extra heat from the greenhouse through air exchange between inside and outside when outside air temperature is lower. However, in the Mediterranean areas during summer, most of the day, the outside air temperature reaches values above 25 C; and natural ventilation can not remove the excess heat outside the greenhouse. Shade screens and whitewash are major existing measures used to reduce the greenhouse air temperature during summer by reducing the solar radiation entering the greenhouse. However, the greenhouse air temperature is reduced with a cost in radiation reduction. In addition, due to high air temperature values outside the greenhouse, generally, these systems are not sufficient for extracting the excess energy during sunny summer days and therefore, other cooling methods, such as forced ventilation combined with evaporative cooling, are needed. Evaporative cooling by means of pad and fan or fog systems is a common technique to reduce sensible heat load by increasing the latent heat fraction of dissipated energy. In most of the cases, the greenhouse growers, when all the above systems are available, apply both shading and evaporative cooling. If a movable screen is available, then the screen is usually activated when a certain radiation level is reached. It is not clear whether the shading screens should be used over the growth cycle or only during the most sensitive stages when the crops had a low leaf area and the canopy transpiration rate cannot significantly contribute to the greenhouse cooling. Furthermore, it is not clear which is the optimum radiation level that screen must be activated. This work aims to present the microclimate and cucumber crop physiological response and yield observed in two greenhouse compartments equipped with a pad and fan evaporative cooling system and a thermal/shading screen that is activated at different radiation levels: when the outside solar radiation reaches 700 or 900 W/m2. The greenhouse is located in Velestino, in Central Greece and the measurements are performed during the spring -summer period with the outside air temperature during summer reaching values up to 42C.

Keywords: microclimate, shading, screen, pad and fan, cooling

Procedia PDF Downloads 37
1403 Hydrothermal Energy Application Technology Using Dam Deep Water

Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong

Abstract:

Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.

Keywords: hydrothermal energy, HVAC, internet data center, free-cooling

Procedia PDF Downloads 52
1402 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia

Authors: Jamil Hijazi, Stirling Howieson

Abstract:

Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.

Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort

Procedia PDF Downloads 236
1401 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay

Abstract:

Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method

Procedia PDF Downloads 438
1400 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions

Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak

Abstract:

Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.

Keywords: energy saving, lightweight construction, PCM, simulation

Procedia PDF Downloads 254
1399 Intensification of Heat Transfer Using AL₂O₃-Cu/Water Hybrid Nanofluid in a Circular Duct Using Inserts

Authors: Muluken Biadgelegn Wollele, Mebratu Assaye Mengistu

Abstract:

Nanotechnology has created new opportunities for improving industrial efficiency and performance. One of the proposed approaches to improving the effectiveness of temperature exchangers is the use of nanofluids to improve heat transfer performance. The thermal conductivity of nanoparticles, as well as their size, diameter, and volume concentration, all played a role in influencing the rate of heat transfer. Nanofluids are commonly used in automobiles, energy storage, electronic component cooling, solar absorbers, and nuclear reactors. Convective heat transfer must be improved when designing thermal systems in order to reduce heat exchanger size, weight, and cost. Using roughened surfaces to promote heat transfer has been tried several times. Thus, both active and passive heat transfer methods show potential in terms of heat transfer improvement. There will be an added advantage of enhanced heat transfer due to the two methods adopted; however, pressure drop must be considered during flow. Thus, the current research aims to increase heat transfer by adding a twisted tap insert in a plain tube using a working fluid hybrid nanofluid (Al₂O₃-Cu) with a base fluid of water. A circular duct with inserts, a tube length of 3 meters, a hydraulic diameter of 0.01 meters, and tube walls with a constant heat flux of 20 kW/m² and a twist ratio of 125 was used to investigate Al₂O₃-Cu/H₂O hybrid nanofluid with inserts. The temperature distribution is better than with conventional tube designs due to stronger tangential contact and swirls in the twisted tape. The Nusselt number values of plain twisted tape tubes are 1.5–2.0 percent higher than those of plain tubes. When twisted tape is used instead of plain tube, performance evaluation criteria improve by 1.01 times. A heat exchanger that is useful for a number of heat exchanger applications can be built utilizing a mixed flow of analysis that incorporates passive and active methodologies.

Keywords: nanofluids, active method, passive method, Nusselt number, performance evaluation criteria

Procedia PDF Downloads 44
1398 Reduction in the Metabolic Cost of Human Walking Gaits Using Quasi-Passive Upper Body Exoskeleton

Authors: Nafiseh Ebrahimi, Gautham Muthukumaran, Amir Jafari

Abstract:

Human walking gait is considered to be the most efficient biped walking gait. There are various types of gait human follows during locomotion and arm swing is one of the most important factors which controls and differentiates human gaits. Earlier studies declared a 7% reduction in the metabolic cost due to the arm swing. In this research, we compared different types of arm swings in terms of metabolic cost reduction and then suggested, designed, fabricated and tested a quasi-passive upper body exoskeleton to study the metabolic cost reduction in the folded arm walking gate scenarios. Our experimental results validate a 10% reduction in the metabolic cost of walking aided by the application of the proposed exoskeleton.

Keywords: arm swing, MET (metabolic equivalent of a task), calorimeter, oxygen consumption, upper body quasi-passive exoskeleton

Procedia PDF Downloads 129
1397 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, immersed microelectronics, turbulent natural convection in enclosures

Procedia PDF Downloads 249
1396 Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China

Authors: Ruobing Liang, Jili Zhang, Chao Zhou

Abstract:

A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively.

Keywords: absorption chiller, solar PVT collector, solar heating and cooling, solar air-conditioning, parametric study, cost analysis

Procedia PDF Downloads 389
1395 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait

Authors: Ali A. Hammadi

Abstract:

In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.

Keywords: passive optical networks (PONs), fiber to the premises (FTTx), access network, OTDR

Procedia PDF Downloads 254
1394 Numerical Analysis of Passive Controlled Turbulent Flow around a Circular Cylinder

Authors: Mustafa Soyler, Mustafa M. Yavuz, Bulent Yaniktepe, Coskun Ozalp

Abstract:

In this study, unsteady two-dimensional turbulent flow around a circular cylinder and passive control of the flow with groove on the cylinder was examined. In the CFD analysis, solutions were made using turbulent flow conditions. Steady and unsteady solutions were used in turbulent flow analysis. Numerical analysis of the flow around the circular cylinder is difficult since flow is not in a stable regime when Reynold number is between 1000 and 10000. The analyses in this study were performed at a subcritical Re number of 5000 and the results were compared with available experimental results of the drag coefficient (Cd) and Strouhal (St) number values in the literature. The effect of different groove types and depths on the Cd coefficient has been analyzed and grooves increase the Cd coefficient compared to the smooth cylinder.

Keywords: CFD, drag coefficient, flow over cylinder, passive flow control

Procedia PDF Downloads 198
1393 Various Perspectives for the Concept of the Emotion Labor

Authors: Jae Soo Do, Kyoung-Seok Kim

Abstract:

Radical changes in the industrial environment, and spectacular developments of IT have changed the current of managements from people-centered to technology- or IT-centered. Interpersonal emotion exchanges have long become insipid and interactive services have also come as mechanical reactions. This study offers various concepts for the emotional labor based on traditional studies on emotional labor. Especially the present day, on which human emotions are subject to being served as machinized thing, is the time when the study on human emotions comes momentous. Precedent researches on emotional labors commonly and basically dealt with the relationship between the active group who performs actions and the passive group who is done with the action. This study focuses on the passive group and tries to offer a new perspective of 'liquid emotion' as a defence mechanism for the passive group from the external environment. Especially, this addresses a concrete discussion on directions of following studies on the liquid labor as a newly suggested perspective.

Keywords: emotion labor, surface acting, deep acting, liquid emotion

Procedia PDF Downloads 318
1392 From “Learning to Read” to “Reading to Learn”

Authors: Lucélia Alcântara

Abstract:

Reading has been seen as a passive skill by many people for a long time. However, when one comes to study it deeply and in a such a way that the act of reading equals acquiring knowledge through living an experience that belongs to him/her, passive definitely becomes active. Material development with a focus on reading has to consider much more than reading strategies. The following questions are asked: Is the material appropriate to the students’ reality? Does it make students think and state their points of view? With that in mind a lesson has been developed to illustrate theory becoming practice. Knowledge, criticality, intercultural experience and social interaction. That is what reading is for.

Keywords: reading, culture, material development, learning

Procedia PDF Downloads 507