Search results for: organophosphate pesticide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 150

Search results for: organophosphate pesticide

90 Comparative Assessment of Organo-Chlorine Pesticides Residue in Fruits and Fruit Juices

Authors: Saidu Garba Okereafor Stella

Abstract:

The presence of 15 organochlorine pesticides residue was assessed from 29 different fruits and fruit juice samples from selected farms in Kaduna and Niger States using the quick easy cheap effective rugged and safe (QuEChERS), followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The results showed the presence of varying concentrations of ten (10) organochlorine pesticide residues in all the samples with Endrin ketone showing the highest concentration in 3 samples from Kaduna (guava juice 1 and 2 0.099 to 0.145 mg/kg) and Niger States (orange juice J19 0.102 mg/kg). The heptachlor was detected at high concentration in 11 samples, 7 samples from Kaduna State (mango juice 0.011 mg/kg, Washington orange 0.014 mg/kg, Valencia orange fruit 0.020 mg/kg, orange juice 0.011, white guava fruit 0.024 mg/kg, guava juice 0.023 mg/kg, guava juice 2 0.024 mg/kg) and 4 samples from (mango juice 1 0.015 mg/kg, pineapple juice 1 0.0120 mg/kg pineapple juice 2 011 mg/kg and mix juice 2 0.012 mg/kg) from Niger State. Dieldrine and endosulfansulfate were detected at high levels in one sample each from Niger (guava fruit 0.019 mg/kg and mixed juice1 0.011mg/kg), respectively. However, all were above the maximum residue limits (MRLs) set by WHO/FAO which suggest that people consuming these type of contaminated fruits and fruits juices may contact diseases associated with those organochlorine pesticides residue. Minute concentrations of other organochlorines (α- BHC, δ- BHC, β- BHC, Lindane, and p’p DDT) ranged from 0.003 to 0.015 were recorded below the MRLs.

Keywords: fruits and fruits juices, organochlorine pesticide residue, comparative studies, gc-ms spectrophometer

Procedia PDF Downloads 107
89 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 301
88 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 404
87 Precision Pest Management by the Use of Pheromone Traps and Forecasting Module in Mobile App

Authors: Muhammad Saad Aslam

Abstract:

In 2021, our organization has launched our proprietary mobile App i.e. Farm Intelligence platform, an industrial-first precision agriculture solution, to Pakistan. It was piloted at 47 locations (spanning around 1,200 hectares of land), addressing growers’ pain points by bringing the benefits of precision agriculture to their doorsteps. This year, we have extended its reach by more than 10 times (nearly 130,000 hectares of land) in almost 600 locations across the country. The project team selected highly infested areas to set up traps, which then enabled the sales team to initiate evidence-based conversations with the grower community about preventive crop protection products that includes pesticides and insecticides. Mega farmer meeting field visits and demonstrations plots coupled with extensive marketing activities, were setup to include farmer community. With the help of App real-time pest monitoring (using heat maps and infestation prediction through predictive analytics) we have equipped our growers with on spot insights that will help them optimize pesticide applications. Heat maps allow growers to identify infestation hot spots to fine-tune pesticide delivery, while predictive analytics enable preventive application of pesticides before the situation escalates. Ultimately, they empower growers to keep their crops safe for a healthy harvest.

Keywords: precision pest management, precision agriculture, real time pest tracking, pest forecasting

Procedia PDF Downloads 43
86 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor

Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li

Abstract:

Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.

Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide

Procedia PDF Downloads 84
85 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid Onaizah

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 42
84 Factors Associated with Pesticides Used and Plasma Cholinesterase Level among Agricultural Workers in Rural Area, Thailand

Authors: Pirakorn Sukonthaman, Paphitchaya Temphattharachok, Warangkana Thammasanya, Kraichart Tantrakarnarpa, Tanongson Tientavorn

Abstract:

Agriculture is the main occupation in Thailand. Excessive amount of pesticides are used to increase the products but are toxic to human body. In 2009, Bureau of Epidemiology received 1,691 cases reported with pesticides toxicity (2.66:100,000) which 10.61 % of them is caused by Organophosphate. The purposes are to find factors associated with pesticides used and plasma cholinesterase level and other emerging issues that previous studies did not explain among agricultural workers in Baan Na Yao, Chachoengsao, Thailand. This research was an exploratory mixed method study. Qualitative interviews and quantitative questionnaires were used together in order to gather information from the agricultural workers (mainly cassava and rice farming) directly exposed to pesticides within 2 months simultaneously. Qualitative participants were selected by purposive sampling and a total survey for quantitative ones. The quantitative data was statistically analyzed by using multiple logistic regression model. Qualitative data was transcribed verbatim and thematically analyzed. For qualitative study, 15 participants were interviewed and 300/323 participants (92.88%) were given questionnaires, of which were 175 male and 125 female and 113 among them were spraymen. The prevalence of abnormal plasma cholinesterase level was 92.28% (Safe 7.72% Risky 49.33% and Unsafe 42.95%). Participants with inappropriate behaviors during spraying had a significant association with plasma cholinesterase level (95%CI=1.399-14.858) but other factors such as age, gender, education, attitude and knowledge had no association. They also had encountered various symptoms from pesticides such as fatigue (61%), vertigo (59.67%) and headache (58.86%), etc. Although they had high knowledge and attitude they still had poor behaviors. Moreover, our qualitative component showed that though they had worn the personal protective equipment (PPE) regularly, their PPE was not standard. Not only substandard PPE, but also there were obstacles of wearing such as the hot climate and inconvenience. They misunderstood their symptoms from using pesticides as allergy. Therefore, they did not seek for proper medical check-ups and treatment. This research revealed almost all of the participants have abnormal levels of plasma cholinesterase related especially those with poor behaviors. They also wore PPE but inadequately and misunderstood the symptoms produced by organophosphate use as allergy. Therefore, they did not seek for medical treatment. Occupation health education, modification of PPE and periodic medical checking are ways to make agricultural workers concern and know if there is any progression in a long term.

Keywords: pesticides, plasma cholinesterase level, spraymen, agricultural workers

Procedia PDF Downloads 330
83 Micro Plasma an Emerging Technology to Eradicate Pesticides from Food Surface

Authors: Muhammad Saiful Islam Khan, Yun Ji Kim

Abstract:

Organophosphorus pesticides (OPPs) have been widely used to replace more persistent organochlorine pesticides because OPPs are more soluble in water and decompose rapidly in aquatic systems. Extensive uses of OPPs in modern agriculture are the major cause of the contamination of surface water. Regardless of the advantages gained by the application of pesticides in modern agriculture, they are a threat to the public health environment. With the aim of reducing possible health threats, several physical and chemical treatment processes have been studied to eliminate biological and chemical poisons from food stuff. In the present study, a micro-plasma device was used to reduce pesticides from the surface of food stuff. Pesticide free food items chosen in this study were perilla leaf, tomato, broccoli and blueberry. To evaluate the removal efficiency of pesticides, different washing methods were followed such as soaking with water, washing with bubbling water, washing with plasma-treated water and washing with chlorine water. 2 mL of 2000 ppm pesticide samples, namely, diazinone and chlorpyrifos were individuality inoculated on food surface and was air dried for 2 hours before treated with plasma. Plasma treated water was used in two different manners one is plasma treated water with bubbling the other one is aerosolized plasma treated water. The removal efficiency of pesticides from food surface was studied using HPLC. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows minimum 72% to maximum 87 % reduction for 4 min treatment irrespective to the types of food items and the types of pesticides sample, in case of soaking and bubbling the reduction is 8% to 48%. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows somewhat similar reduction ability which is significantly higher comparing to the soaking and bubbling washing system. The temperature effect of the washing systems was also evaluated; three different temperatures were set for the experiment, such as 22°C, 10°C and 4°C. Decreasing temperature from 22°C to 10°C shows a higher reduction in the case of washing with plasma and aerosolized plasma treated water, whereas an opposite trend was observed for the washing with chlorine water. Further temperature reduction from 10°C to 4°C does not show any significant reduction of pesticides, except for the washing with chlorine water. Chlorine water treatment shows lesser pesticide reduction with the decrease in temperature. The color changes of the treated sample were measured immediately and after one week to evaluate if there is any effect of washing with plasma treated water and with chlorine water. No significant color changes were observed for either of the washing systems, except for broccoli washing with chlorine water.

Keywords: chlorpyrifos, diazinone, pesticides, micro plasma

Procedia PDF Downloads 156
82 Gas Chromatography Coupled to Tandem Mass Spectrometry and Liquid Chromatography Coupled to Tandem Mass Spectrometry Qualitative Determination of Pesticides Found in Tea Infusions

Authors: Mihai-Alexandru Florea, Veronica Drumea, Roxana Nita, Cerasela Gird, Laura Olariu

Abstract:

The aim of this study was to investigate the residues of pesticide found in tea water infusions. A multi-residues method to determine 147 pesticides has been developed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) procedure and dispersive solid phase extraction (d-SPE) for the cleanup the pesticides from complex matrices such as plants and tea. Sample preparation was carefully optimized for the efficient removal of coextracted matrix components by testing more solvent systems. Determination of pesticides was performed using GC-MS/MS (100 of pesticides) and LC-MS/MS (47 of pesticides). The selected reaction monitoring (SRM) mode was chosen to achieve low detection limits and high compounds selectivity and sensitivity. Overall performance was evaluated and validated according to DG-SANTE Guidelines. To assess the pesticide residue transfer rate (qualitative) from dried tea in infusions the samples (tea) were spiked with a mixture of pesticides at the maximum residues level accepted for teas and herbal infusions. In order to investigate the release of the pesticides in tea preparations, the medicinal plants were prepared in four ways by variation of water temperature and the infusion time. The pesticides from infusions were extracted using two methods: QuEChERS versus solid-phase extraction (SPE). More that 90 % of the pesticides studied was identified in infusion.

Keywords: tea, solid-phase extraction (SPE), selected reaction monitoring (SRM), QuEChERS

Procedia PDF Downloads 187
81 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 46
80 Adsorption and Selective Determination Ametryne in Food Sample Using of Magnetically Separable Molecular Imprinted Polymers

Authors: Sajjad Hussain, Sabir Khan, Maria Del Pilar Taboada Sotomayor

Abstract:

This work demonstrates the synthesis of magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo first order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32, and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 463
79 Use of Magnetically Separable Molecular Imprinted Polymers for Determination of Pesticides in Food Samples

Authors: Sabir Khan, Sajjad Hussain, Ademar Wong, Maria Del Pilar Taboada Sotomayor

Abstract:

The present work aims to develop magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high-performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first-order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo-first-order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32 and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.

Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption

Procedia PDF Downloads 439
78 Chronic Pesticides Exposure and Certain Endocrine Functions Among Farmers in East Almnaif District, Ismailia, Egypt

Authors: Amani Waheed, Mostafa Kofi, Shaymaa Attia, Soha Younis, Basma Abdel Hadi

Abstract:

Background: Exposure to pesticides is one of the most important occupational risks among farmers in developing countries. Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. Objective: To investigate thyroid and reproductive hormones and fasting blood glucose levels among farmers chronically exposed to pesticide from East Almnaif district, Ismailia governorate. Methods: An analytical cross-sectional study was conducted on 43 farmers with active involvement pesticides handling and 43 participants not occupationally exposed to pesticides as the control group. A structured interview questionnaire measuring the sociodemographic characteristics, pesticides exposure characteristics, and safety measures was used. General examination including measurements of height, weight, and blood pressure was done. Moreover, levels of plasma cholinesterase enzyme (PChE), glucose, as well as reproductive and thyroid hormones (TSH, T4, and testosterone) were determined. Results: There were no statistically significant differences between both groups regarding their age, educational level, smoking status, and body mass index. The mean duration of exposure was 20.60 11.06 years. Majority of farmers (76.7%) did not use any personal protective equipment (PPE) during pesticides handling. The mean systolic blood pressure among exposed farmers was greater (134.88 17.18 mm Hg) compared to control group (125 14.69 mm Hg) with statistically significant difference (p = 0.003). The mean diastolic blood pressure was higher (84.02 8.69 mm Hg) compared to control group (78.79 8.98 mm Hg) with statistically significant difference (p = 0.006). The pesticide exposed farmers had statistically significant lower level of PChE (3969.93 1841U/L) than control group (4879.29 1950.08 U/L). Additionally, TSH level was significantly higher in exposed farmers (median =1.39µIU/ml) compared to controls (median = 0.91 µIU/ml) (p=0.032). While, the exposed group had a lower T4 level (6.91 1.91 µg/dl) compared to the control group (7.79 2.10µg/dl), with the statistically significant difference between the two groups (p = 0.045). The exposed group had significantly lower level of testosterone hormone (median=3.37 ng/ml) compared to the control group (median= 6.22 ng/ml) (p=0.003). While, the exposed farmers had statistically insignificant higher level of fasting blood glucose (median =89 mg/dl) than the controls (median=88 mg/dl). Furthermore, farmers who did not use PPE had statistically significant lower level of T4 (6.57 1.81µg/dl) than farmers who used PPE during handling of pesticides (8.01 1.89 µg/dl). Conclusion: Chronic exposure to pesticides exerts disturbing action on reproductive function and thyroid function of the male farmers.

Keywords: chronic occupational pesticide exposure, Diabetes mellitus, male reproductive hormones, thyroid function

Procedia PDF Downloads 101
77 Creating Risk Maps on the Spatiotemporal Occurrence of Agricultural Insecticides in Sub-Saharan Africa

Authors: Chantal Hendriks, Harry Gibson, Anna Trett, Penny Hancock, Catherine Moyes

Abstract:

The use of modern inputs for crop protection, such as insecticides, is strongly underestimated in Sub-Saharan Africa. Several studies measured toxic concentrations of insecticides in fruits, vegetables and fish that were cultivated in Sub-Saharan Africa. The use of agricultural insecticides has impact on human and environmental health, but it also has the potential to impact on insecticide resistance in malaria transmitting mosquitos. To analyse associations between historic use of agricultural insecticides and the distribution of insecticide resistance through space and time, the use and environmental fate of agricultural insecticides needs to be mapped through the same time period. However, data on the use and environmental fate of agricultural insecticides in Africa are limited and therefore risk maps on the spatiotemporal occurrence of agricultural insecticides are created using environmental data. Environmental data on crop density and crop type were used to select the areas that most likely receive insecticides. These areas were verified by a literature review and expert knowledge. Pesticide fate models were compared to select most dominant processes that are involved in the environmental fate of insecticides and that can be mapped at a continental scale. The selected processes include: surface runoff, erosion, infiltration, volatilization and the storing and filtering capacity of soils. The processes indicate the risk for insecticide accumulation in soil, water, sediment and air. A compilation of all available data for traces of insecticides in the environment was used to validate the maps. The risk maps can result in space and time specific measures that reduce the risk of insecticide exposure to non-target organisms.

Keywords: crop protection, pesticide fate, tropics, insecticide resistance

Procedia PDF Downloads 112
76 Detection of Glyphosate Using Disposable Sensors for Fast, Inexpensive and Reliable Measurements by Electrochemical Technique

Authors: Jafar S. Noori, Jan Romano-deGea, Maria Dimaki, John Mortensen, Winnie E. Svendsen

Abstract:

Pesticides have been intensively used in agriculture to control weeds, insects, fungi, and pest. One of the most commonly used pesticides is glyphosate. Glyphosate has the ability to attach to the soil colloids and degraded by the soil microorganisms. As glyphosate led to the appearance of resistant species, the pesticide was used more intensively. As a consequence of the heavy use of glyphosate, residues of this compound are increasingly observed in food and water. Recent studies reported a direct link between glyphosate and chronic effects such as teratogenic, tumorigenic and hepatorenal effects although the exposure was below the lowest regulatory limit. Today, pesticides are detected in water by complicated and costly manual procedures conducted by highly skilled personnel. It can take up to several days to get an answer regarding the pesticide content in water. An alternative to this demanding procedure is offered by electrochemical measuring techniques. Electrochemistry is an emerging technology that has the potential of identifying and quantifying several compounds in few minutes. It is currently not possible to detect glyphosate directly in water samples, and intensive research is underway to enable direct selective and quantitative detection of glyphosate in water. This study focuses on developing and modifying a sensor chip that has the ability to selectively measure glyphosate and minimize the signal interference from other compounds. The sensor is a silicon-based chip that is fabricated in a cleanroom facility with dimensions of 10×20 mm. The chip is comprised of a three-electrode configuration. The deposited electrodes consist of a 20 nm layer chromium and 200 nm gold. The working electrode is 4 mm in diameter. The working electrodes are modified by creating molecularly imprinted polymers (MIP) using electrodeposition technique that allows the chip to selectively measure glyphosate at low concentrations. The modification included using gold nanoparticles with a diameter of 10 nm functionalized with 4-aminothiophenol. This configuration allows the nanoparticles to bind to the working electrode surface and create the template for the glyphosate. The chip was modified using electrodeposition technique. An initial potential for the identification of glyphosate was estimated to be around -0.2 V. The developed sensor was used on 6 different concentrations and it was able to detect glyphosate down to 0.5 mgL⁻¹. This value is below the accepted pesticide limit of 0.7 mgL⁻¹ set by the US regulation. The current focus is to optimize the functionalizing procedure in order to achieve glyphosate detection at the EU regulatory limit of 0.1 µgL⁻¹. To the best of our knowledge, this is the first attempt to modify miniaturized sensor electrodes with functionalized nanoparticles for glyphosate detection.

Keywords: pesticides, glyphosate, rapid, detection, modified, sensor

Procedia PDF Downloads 153
75 Efficiency of a Molecularly Imprinted Polymer for Selective Removal of Chlorpyrifos from Water Samples

Authors: Oya A. Urucu, Aslı B. Çiğil, Hatice Birtane, Ece K. Yetimoğlu, Memet Vezir Kahraman

Abstract:

Chlorpyrifos is an organophosphorus pesticide which can be found in environmental water samples. The efficiency and reuse of a molecularly imprinted polymer (chlorpyrifos - MIP) were investigated for the selective removal of chlorpyrifos residues. MIP was prepared with UV curing thiol-ene polymerization technology by using multifunctional thiol and ene monomers. The thiol-ene curing reaction is a radical induced process, however unlike other photoinitiated polymerization processes, this polymerization process is a free-radical reaction that proceeds by a step-growth mechanism, involving two main steps; a free-radical addition followed by a chain transfer reaction. It assures a very rapidly formation of a uniform crosslinked network with low shrinkage, reduced oxygen inhibition during curing and excellent adhesion. In this study, thiol-ene based UV-curable polymeric materials were prepared by mixing pentaerythritol tetrakis(3-mercaptopropionate), glyoxal bis diallyl acetal, polyethylene glycol diacrylate (PEGDA) and photoinitiator. Chlorpyrifos was added at a definite ratio to the prepared formulation. Chemical structure and thermal properties were characterized by FTIR and thermogravimetric analysis (TGA), respectively. The pesticide analysis was performed by gas chromatography-mass spectrometry (GC-MS). The influences of some analytical parameters such as pH, sample volume, amounts of analyte concentration were studied for the quantitative recoveries of the analyte. The proposed MIP method was applied to the determination of chlorpyrifos in river and tap water samples. The use of the MIP provided a selective and easy solution for removing chlorpyrifos from the water.

Keywords: molecularly imprinted polymers, selective removal, thilol-ene, uv-curable polymer

Procedia PDF Downloads 276
74 Aquatic Sediment and Honey of APIs Mellifera as Bioindicators of Pesticide Residues

Authors: Luana Guerra, Silvio C. Sampaio, Vladimir Pavan Margarido, Ralpho R. Reis

Abstract:

Brazil is the world's largest consumer of pesticides. The excessive use of these compounds has negative impacts on animal and human life, the environment, and food security. Bees, crucial for pollination, are exposed to pesticides during the collection of nectar and pollen, posing risks to their health and the food chain, including honey contamination. Aquatic sediments are also affected, impacting water quality and the microbiota. Therefore, the analysis of aquatic sediments and bee honey is essential to identify environmental contamination and monitor ecosystems. The aim of this study was to use samples of honey from honeybees (Apis mellifera) and aquatic sediment as bioindicators of environmental contamination by pesticides and their relationship with agricultural use in the surrounding areas. The sample collections of sediment and honey were carried out in two stages. The first stage was conducted in the Bituruna municipality region in the second half of the year 2022, and the second stage took place in the regions of Laranjeiras do Sul, Quedas do Iguaçu, and Nova Laranjeiras in the first half of the year 2023. In total, 10 collection points were selected, with 5 points in the first stage and 5 points in the second stage, where one sediment sample and one honey sample were collected for each point, totaling 20 samples. The honey and sediment samples were analyzed at the Laboratory of the Paraná Institute of Technology, with ten samples of honey and ten samples of sediment. The selected extraction method was QuEChERS, and the analysis of the components present in the sample was performed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The pesticides Azoxystrobin, Epoxiconazole, Boscalid, Carbendazim, Haloxifope, Fomesafen, Fipronil, Chlorantraniliprole, Imidacloprid, and Bifenthrin were detected in the sediment samples from the study area in Laranjeiras do Sul, Paraná, with Carbendazim being the compound with the highest concentration (0.47 mg/kg). The honey samples obtained from the apiaries showed satisfactory results, as they did not show any detection or quantification of the analyzed pesticides, except for Point 9, which had the fungicide tebuconazole but with a concentration Keywords: contamination, water research, agrochemicals, beekeeping activity

Procedia PDF Downloads 15
73 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes

Authors: Hacer Sule Gonul, Vedat Uyak

Abstract:

Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.

Keywords: pesticide, drinking water, carbon nanotube, adsorption

Procedia PDF Downloads 145
72 Identification of Persistent Trace Organic Pollutants in Various Waste Water Samples Using HPLC

Authors: Almas Hamid, Ghazala Yaqub, Aqsa Riaz

Abstract:

Qualitative validation was performed to detect the presence of persistent organic pollutants (POPs) in various wastewater samples collected from domestic sources (Askari XI housing society, Bedian road Lahore) industrial sources (PET bottles, pharmaceutical, textile) and a municipal drain (Hudiara drain) in Lahore. In addition wastewater analysis of the selected parameter was carried out. pH for wastewater samples from Askari XI, PET bottles, pharmaceutical, textile and Hudiara drain were 6.9, 6.7, 6.27, 7.18 and 7.9 respectively, within the NEQS Pakistan range that is 6-9. TSS for the respective samples was 194, 241, 254, 140 and 251 mg/L, in effluent for pet bottle industry, pharmaceutical and Hudiara drain and exceeded the NEQS Pakistan. Chemical oxygen demand (COD) for the wastewater samples was 896 mg/L, 166 mg/L, 419 mg/L, 812 mg/L and 610 mg/L respectively, all in excess of NEQS (150 mg/L). Similarly the biological oxygen demand (BOD) values (110.8, 170, 423, 355 and 560 mg/L respectively) were also above NEQS limits (80 mg/L). Chloride (Cl-) content, total dissolved solids (TDS) and temperature were found out to be within the prescribed standard limits. The POPs selected for analysis included five pesticides/insecticides (D. D, Karate, Commando, Finis insect killer, Bifenthrin) and three polycyclic aromatic hydrocarbons (PAHs) (naphthalene, anthracene, phenanthrene). Peak values of standards were compared with that of wastewater samples. The results showed the presence of D.D in all wastewater samples, pesticide Karate was identified in Askari XI and textile industry sample. Pesticide Commando, Finis (insect killer) and Bifenthrin were detected in Askari XI and Hudiara drain wastewater samples. In case of PAHs; naphthalene was identified in all the five wastewater samples whereas anthracene and phenanthrene were detected in samples of Askari XI housing society, PET bottles industry, pharmaceutical industry and textile industry but totally absent in Hudiara drain wastewater. Practical recommendations have been put forth to avoid hazardous impacts of incurred samples.

Keywords: HPLC studies, lahore, physicochemical analysis, wastewater

Procedia PDF Downloads 237
71 Globalization of Pesticide Technology and Sustainable Agriculture

Authors: Gagandeep Kaur

Abstract:

The pesticide industry is a big supplier of agricultural inputs. The uses of pesticides control weeds, fungal diseases, etc., which causes of yield losses in agricultural production. In agribusiness and agrichemical industry, Globalization of markets, competition and innovation are the dominant trends. By the tradition of increasing the productivity of agro-systems through generic, universally applicable technologies, innovation in the agrichemical industry is limited. The marketing of technology of agriculture needs to deal with some various trends such as locally-organized forces that envision regionalized sustainable agriculture in the future. Agricultural production has changed dramatically over the past century. Before World War second agricultural production was featured as a low input of money, high labor, mixed farming and low yields. Although mineral fertilizers were applied already in the second half of the 19th century, most f the crops were restricted by local climatic, geological and ecological conditions. After World War second, in the period of reconstruction, political and socioeconomic pressure changed the nature of agricultural production. For a growing population, food security at low prices and securing farmer income at acceptable levels became political priorities. Current agricultural policy the new European common agricultural policy is aimed to reduce overproduction, liberalization of world trade and the protection of landscape and natural habitats. Farmers have to increase the quality of their productivity and they have to control costs because of increased competition from the world market. Pesticides should be more effective at lower application doses, less toxic and not pose a threat to groundwater. There is a big debate taking place about how and whether to mitigate the intensive use of pesticides. This debate is about the future of agriculture which is sustainable agriculture. This is possible by moving away from conventional agriculture. Conventional agriculture is featured as high inputs and high yields. The use of pesticides in conventional agriculture implies crop production in a wide range. To move away from conventional agriculture is possible through the gradual adoption of less disturbing and polluting agricultural practices at the level of the cropping system. For a healthy environment for crop production in the future there is a need for the maintenance of chemical, physical or biological properties. There is also required to minimize the emission of volatile compounds in the atmosphere. Companies are limiting themselves to a particular interpretation of sustainable development, characterized by technological optimism and production-maximizing. So the main objective of the paper will present the trends in the pesticide industry and in agricultural production in the era of Globalization. The second objective is to analyze sustainable agriculture. Companies of pesticides seem to have identified biotechnology as a promising alternative and supplement to the conventional business of selling pesticides. The agricultural sector is in the process of transforming its conventional mode of operation. Some experts give suggestions to farmers to move towards precision farming and some suggest engaging in organic farming. The methodology of the paper will be historical and analytical. Both primary and secondary sources will be used.

Keywords: globalization, pesticides, sustainable development, organic farming

Procedia PDF Downloads 71
70 Effect of Amlodipine on Dichlorvos-Induced Seizure in Mice

Authors: Omid Ghollipoor Bashiri, Farzam Hatefi

Abstract:

Dichlorvos a synthetic organophosphate poisons are used as insecticide. These toxins can be used insecticides in agriculture and medicine for destruction and/or eradication of ectoparasites of animals. Studies have shown that Dichlorvos creation seizure effects in different animals. Amlodipine, dihydropyridine calcium channel blockers, widely used for treatment of cardiovascular diseases. Studies have shown that the calcium channel blockers are anticonvulsant effects in different animal models. The aim of this study was to determine the effect of Amlodipine on Dichlorvos-induced seizures in mice. In this experiment, the animals were received different doses of Amlodipine (2.5, 5, 10, 20 and 40 mg/ kg b.wt.) intraperitoneally 30 min before intraperitoneal injection of Dichlorvos (50 mg/kg b.wt). After Dichlorvos injection, clonic and tonic seizures, and finally was the fate was investigated. Results showed that Amlodipine dose-dependently reduced the severity of Dichlorvos-induced seizures, so that Amlodipine at a dose of 5mg (The lowest, p<0.05) and 40 mg/kg b.wt. (The highest, p<0.001) which had anticonvulsant effects. The anticonvulsant activity of Amlodipine suggests that possibly due to the antagonistic effect on voltage-dependent calcium channel.

Keywords: dichlorvos, amlodipine, seizures, mice

Procedia PDF Downloads 282
69 The Effect of Acute Toxicity and Thyroid Hormone Treatments on Hormonal Changes during Embryogenesis of Acipenser persicus

Authors: Samaneh Nazeri, Bagher Mojazi Amiri, Hamid Farahmand

Abstract:

Production of high quality fish eggs with reasonable hatching rate makes a success in aquaculture industries. It is influenced by the environmental stimulators and inhibitors. Diazinon is a widely-used pesticide in Golestan province (Southern Caspian Sea, North of Iran) which is washed to the aquatic environment (3 mg/L in the river). It is little known about the effect of this pesticide on the embryogenesis of sturgeon fish, the valuable species of the Caspian Sea. Hormonal content of the egg is an important factor to guaranty the successful passes of embryonic stages. In this study, the fate of Persian sturgeon embryo to 24, 48, 72, and 96-hours exposure of diazinon (LC50 dose) was tested. Also, the effect of thyroid hormones (T3 and T4) on these embryos was tested concurrently or separately with diazinon LC 50 dose. Fertilized eggs are exposed to T3 (low dose: 1 ng/ml, high dose: 10 ng/ml), T4 (low dose: 1 ng/ml, high dose: 10 ng/ml). Six eggs were randomly selected from each treatment (with three replicates) in five developmental stages (two cell- division, neural, heart present, heart beaten, and hatched larvae). The possibility of changing T3, T4, and cortisol contents of the embryos were determined in all treated groups and in every mentioned embryonic stage. The hatching rate in treated groups was assayed at the end of the embryogenesis to clarify the effect of thyroid hormones and diazinon. The results indicated significant differences in thyroid hormone contents, but no significant differences were recognized in cortisol levels at various early life stages of embryos. There was also significant difference in thyroid hormones in (T3, T4) + diazinon treated embryos (P˂0.05), while no significant difference between control and treatments in cortisol levels was observed. The highest hatching rate was recorded in HT3 treatment, while the lowest hatching rate was recorded for diazinon LC50 treatment. The result confirmed that Persian sturgeon embryo is less sensitive to diazinon compared to teleost embryos, and thyroid hormones may increase hatching rate even in the presence of diazinon.

Keywords: Persian sturgeon, diazinon, thyroid hormones, cortisol, embryo

Procedia PDF Downloads 278
68 Microbiological Analysis of Polluted Water with Pesticides in Ben Mhidi (Northeastern of Algeria)

Authors: Aimeurnadjette, Hammoudi Abd Erahmen, Bordjibaouahiba

Abstract:

For many years, the pesticides used in agriculture have been responsible for environmental degradation, particularly noticeable in the areas of intensive agriculture, particularly through contamination of surface and groundwater. Our study was conducted to isolate and identify the microflora of water polluted by pesticides in an area with an agricultural vocation (Ben M'Hidi) subject to the pesticide effect for several years. Isolated fungal strains were identified based on the morphology of their vegetative and reproductive apparatus. The micromycètes were obtained; they belong mainly to the genera Aspergillus, Penicillium and Trichoderma. Furthermore, most bacterial strains characterized in this work, are that of the genus Aeromonas, Pseudomonas that are widely represented in the study of the biodegradation of pesticides.

Keywords: isolated, strains, polluted, pesticides

Procedia PDF Downloads 63
67 Degradation of Endosulfan in Different Soils by Indigenous and Adapted Microorganisms

Authors: A. Özyer, N. G. Turan, Y. Ardalı

Abstract:

The environmental fate of organic contaminants in soils is influenced significantly by the pH, texture of soil, water content and also presence of organic matter. In this study, biodegradation of endosulfan isomers was studied in two different soils (Soil A and Soil B) that have contrasting properties in terms of their texture, pH, organic content, etc. Two Nocardia sp., which were isolated from soil, were used for degradation of endosulfan. Soils were contaminated with commercial endosulfan. Six sets were maintained from two different soils, contaminated with different endosulfan concentrations for degradation experiments. Inoculated and uninoculated mineral media with Nocardia isolates were added to the soils and mixed. Soils were incubated at a certain temperature (30 °C) during ten weeks. Residue endosulfan and its metabolites’ concentrations were determined weekly during the incubation period. The changes of the soil microorganisms were investigated weekly.

Keywords: endosulfan, biodegradation, Nocardia sp. soil, organochlorine pesticide

Procedia PDF Downloads 347
66 Single Species vs Mixed Microbial Culture Degradation of Pesticide in a Membrane Bioreactor

Authors: Karan R. Chavan, Srivats Gopalan, Kumudini V. Marathe

Abstract:

In the current work, the comparison of degradation of malathion by single species, Pseudomonas Stutzeri, and Activated Sludge/Mixed Microbial Culture is studied in a Membrane Bioreactor. Various parameters were considered to study the effect of single species degradation compared to degradation by activated sludge. The experimental results revealed 85-90% reduction in the COD of the Malathion containing synthetic wastewater. Complete reduction of malathion was observed within 24 hours in both the cases. The critical flux was 10 LMH for both the systems. Fouling propensity, Cake and Membrane resistances were calculated thus giving an insight regarding the working of Membrane Bioreactor-based on single species and activated sludge.

Keywords: fouling, membrane bioreactor, mixed microbial culture, single species

Procedia PDF Downloads 324
65 Recirculation Type Photocatalytic Reactor for Degradation of Monocrotophos Using TiO₂ and W-TiO₂ Coated Immobilized Clay Beads

Authors: Abhishek Sraw, Amit Sobti, Yamini Pandey, R. K. Wanchoo, Amrit Pal Toor

Abstract:

Monocrotophos (MCP) is a widely used pesticide in India, which belong to an extremely toxic organophosphorus family, is persistent in nature and its toxicity is widely reported in all environmental segments in the country. Advanced Oxidation Process (AOP) is a promising solution to the problem of water pollution. TiO₂ is being widely used as a photocatalyst because of its many advantages, but it has a large band gap, due to which it is modified using metal and nonmetal dopant to make it active under sunlight and visible light. The use of nanosized powdered catalysts makes the recovery process extremely complicated. Hence the aim is to use low cost, easily available, eco-friendly clay material in form of bead as the support for the immobilization of catalyst, to solve the problem of post-separation of suspended catalyst from treated water. A recirculation type photocatalytic reactor (RTPR), using ultraviolet light emitting source (blue black lamp) was designed which work effectively for both suspended catalysts and catalyst coated clay beads. The bare, TiO₂ and W-TiO₂ coated clay beads were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and N₂ adsorption–desorption measurements techniques (BET) for their structural, textural and electronic properties. The study involved variation of different parameters like light conditions, recirculation rate, light intensity and initial MCP concentration under UV and sunlight for the degradation of MCP. The degradation and mineralization studies of the insecticide solution were performed using UV-Visible spectrophotometer, and COD vario-photometer and GC-MS analysis respectively. The main focus of the work lies in checking the recyclability of the immobilized TiO₂ over clay beads in the developed RTPR up to 30 continuous cycles without reactivation of catalyst. The results demonstrated the economic feasibility of the utilization of developed RTPR for the efficient purification of pesticide polluted water. The prepared TiO₂ clay beads delivered 75.78% degradation of MCP under UV light with negligible catalyst loss. Application of W-TiO₂ coated clay beads filled RTPR for the degradation of MCP under sunlight, however, shows 32% higher degradation of MCP than the same system based on undoped TiO₂. The COD measurements of TiO₂ coated beads led to 73.75% COD reduction while W-TiO₂ resulted in 87.89% COD reduction. The GC-MS analysis confirms the efficient breakdown of complex MCP molecules into simpler hydrocarbons. This supports the promising application of clay beads as a support for the photocatalyst and proves its eco-friendly nature, excellent recyclability, catalyst holding capacity, and economic viability.

Keywords: immobilized clay beads, monocrotophos, recirculation type photocatalytic reactor, TiO₂

Procedia PDF Downloads 148
64 Insecticidal Effects of Plant Extracts of Thymus daenensis and Eucalyptus camaldulensis on Callosobruchus maculatus (Coleoptera: Bruchidae)

Authors: Afsoon Danesh Afrooz, Sohrab Imani, Ali Ahadiyat, Aref Maroof, Yahya Ostadi

Abstract:

This study has been investigated for finding alternative and safe botanical pesticides instead of chemical insecticides. The effects of plant extracts of Eucalyptus camaldulensis and Thymus daenensis were tested against adult of Callosobrochus maculatus F. Experiments were carried out at 27±1°C and 60 ± 5% R. H. under dark condition with adopting a complete randomized block design. Three replicates were set up for five concentrations of each plants extract. LC50 values were determined by SPSS 16.0 software. LC50 values indicated that plant extract of Thymus daenensis with 1.708 (µl/l air) against adult was more effective than the plant extract of Eucalyptus camaldulensis with LC50 12.755 (µl/l air). It was found that plant extract of Thymus daenensis in comparison with extract of Eucalyptus camaldulensis could be used as a pesticide for control store pests.

Keywords: callosobruchus maculatus, Eucalyptus camaldulensis, insecticidal effects, Thymus daenensis

Procedia PDF Downloads 294
63 Assessing Musculoskeletal Disorder Prevalence and Heat-Related Symptoms: A Cross-sectional Comparison in Indian Farmers

Authors: Makkhan Lal Meena, R. C. Bairwa, G. S. Dangayach, Rahul Jain

Abstract:

The current study looked at the frequency of chronic illness conditions, accidents, health complaints, and ergonomic issues among 100 conventional and 100 greenhouse farmers. Data related to the health symptoms and ergonomic problems were collected through questionnaires by conducting direct interviews of farmers. According to the findings, symptoms of heat exposure (skin rashes, headache, dizziness, and lack of appetite) were substantially higher among conventional farmers than greenhouse farmers. The greenhouse farmers reported much more pain, numbness, or weakness in wrists/hands, fingers, upper back, hips, and ankles/feet than conventional farmers. The findings of the study suggest that suitable ergonomic knowledge and awareness campaign programs concentrating on safety at work, particularly low back pain, should be implemented in workplaces to allow for earlier detection of symptoms among the greenhouse farmers.

Keywords: accident, conventional farmer, ergonomics, health symptoms, greenhouse farmers, pesticide

Procedia PDF Downloads 232
62 Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)

Authors: Muhammad Saeed, Nazeer Ahmed, Mukhtar Alam, Fazli Subhan, Muhammad Adnan, Fazli Wahid, Hidayat Ullah, Rafiullah

Abstract:

The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread.

Keywords: okra crop, jassids, Confidor, imidacloprid, chlorpyrifos, laser, Thiodan

Procedia PDF Downloads 47
61 Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt

Authors: Ahmed F. Azmy, Amal E. Saafan, Tamer M. Essam, Magdy A. Amin, Shaban H. Ahmed

Abstract:

Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosae (PS1),andPseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazenon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 1012CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.

Keywords: Acinetobacter baumannii, biodegradation, malathion, organophosphate pesticides

Procedia PDF Downloads 459