Search results for: oblique shock
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 488

Search results for: oblique shock

278 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems

Authors: Prasad Pokkunuri

Abstract:

Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.

Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids

Procedia PDF Downloads 269
277 3D Multimedia Model for Educational Design Engineering

Authors: Mohanaad Talal Shakir

Abstract:

This paper tries to propose educational design by using multimedia technology for Engineering of computer Technology, Alma'ref University College in Iraq. This paper evaluates the acceptance, cognition, and interactiveness of the proposed model by students by using the statistical relationship to determine the stage of the model. Objectives of proposed education design are to develop a user-friendly software for education purposes using multimedia technology and to develop animation for 3D model to simulate assembling and disassembling process of high-speed flow.

Keywords: CAL, multimedia, shock tunnel, interactivity, engineering education

Procedia PDF Downloads 594
276 Wireless Gyroscopes for Highly Dynamic Objects

Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev

Abstract:

Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.

Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing

Procedia PDF Downloads 340
275 Deflagration and Detonation Simulation in Hydrogen-Air Mixtures

Authors: Belyayev P. E., Makeyeva I. R., Mastyuk D. A., Pigasov E. E.

Abstract:

Previously, the phrase ”hydrogen safety” was often used in terms of NPP safety. Due to the rise of interest to “green” and, particularly, hydrogen power engineering, the problem of hydrogen safety at industrial facilities has become ever more urgent. In Russia, the industrial production of hydrogen is meant to be performed by placing a chemical engineering plant near NPP, which supplies the plant with the necessary energy. In this approach, the production of hydrogen involves a wide range of combustible gases, such as methane, carbon monoxide, and hydrogen itself. Considering probable incidents, sudden combustible gas outburst into open space with further ignition is less dangerous by itself than ignition of the combustible mixture in the presence of many pipelines, reactor vessels, and any kind of fitting frames. Even ignition of 2100 cubic meters of the hydrogen-air mixture in open space gives velocity and pressure that are much lesser than velocity and pressure in Chapman-Jouguet condition and do not exceed 80 m/s and 6 kPa accordingly. However, the space blockage, the significant change of channel diameter on the way of flame propagation, and the presence of gas suspension lead to significant deflagration acceleration and to its transition into detonation or quasi-detonation. At the same time, process parameters acquired from the experiments at specific experimental facilities are not general, and their application to different facilities can only have a conventional and qualitative character. Yet, conducting deflagration and detonation experimental investigation for each specific industrial facility project in order to determine safe infrastructure unit placement does not seem feasible due to its high cost and hazard, while the conduction of numerical experiments is significantly cheaper and safer. Hence, the development of a numerical method that allows the description of reacting flows in domains with complex geometry seems promising. The base for this method is the modification of Kuropatenko method for calculating shock waves recently developed by authors, which allows using it in Eulerian coordinates. The current work contains the results of the development process. In addition, the comparison of numerical simulation results and experimental series with flame propagation in shock tubes with orifice plates is presented.

Keywords: CFD, reacting flow, DDT, gas explosion

Procedia PDF Downloads 58
274 Transmission Line Inspection Using Drones

Authors: Jae Kyung Lee, Joon Young Park

Abstract:

Maintenance on power transmission lines requires a lot of works. Sometimes they should be maintained on live-line environment with high altitude. Therefore, there always exist risks of falling from height and electric shock. To decline those risks, drones are recently applying on the electric power industry. This paper presents new operational technology while inspecting power transmission line. This paper also describes a technique for creating a flight path of a drone for transmission line inspection and a technique for controlling the drones of different types. Its technical and economical feasibilities have confirmed through experiments.

Keywords: drones, transmission line, inspection, control system

Procedia PDF Downloads 323
273 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: system set-up, near field communication, smartphone, android

Procedia PDF Downloads 311
272 Blood Ketones as a Point of Care Testing in Paediatric Emergencies

Authors: Geetha Jayapathy, Lakshmi Muthukrishnan, Manoj Kumar Reddy Pulim , Radhika Raman

Abstract:

Introduction: Ketones are the end products of fatty acid metabolism and a source of energy for vital organs such as the brain, heart and skeletal muscles. Ketones are produced in excess when glucose is not available as a source of energy or it cannot be utilized as in diabetic ketoacidosis. Children admitted in the emergency department often have starvation ketosis which is not clinically manifested. Decision on admission of children to the emergency room with subtle signs can be difficult at times. Point of care blood ketone testing can be done at the bedside even in a primary level care setting to supplement and guide us in our management decisions. Hence this study was done to explore the utility of this simple bedside parameter as a supplement in assessing pediatric patients presenting to the emergency department. Objectives: To estimate blood ketones of children admitted in the emergency department. To analyze the significance of blood ketones in various disease conditions. Methods: Blood ketones using point of care testing instrument (ABOTTprecision Xceed Pro meters) was done in patients getting admitted in emergency room and in out-patients (through sample collection centre). Study population: Children aged 1 month to 18 years were included in the study. 250 cases (In-patients) and 250 controls (out-patients) were collected. Study design: Prospective observational study. Data on details of illness and physiological status were documented. Blood ketones were compared between the two groups and all in patients were categorized into various system groups and analysed. Results: Mean blood ketones were high in in-patients ranging from 0 to 7.2, with a mean of 1.28 compared to out-patients ranging from 0 to 1.9 with a mean of 0.35. This difference was statistically significant with a p value < 0.001. In-patients with shock (mean of 4.15) and diarrheal dehydration (mean of 1.85) had a significantly higher blood ketone values compared to patients with other system involvement. Conclusion: Blood ketones were significantly high (above the normal range) in pediatric patients who are sick requiring admission. Patients with various forms of shock had very high blood ketone values as found in diabetic ketoacidosis. Ketone values in diarrheal dehydration were moderately high correlating to the degree of dehydration.

Keywords: admission, blood ketones, paediatric emergencies, point of care testing

Procedia PDF Downloads 184
271 On an Experimental Method for Investigating the Dynamic Parameters of Multi-Story Buildings at Vibrating Seismic Loadings

Authors: Shakir Mamedov, Tukezban Hasanova

Abstract:

Research of dynamic properties of various materials and elements of structures at shock affecting and on the waves so many scientific works of the Azerbaijani scientists are devoted. However, Experimental definition of dynamic parameters of fluctuations of constructions and buildings while carries estimated character. The purpose of the present experimental researches is definition of parameters of fluctuations of installation of observations. In this case, a mockup of four floor buildings and sixteen floor skeleton-type buildings built in the Baku with the stiffening diaphragm at natural vibrating seismic affectings.

Keywords: fluctuations, seismoreceivers, dynamic experiments, acceleration

Procedia PDF Downloads 366
270 Study on Construction of 3D Topography by UAV-Based Images

Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li

Abstract:

In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.

Keywords: 3D, topography, UAV, images

Procedia PDF Downloads 278
269 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.

Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves

Procedia PDF Downloads 57
268 FEM and Experimental Modal Analysis of Computer Mount

Authors: Vishwajit Ghatge, David Looper

Abstract:

Over the last few decades, oilfield service rolling equipment has significantly increased in weight, primarily because of emissions regulations, which require larger/heavier engines, larger cooling systems, and emissions after-treatment systems, in some cases, etc. Larger engines cause more vibration and shock loads, leading to failure of electronics and control systems. If the vibrating frequency of the engine matches the system frequency, high resonance is observed on structural parts and mounts. One such existing automated control equipment system comprising wire rope mounts used for mounting computers was designed approximately 12 years ago. This includes the use of an industrial- grade computer to control the system operation. The original computer had a smaller, lighter enclosure. After a few years, a newer computer version was introduced, which was 10 lbm heavier. Some failures of internal computer parts have been documented for cases in which the old mounts were used. Because of the added weight, there is a possibility of having the two brackets impact each other under off-road conditions, which causes a high shock input to the computer parts. This added failure mode requires validating the existing mount design to suit the new heavy-weight computer. This paper discusses the modal finite element method (FEM) analysis and experimental modal analysis conducted to study the effects of vibration on the wire rope mounts and the computer. The existing mount was modelled in ANSYS software, and resultant mode shapes and frequencies were obtained. The experimental modal analysis was conducted, and actual frequency responses were observed and recorded. Results clearly revealed that at resonance frequency, the brackets were colliding and potentially causing damage to computer parts. To solve this issue, spring mounts of different stiffness were modeled in ANSYS software, and the resonant frequency was determined. Increasing the stiffness of the system increased the resonant frequency zone away from the frequency window at which the engine showed heavy vibrations or resonance. After multiple iterations in ANSYS software, the stiffness of the spring mount was finalized, which was again experimentally validated.

Keywords: experimental modal analysis, FEM Modal Analysis, frequency, modal analysis, resonance, vibration

Procedia PDF Downloads 300
267 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow

Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki

Abstract:

An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.

Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow

Procedia PDF Downloads 268
266 Effectiveness of Clinical Practice Guidelines for Jellyfish Stings Treatment at the Emergency Room of Songkhla Hospital Thailand

Authors: Prataksitorn Chonlakan, Tiparat Wongsilarat

Abstract:

The traditional clinical practice guideline used at the emergency room at Songkhla Hospital in caring for patients who come in contact with jellyfish venom took a long time for the pain to reduce to the level that patients can cope with. To investigate the effectiveness of clinical practice guidelines by comparing the effectiveness of a newly developed clinical practice guideline with the traditional clinical practice guideline in the following aspects: 1) pain reduction, 2) length of pain, 3) the rate of patient’s re-visit, 4) the rate of severe complications such as anaphylactic shock, and cardiac arrest, and death, and 5) patient satisfaction. This study employed a quasi-experimental research design. Thirty subjects were selected with purposive sampling from jellyfish-sting patients who came for treatment at the Emergency Room of Songkhla Hospital. The subjects were divided using random assignment into two groups of 15 each: an experimental group, and the control group. The control group was treated using the traditional clinical practice guideline consisting of rinsing the affected area with 0.9% normal saline, using a cloth soaked with vinegar to press against the affected area, and controlling pain using tramadol or diclofenac intramuscular injection. The data were analyzed using descriptive statistics and paired t-test at the significance level p < 0.05. The results of the study revealed the following. The pain level in the experimental group was significantly lower than that of the control group (the average pain score of the experimental group was 3.46 while that of the control group was 6.33) (p < 0.05).The length of pain in the experimental group was significantly lower than that of the control group (the average length of pain in the experimental group was 48.67 minutes while that of the control group was 105.35 minutes) (p < 0.05). The rate of re-visit within 12 hours in the experimental group was significantly lower than that of the control group (the rate of re-visit within 12 hours of the experimental group was 0.07 while that of the control group was 0.00) (p < 0.05).No severe complications such as anaphylactic shock, and cardiac arrest were found in the two groups of subjects.The rate of satisfaction among the subjects in the experimental group was significantly higher than that of the control group (the rate of satisfaction among the subjects of the experimental group was 90.00 percent while that among the control group was 66.33 percent) (p < 0.05). The newly develop clinical practice guideline could reduce pain and increase satisfaction among jellyfish-sting patients better than the traditional clinical practice guideline.

Keywords: effectiveness, clinical practice guideline, jellyfish-sting patients, cardiac arrest

Procedia PDF Downloads 317
265 Three or Four Tonics and a Wave: The Trajectory of Health Insurance Regulation in Brazil

Authors: João Boaventura Branco De Matos

Abstract:

Currently, in Brazil, there is a considerable collection of publications on the supplementary health sector, but the vast majority is limited to retrospective examination of the sector. The present contribution starts from the diagnosis of an overwhelming change in the role of the State and its institutions, as well as an accelerated and no less forceful change in the way of producing goods and services, resulting in a clash between these different waves (state and market). This shock produces unique energy, capable of imposing major changes in the most varied sectors. Based on this diagnosis, there was an opportunity to offer the perspective and propositional study of regulatory measures relevant to the best conduct and performance of this sector in the future.

Keywords: private health regulation, state and market, forecasts in Brazilian regulation, political economy

Procedia PDF Downloads 121
264 Evaluating the Effects of a Positive Bitcoin Shock on the U.S Economy: A TVP-FAVAR Model with Stochastic Volatility

Authors: Olfa Kaabia, Ilyes Abid, Khaled Guesmi

Abstract:

This pioneer paper studies whether and how Bitcoin shocks are transmitted to the U.S economy. We employ a new methodology: TVP FAVAR model with stochastic volatility. We use a large dataset of 111 major U.S variables from 1959:m1 to 2016:m12. The results show that Bitcoin shocks significantly impact the U.S. economy. This significant impact is pronounced in a volatile and increasing U.S economy. The Bitcoin has a positive relationship on the U.S real activity, and a negative one on U.S prices and interest rates. Effects on the Monetary Policy exist via the inter-est rates and the Money, Credit and Finance transmission channels.

Keywords: bitcoin, US economy, FAVAR models, stochastic volatility

Procedia PDF Downloads 220
263 Estimation of Delay Due to Loading–Unloading of Passengers by Buses and Reduction of Number of Lanes at Selected Intersections in Dhaka City

Authors: Sumit Roy, A. Uddin

Abstract:

One of the significant reasons that increase the delay time in the intersections at heterogeneous traffic condition is a sudden reduction of the capacity of the roads. In this study, the delay for this sudden capacity reduction is estimated. Two intersections at Dhaka city were brought in to thestudy, i.e., Kakrail intersection, and SAARC Foara intersection. At Kakrail intersection, the sudden reduction of capacity in the roads is seen at three downstream legs of the intersection, which are because of slowing down or stopping of buses for loading and unloading of passengers. At SAARC Foara intersection, sudden reduction of capacity was seen at two downstream legs. At one leg, it was due to loading and unloading of buses, and at another leg, it was for both loading and unloading of buses and reduction of the number of lanes. With these considerations, the delay due to intentional stoppage or slowing down of buses and reduction of the number of lanes for these two intersections are estimated. Here the delay was calculated by two approaches. The first approach came from the concept of shock waves in traffic streams. Here the delay was calculated by determining the flow, density, and speed before and after the sudden capacity reduction. The second approach came from the deterministic analysis of queues. Here the delay is calculated by determining the volume, capacity and reduced capacity of the road. After determining the delay from these two approaches, the results were compared. For this study, the video of each of the two intersections was recorded for one hour at the evening peak. Necessary geometric data were also taken to determine speed, flow, and density, etc. parameters. The delay was calculated for one hour with one-hour data at both intersections. In case of Kakrail intersection, the per hour delay for Kakrail circle leg was 5.79, and 7.15 minutes, for Shantinagar cross intersection leg they were 13.02 and 15.65 minutes, and for Paltan T intersection leg, they were 3 and 1.3 minutes for 1st and 2nd approaches respectively. In the case of SAARC Foara intersection, the delay at Shahbag leg was only due to intentional stopping or slowing down of busses, which were 3.2 and 3 minutes respectively for both approaches. For the Karwan Bazar leg, the delays for buses by both approaches were 5 and 7.5 minutes respectively, and for reduction of the number of lanes, the delays for both approaches were 2 and 1.78 minutes respectively. Measuring the delay per hour for the Kakrail leg at Kakrail circle, it is seen that, with consideration of the first approach of delay estimation, the intentional stoppage and lowering of speed by buses contribute to 26.24% of total delay at Kakrail circle. If the loading and unloading of buses at intersection is made forbidden near intersection, and any other measures for loading and unloading of passengers are established far enough from the intersections, then the delay at intersections can be reduced at significant scale, and the performance of the intersections can be enhanced.

Keywords: delay, deterministic queue analysis, shock wave, passenger loading-unloading

Procedia PDF Downloads 155
262 Ultrasonic Evaluation of Periodic Rough Inaccessible Surfaces from Back Side

Authors: Chanh Nghia Nguyen, Yu Kurokawa, Hirotsugu Inoue

Abstract:

The surface roughness is an important parameter for evaluating the quality of material surfaces since it affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for measuring the surface roughness, they are applicable only to accessible surfaces. In practice, surface roughness measurement from the back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surface of pipes. However, little attention has been paid to the measurement of back surface roughness so far. Since back surface is usually inaccessible by stylus or optical techniques, ultrasonic technique is one of the most effective among others. In this research, an ultrasonic pulse-echo technique is considered for evaluating the pitch and the height of back surface having periodic triangular profile as a very first step. The pitch of the surface profile is measured by applying the diffraction grating theory for oblique incidence; then the height is evaluated by numerical analysis based on the Kirchhoff theory for normal incidence. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch because of the approximation in the Kirchhoff theory.

Keywords: back side, inaccessible surface, periodic roughness, pulse-echo technique, ultrasonic NDE

Procedia PDF Downloads 251
261 Stabilizing Additively Manufactured Superalloys at High Temperatures

Authors: Keivan Davami, Michael Munther, Lloyd Hackel

Abstract:

The control of properties and material behavior by implementing thermal-mechanical processes is based on mechanical deformation and annealing according to a precise schedule that will produce a unique and stable combination of grain structure, dislocation substructure, texture, and dispersion of precipitated phases. The authors recently developed a thermal-mechanical technique to stabilize the microstructure of additively manufactured nickel-based superalloys even after exposure to high temperatures. However, the mechanism(s) that controls this stability is still under investigation. Laser peening (LP), also called laser shock peening (LSP), is a shock based (50 ns duration) post-processing technique used for extending performance levels and improving service life of critical components by developing deep levels of plastic deformation, thereby generating high density of dislocations and inducing compressive residual stresses in the surface and deep subsurface of components. These compressive residual stresses are usually accompanied with an increase in hardness and enhance the material’s resistance to surface-related failures such as creep, fatigue, contact damage, and stress corrosion cracking. While the LP process enhances the life span and durability of the material, the induced compressive residual stresses relax at high temperatures (>0.5Tm, where Tm is the absolute melting temperature), limiting the applicability of the technology. At temperatures above 0.5Tm, the compressive residual stresses relax, and yield strength begins to drop dramatically. The principal reason is the increasing rate of solid-state diffusion, which affects both the dislocations and the microstructural barriers. Dislocation configurations commonly recover by mechanisms such as climbing and recombining rapidly at high temperatures. Furthermore, precipitates coarsen, and grains grow; virtually all of the available microstructural barriers become ineffective.Our results indicate that by using “cyclic” treatments with sequential LP and annealing steps, the compressive stresses survive, and the microstructure is stable after exposure to temperatures exceeding 0.5Tm for a long period of time. When the laser peening process is combined with annealing, dislocations formed as a result of LPand precipitates formed during annealing have a complex interaction that provides further stability at high temperatures. From a scientific point of view, this research lays the groundwork for studying a variety of physical, materials science, and mechanical engineering concepts. This research could lead to metals operating at higher sustained temperatures enabling improved system efficiencies. The strengthening of metals by a variety of means (alloying, work hardening, and other processes) has been of interest for a wide range of applications. However, the mechanistic understanding of the often complex processes of interactionsbetween dislocations with solute atoms and with precipitates during plastic deformation have largely remained scattered in the literature. In this research, the elucidation of the actual mechanisms involved in the novel cyclic LP/annealing processes as a scientific pursuit is investigated through parallel studies of dislocation theory and the implementation of advanced experimental tools. The results of this research help with the validation of a novel laser processing technique for high temperature applications. This will greatly expand the applications of the laser peening technology originally devised only for temperatures lower than half of the melting temperature.

Keywords: laser shock peening, mechanical properties, indentation, high temperature stability

Procedia PDF Downloads 121
260 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application

Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal

Abstract:

This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.

Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism

Procedia PDF Downloads 104
259 Manipulation of Ideological Items in the Audiovisual Translation of Voiced-Over Documentaries in the Arab World

Authors: S. Chabbak

Abstract:

In a widely globalized world, the influence of audiovisual translation on the culture and identity of audiences is unmistakable. However, in the Arab World, there is a noticeable disproportion between this growing influence and the research carried out in the field. As a matter of fact, the voiced-over documentary is one of the most abundantly translated genres in the Arab World that carries lots of ideological elements which are in many cases rendered by manipulation. However, voiced-over documentaries have hardly received any focused attention from researchers in the Arab World. This paper attempts to scrutinize the process of translation of voiced-over documentaries in the Arab World, from French into Arabic in the present case study, by sub-categorizing the ideological items subject to manipulation, identifying the techniques utilized in their translation and exploring the potential extra-linguistic factors that prompt translation agents to opt for manipulative translation. The investigation is based on a corpus of 94 episodes taken from a series entitled 360° GEO Reports, produced by the French German network ARTE in French, and acquired, translated and aired by Al Jazeera Documentary Channel for Arab audiences. The results yielded 124 cases of manipulation in four sub-categories of ideological items, and the use of 10 different oblique procedures in the process of manipulative translation. The study also revealed that manipulation is in most of the instances dictated by the editorial line of the broadcasting channel, in addition to the religious, geopolitical and socio-cultural peculiarities of the target culture.

Keywords: audiovisual translation, ideological items, manipulation, voiced-over documentaries

Procedia PDF Downloads 179
258 Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding

Authors: Isabel Moscol, Carlos J. Díaz, Ciro Rodríguez

Abstract:

Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur.

Keywords: machine learning techniques, metaheuristic algorithms, short-stem design, stress shielding, hip replacement

Procedia PDF Downloads 168
257 Effects of Positron Concentration and Temperature on Ion-Acoustic Solitons in Magnetized Electron-Positron-Ion Plasma

Authors: S. K. Jain, M. K. Mishra

Abstract:

Oblique propagation of ion-acoustic solitons in magnetized electron-positron-ion (EPI) plasma with warm adiabatic ions and isothermal electrons has been studied. Korteweg-de Vries (KdV) equation using reductive perturbation method has been derived for the system, which admits an obliquely propagating soliton solution. It is found that for the selected set of parameter values, the system supports only compressive solitons. Investigations reveal that an increase in positron concentration diminishes the amplitude as well as the width of the soliton. It is also found that the temperature ratio of electron to positron (γ) affects the amplitude of the solitary wave. An external magnetic field do not affect the amplitude of ion-acoustic solitons, but obliqueness angle (θ), the angle between wave vector and magnetic field affects the amplitude. The amplitude of the ion-acoustic solitons increases with increase in angle of obliqueness. Magnetization and obliqueness drastically affect the width of the soliton. An increase in ionic temperature decreases the amplitude and width. For the fixed set of parameters, profiles have been drawn to study the combined effect with variation of two parameters on the characteristics of the ion-acoustic solitons (i.e., amplitude and width). The result may be applicable to plasma in the laboratory as well as in the magnetospheric region of the earth.

Keywords: ion-acoustic solitons, Korteweg-de Vries (KdV) equation, magnetized electron-positron-ion (EPI) plasma, reductive perturbation method

Procedia PDF Downloads 258
256 Calibration Methods of Direct and Indirect Reading Pressure Sensor and Uncertainty Determination

Authors: Sinem O. Aktan, Musa Y. Akkurt

Abstract:

Experimental pressure calibration methods can be classified into three areas: (1) measurements in liquid or gas systems, (2) measurements in static-solid media systems, and (3) measurements in dynamic shock systems. Fluid (liquid and gas) systems high accuracies can be obtainable and commonly used for the calibration method of a pressure sensor. Pressure calibrations can be performed for metrological traceability in two ways, which are on-site (field) and in the laboratory. Laboratory and on-site calibration procedures and the requirements of the DKD-R-6-1 and Euramet cg-17 guidelines will also be addressed. In this study, calibration methods of direct and indirect reading pressure sensor and measurement uncertainty contributions will be explained.

Keywords: pressure metrology, pressure calibration, dead-weight tester, pressure uncertainty

Procedia PDF Downloads 117
255 Automated Digital Mammogram Segmentation Using Dispersed Region Growing and Pectoral Muscle Sliding Window Algorithm

Authors: Ayush Shrivastava, Arpit Chaudhary, Devang Kulshreshtha, Vibhav Prakash Singh, Rajeev Srivastava

Abstract:

Early diagnosis of breast cancer can improve the survival rate by detecting cancer at an early stage. Breast region segmentation is an essential step in the analysis of digital mammograms. Accurate image segmentation leads to better detection of cancer. It aims at separating out Region of Interest (ROI) from rest of the image. The procedure begins with removal of labels, annotations and tags from the mammographic image using morphological opening method. Pectoral Muscle Sliding Window Algorithm (PMSWA) is used for removal of pectoral muscle from mammograms which is necessary as the intensity values of pectoral muscles are similar to that of ROI which makes it difficult to separate out. After removing the pectoral muscle, Dispersed Region Growing Algorithm (DRGA) is used for segmentation of mammogram which disperses seeds in different regions instead of a single bright region. To demonstrate the validity of our segmentation method, 322 mammographic images from Mammographic Image Analysis Society (MIAS) database are used. The dataset contains medio-lateral oblique (MLO) view of mammograms. Experimental results on MIAS dataset show the effectiveness of our proposed method.

Keywords: CAD, dispersed region growing algorithm (DRGA), image segmentation, mammography, pectoral muscle sliding window algorithm (PMSWA)

Procedia PDF Downloads 285
254 Innovations in the Organization of Adaptation Program for International Students in Russia Based on Human Capital Approach

Authors: Kalinina Anastasiya, Pevnaya Mariya

Abstract:

The authors present the results of research of educational and cultural habitat of international students at Ural Federal University, revealing problem zones in the organization of adaptation program in 2014-2015 as well as innovations in adaptation program for 2015-2016. The research is based on U-curve theory of culture shock and theory of human capital. The authors provide also the first results for all stakeholders of practically implemented pilot adaptation program for foreign students which was based on the human capital approach.

Keywords: adaptation, human capital, international students, student volunteering, social community, youth politics

Procedia PDF Downloads 314
253 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker

Authors: Jong Won, Park, Sung Hyun, Kim

Abstract:

The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.

Keywords: impact energy, impact frequency, hydraulic breaker, life prediction

Procedia PDF Downloads 405
252 Trunk and Gluteus-Medius Muscles’ Fatigability during Occupational Standing in Clinical Instructors with Low Back Pain

Authors: Eman A. Embaby, Amira A. A. Abdallah

Abstract:

Background: Occupational standing is associated with low back pain (LBP) development. Yet, trunk and gluteus-medius muscles’ fatigability has not been extensively studied during occupational standing. This study examined and correlated the rectus abdominus (RA), erector-spinae (ES), external oblique (EO), and gluteus-medius (GM) muscles’ fatigability on both sides while standing in a confined area for 30 min Methods: Median frequency EMG data were collected from 15 female clinical instructors with chronic LBP (group A) and 15 asymptomatic controls (group B) (mean age 29.53±2.4 vs. 29.07±2.4 years, weight 63.6±7 vs. 60±7.8 kg, and height 162.73±4 vs. 162.8±6 cm respectively) using a spectrum analysis program. Data were collected in the first and last 5min of the standing task. Results: Using Mixed three-way ANOVA, group A showed significantly (p<0.05) lower frequencies for the right and left ES, and right GM in the last 5 min and significantly higher frequencies for the left RA in the first and last 5min than group B. In addition, the left ES and right EO, ES and GM in group B showed significantly higher frequencies and the left ES in group A showed significantly lower frequencies in the last 5min compared with the first. Moreover, the right RA showed significantly higher frequencies than the left in the last 5min in group B. Finally, there were significant (p<0.05) correlations among the median frequencies of the tested four muscles on the same side and between both sides in both groups. Discussion/Conclusions: Clinical instructors with LBP are more liable to have higher trunk and gluteus-medius muscle fatigue than asymptomatic individuals. Thus, endurance training for these muscles should be included in the rehabilitation of such patients.

Keywords: EMG, fatigability, gluteus-medius, LBP, standing, trunk

Procedia PDF Downloads 210
251 Developing and Shake Table Testing of Semi-Active Hydraulic Damper as Active Interaction Control Device

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

Semi-active control system for structure under excitation of earthquake provides with the characteristics of being adaptable and requiring low energy. DSHD (Displacement Semi-Active Hydraulic Damper) was developed by our research team. Shake table test results of this DSHD installed in full scale test structure demonstrated that this device brought its energy-dissipating performance into full play for test structure under excitation of earthquake. The objective of this research is to develop a new AIC (Active Interaction Control Device) and apply shake table test to perform its dissipation of energy capability. This new proposed AIC is converting an improved DSHD (Displacement Semi-Active Hydraulic Damper) to AIC with the addition of an accumulator. The main concept of this energy-dissipating AIC is to apply the interaction function of affiliated structure (sub-structure) and protected structure (main structure) to transfer the input seismic force into sub-structure to reduce the structural deformation of main structure. This concept is tested using full-scale multi-degree of freedoms test structure, installed with this proposed AIC subjected to external forces of various magnitudes, for examining the shock absorption influence of predictive control, stiffness of sub-structure, synchronous control, non-synchronous control and insufficient control position. The test results confirm: (1) this developed device is capable of diminishing the structural displacement and acceleration response effectively; (2) the shock absorption of low precision of semi-active control method did twice as much seismic proof efficacy as that of passive control method; (3) active control method may not exert a negative influence of amplifying acceleration response of structure; (4) this AIC comes into being time-delay problem. It is the same problem of ordinary active control method. The proposed predictive control method can overcome this defect; (5) condition switch is an important characteristics of control type. The test results show that synchronism control is very easy to control and avoid stirring high frequency response. This laboratory results confirm that the device developed in this research is capable of applying the mutual interaction between the subordinate structure and the main structure to be protected is capable of transforming the quake energy applied to the main structure to the subordinate structure so that the objective of minimizing the deformation of main structural can be achieved.

Keywords: DSHD (Displacement Semi-Active Hydraulic Damper), AIC (Active Interaction Control Device), shake table test, full scale structure test, sub-structure, main-structure

Procedia PDF Downloads 486
250 Geochemical Characterization of the Fahdene Formation in the Kef-Tedjerouine Area (Northwestern Tunisia)

Authors: Tahani Hallek, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer

Abstract:

The present work is an organo-geochemical study of the Fahdene Formation outcrops at the Mahjouba region belonging to the Eastern part of the Kalaat Senan structure in northwestern Tunisia (the Kef-Tedjerouine area). The analytical study of the organic content of the samples collected, allowed us to point out that the Formation in question is characterized by an average to good oil potential. This fossilized organic matter has a planktonic marine origin (type II), as indicated by the relatively high values of hydrogen index. Tmax values are in the range 440°C and attest a thermal stage of the oil window beginning. Mineralogical study found the existence of macro and micro fractures that are parallel to rock stratification or oblique with a high density. Fill standpoint, the major component of the mineralized veins is the fibrous calcite with bitumen traces. The composition of these fractures is mainly due to the availability of chemical elements scattered in the surrounding rock. As for the origin of these fractures, we assume that fluid pressure processes are heavily involved, together with the regional compressional tectonic stress regime. The Fahdene Formation has a great importance in conventional oil development as a potential source rock, and even in terms of unconventional oil exploitation through the intense fracturing allowing the percolation of gas shale and facilitating its exploitation.

Keywords: fluid pressure, fracturation, oil exploration, organic matter

Procedia PDF Downloads 228
249 The Effect of Resistance and Progressive Training on Hsp 70 and Glucose

Authors: F. Nameni, H. Poursadra

Abstract:

The present study investigated resistance and progressive training alters the expression of chaperone proteins. These proteins function to maintain homeostasis, facilitate repair from injury, and provide protection. Nineteen training female in 2 groups taking part in the intervention volunteered to give blood samples. Levels of chaperone proteins were measured in response to resistance and progressive training. Hsp 70 levels were increased immediately after 2 h progressive training but decreased after resistance training. The data showed that human skeletal muscle responds to the stress of a single period of progressive training by up-regulating and resistance training by down-regulating expression of HSP70. Physical exercise can elevate core temperature and muscle temperatures and the expression pattern of HSP70 due to training status may be attributed to adaptive mechanisms.

Keywords: resistance training, heat shock proteins, leukocytes, Hsp 70

Procedia PDF Downloads 424