Search results for: non linear controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3875

Search results for: non linear controller

3695 Analytical Solution of Non–Autonomous Discrete Non-Linear Schrodinger Equation With Saturable Non-Linearity

Authors: Mishu Gupta, Rama Gupta

Abstract:

It has been elucidated here that non- autonomous discrete non-linear Schrödinger equation is associated with saturable non-linearity through photo-refractive media. We have investigated the localized solution of non-autonomous saturable discrete non-linear Schrödinger equations. The similarity transformation has been involved in converting non-autonomous saturable discrete non-linear Schrödinger equation to constant-coefficient saturable discrete non-linear Schrödinger equation (SDNLSE), whose exact solution is already known. By back substitution, the solution of the non-autonomous version has been obtained. We have analysed our solution for the hyperbolic and periodic form of gain/loss term, and interesting results have been obtained. The most important characteristic role is that it helps us to analyse the propagation of electromagnetic waves in glass fibres and other optical wave mediums. Also, the usage of SDNLSE has been seen in tight binding for Bose-Einstein condensates in optical mediums. Even the solutions are interrelated, and its properties are prominently used in various physical aspects like optical waveguides, Bose-Einstein (B-E) condensates in optical mediums, Non-linear optics in photonic crystals, and non-linear kerr–type non-linearity effect and photo refracting medium.

Keywords: B-E-Bose-Einstein, DNLSE-Discrete non linear schrodinger equation, NLSE-non linear schrodinger equation, SDNLSE - saturable discrete non linear Schrodinger equation

Procedia PDF Downloads 122
3694 System of Linear Equations, Gaussian Elimination

Authors: Rabia Khan, Nargis Munir, Suriya Gharib, Syeda Roshana Ali

Abstract:

In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured.

Keywords: direct, indirect, backward stage, forward stage

Procedia PDF Downloads 557
3693 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.

Keywords: parameter linear programming, objective function, sensitivity analysis, optimize profit

Procedia PDF Downloads 180
3692 Design of Orientation-Free Handler and Fuzzy Controller for Wire-Driven Heavy Object Lifting System

Authors: Bo-Wei Song, Yun-Jung Lee

Abstract:

This paper presents an intention interface and controller for a wire-driven heavy object lifting system that assists the operator with moving a heavy object. The handler is designed to allow a comfortable working posture for the operator. Plus, as a human assistive system, the operator is involved in the control loop, where a fuzzy control system is used to consider the human control characteristics. The effectiveness and performance of the proposed system are proved by experiments.

Keywords: fuzzy controller, handler design, heavy object lifting system, human-assistive device, human-in-the-loop system

Procedia PDF Downloads 484
3691 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values

Procedia PDF Downloads 558
3690 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 520
3689 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture

Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira

Abstract:

This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.

Keywords: BNF Syntax, model driven architecture, model-view-controller, transformation, UML

Procedia PDF Downloads 365
3688 Design, Control and Autonomous Trajectory Tracking of an Octorotor Rotorcraft

Authors: Seyed Jamal Haddadi, M. Reza Mehranpour, Roya Sadat Mortazavi, Zahra Sadat Mortazavi

Abstract:

Principal aim of this research is trajectory tracking, attitude and position control scheme in real flight mode by an Octorotor helicopter. For more stability, in this Unmanned Aerial Vehicle (UAV), number of motors is increased to eight motors which end of each arm installed two coaxial counter rotating motors. Dynamic model of this Octorotor includes of motion equation for translation and rotation. Utilized controller is proportional-integral-derivative (PID) control loop. The proposed controller is designed such that to be able to attenuate an effect of external wind disturbance and guarantee stability in this condition. The trajectory is determined by a Global Positioning System (GPS). Also an ARM CortexM4 is used as microprocessor. Electronic board of this UAV designed as able to records all of the sensors data, similar to an aircraft black box in external memory. Finally after auto landing of Octorotor, flight data is shown in MATLAB software and Experimental results of the proposed controller show the effectiveness of our approach on the Autonomous Quadrotor in real conditions.

Keywords: octorotor, design, PID controller, autonomous, trajectory tracking

Procedia PDF Downloads 271
3687 Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Ziraguen O. Williams

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 113
3686 Desing of PSS and SVC to Improve Power System Stability

Authors: Mahmoud Samkan

Abstract:

In this paper, the design and assessment of new coordination between Power System Stabilizers (PSSs) and Static Var Compensator (SVC) in a multimachine power system via statistical method are proposed. The coordinated design problem of PSSs and SVC over a wide range of loading conditions is handled as an optimization problem. The Bacterial Swarming Optimization (BSO), which synergistically couples the Bacterial Foraging (BF) with the Particle Swarm Optimization (PSO), is employed to seek for optimal controllers parameters. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is enhanced. To compare the capability of PSS and SVC, both are designed independently, and then in a coordinated manner. Simultaneous tuning of the BSO based coordinated controller gives robust damping performance over wide range of operating conditions and large disturbance in compare to optimized PSS controller based on BSO (BSOPSS) and optimized SVC controller based on BSO (BSOSVC). Moreover, a statistical T test is executed to validate the robustness of coordinated controller versus uncoordinated one.

Keywords: SVC, PSSs, multimachine power system, coordinated design, bacteria swarm optimization, statistical assessment

Procedia PDF Downloads 353
3685 Improvement of an Arm and Shoulder Exoskeleton Using Gyro Sensor

Authors: D. Maneetham

Abstract:

The developed exoskeleton device has to control joints between shoulder and arm. Exoskeleton device can help patients with hemiplegia upper so that the patient can help themselves in their daily life. Exoskeleton device includes a robot arm wear that looks like the movement is similar to the normal arm. Exoskeleton arm is powered by the motor through the cable with a control system that developed to control the movement of the joint of a robot arm. The arm will include the shoulder, the elbow, and the wrist. The control system is used Arduino Mega 2560 controller and the operation of the DC motor through the relay module. The control system can be divided into two modes such as the manual control with the joystick mode and automatically control with the movement of the head by Gyro sensor. The controller is also designed to move between the shoulder and the arm movement from their original location. Results have shown that the controller gave the best performance and all movements can be controlled.

Keywords: exoskeleton arm, hemiplegia upper, shoulder and arm, stroke

Procedia PDF Downloads 330
3684 Reconstruction and Rejection of External Disturbances in a Dynamical System

Authors: Iftikhar Ahmad, A. Benallegue, A. El Hadri

Abstract:

In this paper, we have proposed an observer for the reconstruction and a control law for the rejection application of unknown bounded external disturbance in a dynamical system. The strategy of both the observer and the controller is designed like a second order sliding mode with a proportional-integral (PI) term. Lyapunov theory is used to prove the exponential convergence and stability. Simulations results are given to show the performance of this method.

Keywords: non-linear systems, sliding mode observer, disturbance rejection, nonlinear control

Procedia PDF Downloads 307
3683 Implementing Digital Control System in Robotics

Authors: Safiullah Abdullahi

Abstract:

This paper describes the design of a digital control system which controls the speed and direction of a robot. The robot is expected to follow a black thick line with the highest possible speed and lowest error around the line. The control system of the robot will correct for the angle error that is made between the frame axis of the robot and the line. The cause for error is the difference in speed of the two driving wheels of the robot which are driven by two separate DC motors, whereas the speed difference in wheels is due to the un-modeled fraction that is available in the wheels with different magnitudes in each. The control scheme is that a number of photo sensors are mounted in the front of the robot and report their position in reference to the black line to the digital controller. The controller then, evaluates the position error and generates the needed duty cycle for the related wheel motor to drive it faster or slower.

Keywords: digital control, robot, controller, control system

Procedia PDF Downloads 522
3682 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.

Keywords: regression, piecewise, Bayesian, reversible Jump MCMC

Procedia PDF Downloads 489
3681 Analytical Design of Fractional-Order PI Controller for Decoupling Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: ideal transfer function of bode, fractional calculus, fractional order proportional integral (FOPI) controller, decoupling control system

Procedia PDF Downloads 299
3680 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo

Abstract:

Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 138
3679 Performance Analysis of Permanent Magnet Synchronous Motor Using Direct Torque Control Based ANFIS Controller for Electric Vehicle

Authors: Marulasiddappa H. B., Pushparajesh Viswanathan

Abstract:

Day by day, the uses of internal combustion engines (ICE) are deteriorating because of pollution and less fuel availability. In the present scenario, the electric vehicle (EV) plays a major role in the place of an ICE vehicle. The performance of EVs can be improved by the proper selection of electric motors. Initially, EV preferred induction motors for traction purposes, but due to complexity in controlling induction motor, permanent magnet synchronous motor (PMSM) is replacing induction motor in EV due to its advantages. Direct torque control (DTC) is one of the known techniques for PMSM drive in EV to control the torque and speed. However, the presence of torque ripple is the main drawback of this technique. Many control strategies are followed to reduce the torque ripples in PMSM. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) controller technique is proposed to reduce torque ripples and settling time. Here the performance parameters like torque, speed and settling time are compared between conventional proportional-integral (PI) controller with ANFIS controller.

Keywords: direct torque control, electric vehicle, torque ripple, PMSM

Procedia PDF Downloads 135
3678 Body Shape Control of Magnetic Soft Continuum Robots with PID Controller

Authors: M. H. Korayem, N. Sangsefidi

Abstract:

Magnetically guided soft robots have emerged as a promising technology in minimally invasive surgery due to their ability to adapt to complex environments. However, one of the main challenges in this field is damage to the vascular structure caused by unwanted stress on the vessel wall and deformation of the vessel due to improper control of the shape of the robot body during surgery. Therefore, this article proposes an approach for controlling the form of a magnetic, soft, continuous robot body using a PID controller. The magnetic soft continuous robot is modelled using Cosserat theory in static mode and solved numerically. The designed controller adjusts the position of each part of the robot to match the desired shape. The PID controller is considered to minimize the robot's contact with the vessel wall and prevent unwanted vessel deformation. The simulation results confirmed the accuracy of the numerical solution of the static Cosserat model. Also, they showed the effectiveness of the proposed contouring method in achieving the desired shape with a maximum error of about 0.3 millimetres.

Keywords: PID, magnetic soft continuous robot, soft robot shape control, Cosserat theory, minimally invasive surgery

Procedia PDF Downloads 48
3677 Airy Wave Packet for a Particle in a Time-Dependant Linear Potential

Authors: M. Berrehail, F. Benamira

Abstract:

We study the quantum motion of a particle in the presence of a time- dependent linear potential using an operator invariant that is quadratic in p and linear in q within the framework of the Lewis-Riesenfeld invariant, The special invariant operator proposed in this work is demonstrated to be an Hermitian operator which has an Airy wave packet as its Eigenfunction

Keywords: airy wave packet, ivariant, time-dependent linear potential, unitary transformation

Procedia PDF Downloads 464
3676 Carbohydrate Intake Estimation in Type I Diabetic Patients Described by UVA/Padova Model

Authors: David A. Padilla, Rodolfo Villamizar

Abstract:

In recent years, closed loop control strategies have been developed in order to establish a healthy glucose profile in type 1 diabetic mellitus (T1DM) patients. However, the controller itself is unable to define a suitable reference trajectory for glucose. In this paper, a control strategy Is proposed where the shape of the reference trajectory is generated bases in the amount of carbohydrates present during the digestive process, due to the effect of carbohydrate intake. Since there no exists a sensor to measure the amount of carbohydrates consumed, an estimator is proposed. Thus this paper presents the entire process of designing a carbohydrate estimator, which allows estimate disturbance for a predictive controller (MPC) in a T1MD patient, the estimation will be used to establish a profile of reference and improve the response of the controller by providing the estimated information of ingested carbohydrates. The dynamics of the diabetic model used are due to the equations described by the UVA/Padova model of the T1DMS simulator, the system was developed and simulated in Simulink, taking into account the noise and limitations of the glucose control system actuators.

Keywords: estimation, glucose control, predictive controller, MPC, UVA/Padova

Procedia PDF Downloads 231
3675 Performance Optimization of Low-Cost Solar Dryer Using Modified PI Controller

Authors: Rajesh Kondareddy, Prakash Kumar Nayak, Maunash Das, Vrinatri Velentina Boro

Abstract:

Today, there is a huge global concern for sustainable development which would include minimizing the consumption of non-renewable energies without affecting the basic global economy. Solar drying is one of the important processes used for extending the shelf life of agricultural products. The performance of a low cost automated solar dryer fitted with cascade control scheme and modified PI controller for drying chilli was investigated. The dryer was composed of designed solar collector (air heater) fitted with cylindrical pipes to improve the air velocity and a solar drying chamber containing rack of two cheese cloth (net) trays both being integrated together. The air allowed in through air inlet is heated up in the solar collector and channelled through the drying chamber where it is utilized in drying (removing the moisture content from the food substance or agricultural produce loaded). Here, to maintain the temperature in the heating chambers and to improve performance, a modified PI (Proportional–Integral) controller was used due its simplicity and robustness. Drying time for drying chilli from the initial moisture content of 88.5% (wb) to 7.3% (wb) was estimated to be 14 hours in solar dryer whereas 32 h was observed in the open sun drying.

Keywords: cascade control, chilli, PI controller, solar dryer

Procedia PDF Downloads 263
3674 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 100
3673 A Fuzzy Programming Approach for Solving Intuitionistic Fuzzy Linear Fractional Programming Problem

Authors: Sujeet Kumar Singh, Shiv Prasad Yadav

Abstract:

This paper develops an approach for solving intuitionistic fuzzy linear fractional programming (IFLFP) problem where the cost of the objective function, the resources, and the technological coefficients are triangular intuitionistic fuzzy numbers. Here, the IFLFP problem is transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) problem. By using fuzzy mathematical programming approach the transformed MOLFP problem is reduced into a single objective linear programming (LP) problem. The proposed procedure is illustrated through a numerical example.

Keywords: triangular intuitionistic fuzzy number, linear programming problem, multi objective linear programming problem, fuzzy mathematical programming, membership function

Procedia PDF Downloads 531
3672 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System

Authors: S. Yaman, S. Rostami

Abstract:

In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.

Keywords: function tuner method (FTM), fuzzy modeling, fuzzy PID controller, genetic algorithm (GA)

Procedia PDF Downloads 274
3671 Sensorless Controller of Induction Motor Using Backstepping Approach and Fuzzy MRAS

Authors: Ahmed Abbou

Abstract:

This paper present a sensorless controller designed by the backstepping approach for the speed control of induction motor. In this strategy of control, we also combined the method Fuzzy MRAS to estimate the rotor speed and the observer type Luenburger to observe Rotor flux. The control model involves a division by the flux variable that may lead to unbounded solutions. Such a risk is avoided by basing the controller design on Lyapunov function that accounts for the model singularity. On the other hand, this mixed method gives better results in Sensorless operation and especially at low speed. The response time at 5% of the flux is 20ms while the error between the speed with sensor and the estimated speed remains in the range of ±0.8 rad/s for the rated functioning and ±1.5 rad/s for low speed.

Keywords: backstepping approach, fuzzy logic, induction motor, luenburger observer, sensorless MRAS

Procedia PDF Downloads 347
3670 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain

Authors: Tulin Coskun

Abstract:

We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.

Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems

Procedia PDF Downloads 315
3669 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller

Authors: Abdellah Boualouch, Ahmed Essadki, Tamou Nasser, Ali Boukhriss, Abdellatif Frigui

Abstract:

This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and sliding-mode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.

Keywords: backstipping, DFIG, power control, sliding-mode, WESC

Procedia PDF Downloads 567
3668 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System

Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang

Abstract:

In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: coefficient matching method, internal model control (IMC) scheme, PID controller cascaded filter, simplified decoupler

Procedia PDF Downloads 417
3667 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform

Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho

Abstract:

Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the model as previously done in simulation for squat exercise. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from the motion capture of an exerciser during a seated row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the actively controlled system compared to the passive controlled system, which showed less force reduction.

Keywords: control, counterweight, isolation, vibration.

Procedia PDF Downloads 112
3666 Design Of An Arduino Shield For New Generation Microcontroller Training

Authors: Boubacar Niang, Denis Raulin

Abstract:

This paper presents the design of a dedicated board for learning and programming with ATMEL AVR new generation micro controller’s family. This board designed as a "shield" for the Arduino Uno allows us to focus on the design and programming of basic micro controller functionalities in high level language with a considerable time saving because of dealing with additional components is not required.

Keywords: Arduino, microcontroller, programming, language

Procedia PDF Downloads 557