Search results for: navier-stokes equations in a rotating frame of refence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3034

Search results for: navier-stokes equations in a rotating frame of refence

3034 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 63
3033 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid

Procedia PDF Downloads 308
3032 Linearization of Y-Force Equation of Rigid Body Equation of Motion and Behavior of Fighter Aircraft under Imbalance Weight on Wings during Combat

Authors: Jawad Zakir, Syed Irtiza Ali Shah, Rana Shaharyar, Sidra Mahmood

Abstract:

Y-force equation comprises aerodynamic forces, drag and side force with side slip angle β and weight component along with the coupled roll (φ) and pitch angles (θ). This research deals with the linearization of Y-force equation using Small Disturbance theory assuming equilibrium flight conditions for different state variables of aircraft. By using assumptions of Small Disturbance theory in non-linear Y-force equation, finally reached at linearized lateral rigid body equation of motion; which says that in linearized Y-force equation, the lateral acceleration is dependent on the other different aerodynamic and propulsive forces like vertical tail, change in roll rate (Δp) from equilibrium, change in yaw rate (Δr) from equilibrium, change in lateral velocity due to side force, drag and side force components due to side slip, and the lateral equation from coupled rotating frame to decoupled rotating frame. This paper describes implementation of this lateral linearized equation for aircraft control systems. Another significant parameter considered on which y-force equation depends is ‘c’ which shows that any change bought in the weight of aircrafts wing will cause Δφ and cause lateral force i.e. Y_c. This simplification also leads to lateral static and dynamic stability. The linearization of equations is required because much of mathematics control system design for aircraft is based on linear equations. This technique is simple and eases the linearization of the rigid body equations of motion without using any high-speed computers.

Keywords: Y-force linearization, small disturbance theory, side slip, aerodynamic force drag, lateral rigid body equation of motion

Procedia PDF Downloads 494
3031 Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System

Authors: F. Rahimi Dehgolan, S. E. Khadem, S. Bab, M. Najafee

Abstract:

Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation.

Keywords: rotating shaft, flexible blades, centrifugal stiffness, stability

Procedia PDF Downloads 264
3030 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study

Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali

Abstract:

In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.

Keywords: Navier’s condition, Newtonian fluid model, chemical reaction, heat source/sink

Procedia PDF Downloads 171
3029 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control

Authors: N. Smaoui, B. Chentouf

Abstract:

The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.

Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability

Procedia PDF Downloads 75
3028 Using Lagrange Equations to Study the Relative Motion of a Mechanism

Authors: R. A. Petre, S. E. Nichifor, A. Craifaleanu, I. Stroe

Abstract:

The relative motion of a robotic arm formed by homogeneous bars of different lengths and masses, hinged to each other is investigated. The first bar of the mechanism is articulated on a platform, considered initially fixed on the surface of the Earth, while for the second case the platform is considered to be in rotation with respect to the Earth. For both analyzed cases the motion equations are determined using the Lagrangian formalism, applied in its traditional form, valid with respect to an inertial reference system, conventionally considered as fixed. However, in the second case, a generalized form of the formalism valid with respect to a non-inertial reference frame will also be applied. The numerical calculations were performed using a MATLAB program.

Keywords: Lagrange equations, relative motion, inertial reference frame, non-inertial reference frame

Procedia PDF Downloads 121
3027 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

Authors: Vikas Kumar

Abstract:

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper.

Keywords: axi-symmetric, ferrofluid, magnetic field, porous rotating disk

Procedia PDF Downloads 395
3026 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis

Procedia PDF Downloads 433
3025 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip

Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi

Abstract:

This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.

Keywords: MHD nanofluid, porous medium, rotating disk, slip effect

Procedia PDF Downloads 257
3024 Mathematical Properties of the Viscous Rotating Stratified Fluid Counting with Salinity and Heat Transfer in a Layer

Authors: A. Giniatoulline

Abstract:

A model of the mathematical fluid dynamics which describes the motion of a three-dimensional viscous rotating fluid in a homogeneous gravitational field with the consideration of the salinity and heat transfer is considered in a vertical finite layer. The model is a generalization of the linearized Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density, salinity, and heat transfer. An explicit solution is constructed and the proof of the existence and uniqueness theorems is given. The localization and the structure of the spectrum of inner waves is also investigated. The results may be used, in particular, for constructing stable numerical algorithms for solutions of the considered models of fluid dynamics of the Atmosphere and the Ocean.

Keywords: Fourier transform, generalized solutions, Navier-Stokes equations, stratified fluid

Procedia PDF Downloads 253
3023 Natural Frequency Analysis of Spinning Functionally Graded Cylindrical Shells Subjected to Thermal Loads

Authors: Esmaeil Bahmyari

Abstract:

The natural frequency analysis of the functionally graded (FG) rotating cylindrical shells subjected to thermal loads is studied based on the three-dimensional elasticity theory. The temperature-dependent assumption of the material properties is graded in the thickness direction, which varies based on the simple power law distribution. The governing equations and the appropriate boundary conditions, which include the effects of initial thermal stresses, are derived employing Hamilton’s principle. The initial thermo-mechanical stresses are obtained by the thermo-elastic equilibrium equation’s solution. As an efficient and accurate numerical tool, the differential quadrature method (DQM) is adopted to solve the thermo-elastic equilibrium equations, free vibration equations and natural frequencies are obtained. The high accuracy of the method is demonstrated by comparison studies with those existing solutions in the literature. Ultimately, the parametric studies are performed to demonstrate the effects of boundary conditions, temperature rise, material graded index, the thickness-to-length and the aspect ratios for the rotating cylindrical shells on the natural frequency.

Keywords: free vibration, DQM, elasticity theory, FG shell, rotating cylindrical shell

Procedia PDF Downloads 84
3022 Calculation of Stress Intensity Factors in Rotating Disks Containing 3D Semi-Elliptical Cracks

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Initiation and propagation of cracks may cause catastrophic failures in rotating disks, and hence determination of fracture parameter in rotating disks under the different working condition is very important issue. In this paper, a comprehensive study of stress intensity factors in rotating disks containing 3D semi-elliptical cracks under the different working condition is investigated. In this regard, after verification of modeling and analytical procedure, the effects of mechanical properties, rotational velocity, and orientation of cracks on Stress Intensity Factors (SIF) in rotating disks under centrifugal loading are investigated. Also, the effects of using composite patch in reduction of SIF in rotating disks are studied. By that way, the effects of patching design variables like mechanical properties, thickness, and ply angle are investigated individually.

Keywords: stress intensity factor, semi-elliptical crack, rotating disk, finite element analysis (FEA)

Procedia PDF Downloads 364
3021 Axisymmetric Rotating Flow over a Permeable Surface with Heat and Mass Transfer Effects

Authors: Muhammad Faraz, Talat Rafique, Jang Min Park

Abstract:

In this article, rotational flow above a permeable surface with a variable free stream angular velocity is considered. Main interest is to solve the associated heat/mass transport equations under different situations. Firstly, heat transport phenomena occurring in generalized vortex flow are analyzed under two altered heating processes, namely, the (i) prescribed surface temperature and (ii) prescribed heat flux. The vortex motion imposed at infinity is assumed to follow a power-law form 〖(r/r_0)〗^((2n-1)) where r denotes the radial coordinate, r_0 the disk radius, and n is a power-law parameter. Assuming a similar solution, the governing Navier-Stokes equations transform into a set of coupled ODEs which are treated numerically for the aforementioned thermal conditions. Secondly, mass transport phenomena accompanied by activation energy are incorporated into the generalized vortex flow situation. After finding self-similar equations, a numerical solution is furnished by using MATLAB's built-in function bvp4c.

Keywords: bödewadt flow, vortex flow, rotating flows, prescribed heat flux, permeable surface, activation energy

Procedia PDF Downloads 113
3020 Numerical Solutions of Fredholm Integral Equations by B-Spline Wavelet Method

Authors: Ritu Rani

Abstract:

In this paper, we apply minimalistically upheld linear semi-orthogonal B-spline wavelets, exceptionally developed for the limited interim to rough the obscure function present in the integral equations. Semi-orthogonal wavelets utilizing B-spline uniquely developed for the limited interim and these wavelets can be spoken to in a shut frame. This gives a minimized help. Semi-orthogonal wavelets frame the premise in the space L²(R). Utilizing this premise, an arbitrary function in L²(R) can be communicated as the wavelet arrangement. For the limited interim, the wavelet arrangement cannot be totally introduced by utilizing this premise. This is on the grounds that backings of some premise are truncated at the left or right end purposes of the interim. Subsequently, an uncommon premise must be brought into the wavelet development on the limited interim. These functions are alluded to as the limit scaling functions and limit wavelet functions. B-spline wavelet method has been connected to fathom linear and nonlinear integral equations and their systems. The above method diminishes the integral equations to systems of algebraic equations and afterward these systems can be illuminated by any standard numerical methods. Here, we have connected Newton's method with suitable starting speculation for solving these systems.

Keywords: semi-orthogonal, wavelet arrangement, integral equations, wavelet development

Procedia PDF Downloads 174
3019 Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump

Authors: Nur Dayana Khairunnisa Rosli, Seripah Awang Kechil

Abstract:

Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids.

Keywords: heat transfer, power-law fluids, rotating disk, suction or injection, temperature jump, velocity slip

Procedia PDF Downloads 266
3018 Second Order Analysis of Frames Using Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The main purpose of this paper is to present the Modified Newmark Method as a method of non-linear frame analysis by considering the effect of the axial load (second order analysis). The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. This part of the investigation is performed to generalize the established method for the assemblage structures such as frameworks. As explained, the governing differential equations are non-linear and cannot be formulated easily due to unknown axial load of the struts in the frame. By the assumption of constant axial load, the governing equations are changed to linear ones in most methods. Since the modeling and the solutions of the non-linear form of the governing equations are cumbersome, the linear form of the equations would be used in the established method. However, according to the ability of the method to reconsider the minor omitted parameters in modeling during the solution procedure, the axial load in the elements at each stage of the iteration can be computed and applied in the next stage. Therefore, the ability of the method to present an accurate approach to the solutions of non-linear equations will be demonstrated again in this paper.

Keywords: nonlinear, stability, buckling, modified newmark method

Procedia PDF Downloads 425
3017 Developing an Intelligent Table Tennis Ball Machine with Human Play Simulation for Technical Training

Authors: Chen-Chi An, Jun-Yi He, Cheng-Han Hsieh, Chen-Ching Ting

Abstract:

This research has successfully developed an intelligent table tennis ball machine with human play simulate all situations of human play to take the service. It is well known; an excellent ball machine can help the table tennis coach to provide more efficient teaching, also give players the good technical training and entertainment. An excellent ball machine should be able to service all balls based on human play simulation due to the conventional competitions are today all taken place for people. In this work, two counter-rotating wheels are used to service the balls, where changing the absolute rotating speeds of the two wheels and the differences of rotating speeds between the two wheels can adjust the struck forces and the rotating speeds of the ball. The relationships between the absolute rotating speed of the two wheels and the struck forces of the ball as well as the differences rotating speeds between the two wheels and the rotating speeds of the ball are experimentally determined for technical development. The outlet speed, the ejected distance, and the rotating speed of the ball were measured by changing the absolute rotating speeds of the two wheels in terms of a series of differences in rotating speed between the two wheels for calibration of the ball machine; where the outlet speed and the ejected distance of the ball were further converted to the struck forces of the ball. In process, the balls serviced by the intelligent ball machine were based on the received calibration curves with help of the computer. Experiments technically used photosensitive devices to detect the outlet and rotating speed of the ball. Finally, this research developed some teaching programs for technical training using three ball machines and received more efficient training.

Keywords: table tennis, ball machine, human play simulation, counter-rotating wheels

Procedia PDF Downloads 427
3016 Elastic Deformation of Multistory RC Frames under Lateral Loads

Authors: Hamdy Elgohary, Majid Assas

Abstract:

Estimation of lateral displacement and interstory drifts represent a major step in multistory frames design. In the preliminary design stage, it is essential to perform a fast check for the expected values of lateral deformations. This step will help to ensure the compliance of the expected values with the design code requirements. Also, in some cases during or after the detailed design stage, it may be required to carry fast check of lateral deformations by design reviewer. In the present paper, a parametric study is carried out on the factors affecting in the lateral displacements of multistory frame buildings. Based on the results of the parametric study, simplified empirical equations are recommended for the direct determination of the lateral deflection of multistory frames. The results obtained using the recommended equations have been compared with the results obtained by finite element analysis. The comparison shows that the proposed equations lead to good approximation for the estimation of lateral deflection of multistory RC frame buildings.

Keywords: lateral deflection, interstory drift, approximate analysis, multistory frames

Procedia PDF Downloads 271
3015 Study on Energy Absorption Characteristic of Cab Frame with FEM

Authors: Shigeyuki Haruyama, Oke Oktavianty, Zefry Darmawan, Tadayuki Kyoutani, Ken Kaminishi

Abstract:

Cab’s frame strength is considered as an important factor in excavator’s operator safety, especially during roll-over. In this study, we use a model of cab frame with different thicknesses and perform elastoplastic numerical analysis by using Finite Element Method (FEM). Deformation mode and energy absorption's of cab’s frame part are investigated on two conditions, with wrinkle and without wrinkle. The occurrence of wrinkle when deforming cab frame can reduce energy absorption, and among 4 parts with wrinkle, the energy absorption significantly decreases in part C. Residual stress that generated upon the bending process of part C is analyzed to confirm it possibility in increasing the energy absorption.

Keywords: ROPS, FEM, hydraulic excavator, cab frame

Procedia PDF Downloads 428
3014 A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow

Authors: Ruquan You, Haiwang Li, Zhi Tao

Abstract:

A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024×1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed.

Keywords: rotating facility, PIV, boundary layer flow, spatial and temporal resolution

Procedia PDF Downloads 179
3013 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 336
3012 Performance Analysis of a 6-Phase PMG Exciter with Rotating Thyristor-Controlled Rectification Topologies

Authors: Jonas Kristiansen Nøland, Karina Hjelmervik, Urban Lundin

Abstract:

The thyristor bridge rectifier is often used for control of excitation equipment for synchronous generators. However, on the rotating shaft of brushless exciters, the diode bridge rectifier is mostly used. The step response of a conventional brushless rotating excitation system is slow compared to static excitation systems. This paper investigates the performance of different thyristor-controlled rectification topologies applied on the shaft of a 6-phase PMG exciter connected to a synchronous generator. One of the important issues is the steady-state torque ripple produced by the thyristor bridges.

Keywords: brushless exciters, rotating exciters, permanent magnet machines, synchronous generators

Procedia PDF Downloads 474
3011 Experimental Investigation of Boundary Layer Instability and Transition on a Rotating Parabola in Axial Flow

Authors: Ali Kargar, Kamyar Mansour

Abstract:

In this paper the boundary layer instability and transition on a rotating parabola which is sheathed shape on a rotating 30 degrees total apex angle cone have been study by smoke visualization. The rotating cone especially 30 degrees total apex angle is a well-established subject in some previous novel works and also in our previous works. But in this paper a stabilizing effect is detected by the bluntness of nose and also surface curvature. A parabola model which is satisfying those conditions (sheathed parabola of the 30 degrees cone) has been built and studied in the wind tunnel. The results are shown that the boundary layer transition occurs at higher rotational Reynolds number in comparison by the cone. The results are shown in the visualization pictures and also are compared graphically.

Keywords: transitional Reynolds number, wind tunnel, smoke visualization, rotating parabola

Procedia PDF Downloads 414
3010 Classification of Equations of Motion

Authors: Amritpal Singh Nafria, Rohit Sharma, Md. Shami Ansari

Abstract:

Up to now only five different equations of motion can be derived from velocity time graph without needing to know the normal and frictional forces acting at the point of contact. In this paper we obtained all possible requisite conditions to be considering an equation as an equation of motion. After that we classified equations of motion by considering two equations as fundamental kinematical equations of motion and other three as additional kinematical equations of motion. After deriving these five equations of motion, we examine the easiest way of solving a wide variety of useful numerical problems. At the end of the paper, we discussed the importance and educational benefits of classification of equations of motion.

Keywords: velocity-time graph, fundamental equations, additional equations, requisite conditions, importance and educational benefits

Procedia PDF Downloads 787
3009 Weak Solutions Of Stochastic Fractional Differential Equations

Authors: Lev Idels, Arcady Ponosov

Abstract:

Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others.

Keywords: delay equations, operator methods, stochastic noise, weak solutions

Procedia PDF Downloads 208
3008 Steady and Oscillatory States of Swirling Flows under an Axial Magnetic Field

Authors: Brahim Mahfoud, Rachid Bessaïh

Abstract:

In this paper, a numerical study of steady and oscillatory flows with heat transfer submitted to an axial magnetic field is studied. The governing Navier-Stokes, energy, and potential equations along with appropriate boundary conditions are solved by using the finite-volume method. The flow and temperature fields are presented by stream function and isotherms, respectively. The flow between counter-rotating end disks is very unstable and reveals a great richness of structures. The results are presented for various values of the Hartmann number, Ha=5, 10, 20, and 30, and Richardson numbers , Ri=0, 0.5, 1, 2, and 4, in order to see their effects on the value of the critical Reynolds number, Recr. Stability diagrams are established according to the numerical results of this investigation. These diagrams put in evidence the dependence of Recr with the increase of Ha for various values of Ri.

Keywords: swirling, counter-rotating end disks, magnetic field, oscillatory, cylinder

Procedia PDF Downloads 323
3007 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov

Abstract:

In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr\"odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.

Keywords: Heisenberg Ferromagnet equations, soliton equations, equivalence, Lax representation

Procedia PDF Downloads 456
3006 Complementary Mathematical Model for Underwater Vehicles under Load Variation Test Conditions

Authors: Erim Koyun

Abstract:

This paper aim to construct a mathematical model for Underwater vehicles under load variation test conditions. Propeller effects on underwater vehicle are investigated. Body with counter rotating propeller model is analyzed by CFD methods, thus forces and moment are obtained. Propeller effects of vehicle’s hydrodynamic performance under load variation conditions will be investigated. Additionally, pressure contour is examined for differences between different load conditions. Axial force equation is established using hydrodynamic coefficients, which contains resistance, thrust, and additional coefficients occurs due to load variations. Additional coefficients helps to express completely axial force on underwater vehicle. When the vehicle accelerates, additional force occurs besides thrust force increment. This is propeller effect on the body. Hence, mathematical model cover this effect. For CFD analysis, the incompressible, three-dimensional, and unsteady Reynolds Averaged Navier-Stokes equations will be used Numerical results is verified with experimental results for verification. The overall goal of this study is to present complementary mathematical model for body with counter rotating propeller.

Keywords: counter rotating propeller, CFD, hydrodynamic mathematic model, hydrodynamics analysis, thrust deduction

Procedia PDF Downloads 135
3005 Every g-Riesz Basis is a Riesz Basis

Authors: Mehdi Rashidi-Kouchi, Asghar Rahimi

Abstract:

Sun introduced a generalization of frames and showed that this includes more other cases of generalizations of frame concept and proved that many basic properties can be derived within this more general context. Another generalization of frames is frames in Hilbert C*-module. It has been proved that every g-frame in Hilbert space H respect to Hilbert space K is a frame for B(H;K) as Hilbert C*-module. We show that every g-Riesz basis for Hilbert space H respect to K by add a condition is a Riesz basis for Hilbert B(K)-module B(H;K). Also, we investigate similar result for g-orthonormal and orthogonal bases.

Keywords: frame, g-frame, Riesz basis, g-Riesz basis, Hilbert C*-module

Procedia PDF Downloads 470