Search results for: modified starch
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2575

Search results for: modified starch

2425 Genetically Modified Organisms

Authors: Mudrika Singhal

Abstract:

The research paper is basically about how the genetically modified organisms evolved and their significance in today’s world. It also highlights about the various pros and cons of the genetically modified organisms and the progress of India in this field. A genetically modified organism is the one whose genetic material has been altered using genetic engineering techniques. They have a wide range of uses such as transgenic plants, genetically modified mammals such as mouse and also in insects and aquatic life. Their use is rooted back to the time around 12,000 B.C. when humans domesticated plants and animals. At that humans used genetically modified organisms produced by the procedure of selective breeding and not by genetic engineering techniques. Selective breeding is the procedure in which selective traits are bred in plants and animals and then are domesticated. Domestication of wild plants into a suitable cultigen is a well known example of this technique. GMOs have uses in varied fields ranging from biological and medical research, production of pharmaceutical drugs to agricultural fields. The first organisms to be genetically modified were the microbes because of their simpler genetics. At present the genetically modified protein insulin is used to treat diabetes. In the case of plants transgenic plants, genetically modified crops and cisgenic plants are the examples of genetic modification. In the case of mammals, transgenic animals such as mice, rats etc. serve various purposes such as researching human diseases, improvement in animal health etc. Now coming upon the pros and cons related to the genetically modified organisms, pros include crops with higher yield, less growth time and more predictable in comparison to traditional breeding. Cons include that they are dangerous to mammals such as rats, these products contain protein which would trigger allergic reactions. In India presently, group of GMOs include GM microorganisms, transgenic crops and animals. There are varied applications in the field of healthcare and agriculture. In the nutshell, the research paper is about the progress in the field of genetic modification, taking along the effects in today’s world.

Keywords: applications, mammals, transgenic, engineering and technology

Procedia PDF Downloads 572
2424 Treatment of Acid Mine Drainage with Modified Fly Ash

Authors: Sukla Saha, Alok Sinha

Abstract:

Acid mine drainage (AMD) is the generation of acidic water from active as well as abandoned mines. AMD generates due to the oxidation of pyrites present in the rock in mining areas. Sulfur oxidizing bacteria such as Thiobacillus ferrooxidans acts as a catalyst in this oxidation process. The characteristics of AMD is extreme low pH (2-3) with elevated concentration of different heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such sulfate and chloride. AMD contaminate the ground water as well as surface water which leads to the degradation of water quality. Moreover, it carries detrimental effect for aquatic organism and degrade the environment. In the present study, AMD is treated with fly ash, modified with alkaline agent (NaOH). This modified fly ash (MFA) was experimentally proven as a very effective neutralizing agent for the treatment of AMD. It was observed that pH of treated AMD raised to 9.22 from 1.51 with 100g/L of MFA dose. Approximately, 99% removal of Fe, Al, Mn, Cu and Co took place with the same MFA dose. The treated water comply with the effluent discharge standard of (IS: 2490-1981).

Keywords: acid mine drainage, heavy metals, modified fly ash, neutralization

Procedia PDF Downloads 121
2423 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan

Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal

Abstract:

Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.

Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization

Procedia PDF Downloads 456
2422 Thermodynamic Analysis of a Vapor Absorption System Using Modified Gouy-Stodola Equation

Authors: Gulshan Sachdeva, Ram Bilash

Abstract:

In this paper, the exergy analysis of vapor absorption refrigeration system using LiBr-H2O as working fluid is carried out with the modified Gouy-Stodola approach rather than the classical Gouy-Stodola equation and effect of varying input parameters is also studied on the performance of the system. As the modified approach uses the concept of effective temperature, the mathematical expressions for effective temperature have been formulated and calculated for each component of the system. Various constraints and equations are used to develop program in EES to solve these equations. The main aim of this analysis is to determine the performance of the system and the components having major irreversible loss. Results show that exergy destruction rate is considerable in absorber and generator followed by evaporator and condenser. There is an increase in exergy destruction in generator, absorber and condenser and decrease in the evaporator by the modified approach as compared to the conventional approach. The value of exergy determined by the modified Gouy Stodola equation deviates maximum i.e. 26% in the generator as compared to the exergy calculated by the classical Gouy-Stodola method.

Keywords: exergy analysis, Gouy-Stodola, refrigeration, vapor absorption

Procedia PDF Downloads 374
2421 Synthesis and Characterization of Iron Modified Geopolymer and Its Resistance against Chloride and Sulphate

Authors: Noor-ul-Amin, Lubna Nawab, Sabiha Sultana

Abstract:

Geopolymer with different silica to alumina ratio with iron have been synthesized using sodium silicate, aluminum, and iron salts as a source of silica, alumina and iron source, and sodium/potassium hydroxide as an alkaline medium. The iron source will be taken from iron (III) salts and laterite clay samples. Laterite has been used as a natural source of iron in modified geopolymer. The synthesized iron modified geopolymer was submitted to the different aggressive environment, including chloride and sulphate solutions in different concentration. Different experimental techniques, including XRF, XRD, and FTIR, were used to study the bonding nature and effect of aggressive environment on geopolymer. The major phases formed during geopolymerization are sodalite (Na₄Al₃Si₃O₁₂Cl), albite (NaAlSi₃O₈), hematite (Fe₂O₃), and chabazite as confirmed from the XRD results. The resulting geopolymer showed greater resistance to sulphate and chloride as compared to the normal geopolymer.

Keywords: modified geopolymer, laterite, chloride, sulphate

Procedia PDF Downloads 116
2420 Cloning, Expression and N-Terminal Pegylation of Human Interferon Alpha-2b Analogs and Their Cytotoxic Evaluation against Cancer Cell Lines

Authors: Syeda Kiran Shahzadi, Nasir Mahmood, Muhammad Abdul Qadir

Abstract:

In the current research, three recombinant human interferon alpha-2b proteins (two modified and one normal form) were produced and Pegylated with an aim to produce more effective drugs against viral infections and cancers. The modified recombinant human interferon alpha-2b proteins were produced by site-directed modifications of interferon alpha 2b gene, targeting the amino acids at positions ‘R23’ and ‘H34’. The resulting chemically modified and unmodified forms of human interferon alpha 2b were conjugated with methoxy-polyethylene glycol propanealdehyde (400 KDa) and methoxy-polyethylene glycol succinimidyl succinate (400 KDa). Pegylation of normal and modified forms of Interferon alpha-2b prolong their release time and enhance their efficacy. The conjugation of PEG with modified and unmodified human interferon alpha 2b protein drugs was also characterized with 1H-NMR, HPLC, and SDS-PAGE. Antiproliferative assays of modified and unmodified forms of drugs were performed in cell based bioassays using MDBK cell lines. The results indicated that experimentally produced recombinant human interferon alpha-2b proteins were biologically active and resulted in significant inhibition of cell growth.

Keywords: protein refolding, antiproliferative activities, biomedical applications, human interferon alpha-2b, pegylation, mPEG-propionaldehyde, site directed mutagenesis, E. coli expression

Procedia PDF Downloads 150
2419 Formulation and Characterization of Active Edible Films from Cassava Starch for Snacks and Savories

Authors: P. Raajeswari, S. M. Devatha, S. Yuvajanani, U. Rashika

Abstract:

Edible food packaging are the need of the hour to save life on land and under water by eliminating waste cycle and replacing Single Use Plastics at grass root level as it can be eaten or composted as such. Cassava (Manihot esculenta) selected for making edible films are rich source of starch, and also it exhibit good sheeting propertiesdue to the high amylose: amylopectin content. Cassava starch was extracted by manual method at a laboratory scale and yielded 65 per cent. Edible films were developed by adding food grade plasticizers and water. Glycerol showed good plasticizing property as compared to sorbitol and polylactic acid in both manual (petri dish) and machine (film making machine) production. The thickness of the film is 0.25±0.03 mm. Essential oil and components from peels like pomegranate, orange, pumpkin, onion, and banana brat, and herbs like tulsi and country borage was extracted through the standardized aqueous and alkaline method. In the standardized film, the essential oil and components from selected peel and herbs were added to the casting solution separately and casted the film. It was added to improve the anti-oxidant, anti-microbial and optical properties. By inclusion of extracts, it reduced the bubble formation while casting. FTIR, Water Vapor and Oxygen Transmission Rate (WVTR and OTR), tensile strength, microbial load, shelf life, and degradability of the films were done to analyse the mechanical property of the standardized films. FTIR showed the presence of essential oil. WVTR and OTR of the film was improved after inclusion of essential oil and extracts from 1.312 to 0.811 cm₃/m₂ and 15.12 to 17.81 g/ m₂.d. Inclusion of essential oil from herbs showed better WVTR and OTR than the inclusion of peel extract and standard. Tensile strength and Elongation at break has not changed by essential oil and extracts at 0.86 ± 0.12 mpa and 14 ± 2 at 85 N force. By inclusion of extracts, an optical property of the film enhanced, and it increases the appearance of the packaging material. The films were completely degraded on 84thdays and partially soluble in water. Inclusion of essential oil does not have impact on degradability and solubility. The microbial loads of the active films were decreased from 15 cfu/gm to 7 cfu/gm. The films can be stored at frozen state for 24 days and 48 days at atmospheric temperature when packed with South Indian snacks and savories.

Keywords: active films, cassava starch, plasticizer, characterization

Procedia PDF Downloads 45
2418 Electrochemical Behavior and Cathodic Stripping Voltammetric Determination of Dianabol Steroid in Urine at Bare Glassy Carbon Paste Electrode

Authors: N. Al-Orfi, M. S. El-Shahawi, A. S. Bashammakh

Abstract:

The electrochemical response of glassy carbon electrode (GCE) for the sensitive and selective determination of dianabol steroid (DS) in phosphate, Britton-Robinson (B-R) and HEPES buffers of pH 2.0 - 11, 2.0 - 11 and 6.2 - 8.0, respectively using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) at bare GCE was studied. The dependence of the CV response of the developed cathodic peak potential (Ep, c), peak current (ip, c) and the current function (ip, c / υ1/2) on the scan rate (υ) at the bare GCE revealed the occurrence of electrode coupled chemical reaction of EC type mechanism. The selectivity of the proposed method was assessed in the presence of high concentrations of major interfering species e.g. uric acid, ascorbic acid, citric acid, glucose, fructose, sucrose, starch and ions Na+, K+, PO4-3, NO3- and SO42-. The recovery of the method was not significant where t(critical)=2.20 > texp=1.81-1.93 at 95% confidence. The analytical application of the sensor for the quantification of DS in biological fluids as urine was investigated. The results were demonstrated as recovery percentages in the range 95±2.5-97±4.7% with relative standard deviation (RSD) of 0.5-1.5%.

Keywords: dianabol, determination, modified electrode, urine

Procedia PDF Downloads 246
2417 Comparative Studies of Modified Clay/Polyaniline Nanocomposites

Authors: Fatima Zohra Zeggai, Benjamin Carbonnier, Aïcha Hachemaoui, Ahmed Yahiaoui, Samia Mahouche-Chergui, Zakaria Salmi

Abstract:

A series of polyaniline (PANI)/modified Montmorillonite (MMT) Clay nanocomposite materials have been successfully prepared by In-Situ polymerization in the presence of modified MMT-Clay or Diazonium-MMT-Clay. The obtained nanocomposites were characterized and compared by various physicochemical techniques. The presence of physicochemical interaction, probably hydrogen bonding, between clay and polyaniline, which was confirmed by FTIR, UV-Vis Spectroscopy. The electrical conductivity of neat PANI and a series of the obtained nanocomposites were also studied by cyclic voltammograms.

Keywords: polyaniline, clay, nanocomposites, in-situ polymerization, polymers conductors, diazonium salt

Procedia PDF Downloads 440
2416 Effect of Colloid Versus Crystalloid Administration in Cardiopulmonary Bypass Prime Solution on Tissue and Organ Perfusionm

Authors: Mohammad Java Esmaeily

Abstract:

Background: We evaluate the effects of tissue and organ perfusion during and after coronary artery bypass graft surgery with either colloid (Voluven) or crystalloid (Lactated ringers) as a prime solution. Materials and Methods: In this prospective randomized-controlled trial study, 70 patients undergoing on-pump coronary artery bypass graft surgery were randomly assigned to receive either colloid (Voluven) or crystalloid (Lactated ringer's) as a prime solution for initiation of cardiopulmonary bypass machine procedure. Tissue and organ perfusion markers, including lactate, troponin I, liver and renal function tests and electrolytes, were measured sequentially before induction (T1) to the second days after surgery (T5). Results: With the exception of chloride and potassium levels, no significant differences were detected in other measurements, and laboratory results were identical entirely in the two groups. Conclusion: Voluven® (hydroxyethyl starch, HES 130/0.4) has a not significant difference in comparison with crystalloid (Lactated ringer's) as priming solution on the basis of organ and tissue perfusion tests assessment.

Keywords: prime, colloid, crystalloid, lactate, troponin, hydroxyethyl starch

Procedia PDF Downloads 56
2415 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors

Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber

Abstract:

The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.

Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode

Procedia PDF Downloads 439
2414 Genetically Engineered Crops: Solution for Biotic and Abiotic Stresses in Crop Production

Authors: Deepak Loura

Abstract:

Production and productivity of several crops in the country continue to be adversely affected by biotic (e.g., Insect-pests and diseases) and abiotic (e.g., water temperature and salinity) stresses. Over-dependence on pesticides and other chemicals is economically non-viable for the resource-poor farmers of our country. Further, pesticides can potentially affect human and environmental safety. While traditional breeding techniques and proper- management strategies continue to play a vital role in crop improvement, we need to judiciously use biotechnology approaches for the development of genetically modified crops addressing critical problems in the improvement of crop plants for sustainable agriculture. Modern biotechnology can help to increase crop production, reduce farming costs, and improve food quality and the safety of the environment. Genetic engineering is a new technology which allows plant breeders to produce plants with new gene combinations by genetic transformation of crop plants for improvement of agronomic traits. Advances in recombinant DNA technology have made it possible to have genes between widely divergent species to develop genetically modified or genetically engineered plants. Plant genetic engineering provides the strength to harness useful genes and alleles from indigenous microorganisms to enrich the gene pool for developing genetically modified (GM) crops that will have inbuilt (inherent) resistance to insect pests, diseases, and abiotic stresses. Plant biotechnology has made significant contributions in the past 20 years in the development of genetically engineered or genetically modified crops with multiple benefits. A variety of traits have been introduced in genetically engineered crops which include (i) herbicide resistance. (ii) pest resistance, (iii) viral resistance, (iv) slow ripening of fruits and vegetables, (v) fungal and bacterial resistance, (vi) abiotic stress tolerance (drought, salinity, temperature, flooding, etc.). (vii) quality improvement (starch, protein, and oil), (viii) value addition (vitamins, micro, and macro elements), (ix) pharmaceutical and therapeutic proteins, and (x) edible vaccines, etc. Multiple genes in transgenic crops can be useful in developing durable disease resistance and a broad insect-control spectrum and could lead to potential cost-saving advantages for farmers. The development of transgenic to produce high-value pharmaceuticals and the edible vaccine is also under progress, which requires much more research and development work before commercially viable products will be available. In addition, molecular-aided selection (MAS) is now routinely used to enhance the speed and precision of plant breeding. Newer technologies need to be developed and deployed for enhancing and sustaining agricultural productivity. There is a need to optimize the use of biotechnology in conjunction with conventional technologies to achieve higher productivity with fewer resources. Therefore, genetic modification/ engineering of crop plants assumes greater importance, which demands the development and adoption of newer technology for the genetic improvement of crops for increasing crop productivity.

Keywords: biotechnology, plant genetic engineering, genetically modified, biotic, abiotic, disease resistance

Procedia PDF Downloads 45
2413 Effect of Modifiers (Sr/Sb) and Heat Treatment on the Microstructures and Wear Properties of Al-11Si-3Cu-0.5Mg Alloys

Authors: Sheng-Long Lee, Tse-An Pan

Abstract:

In this study, an optical microscope (OM), electron microscope (SEM), electrical conductivity meter (% IACS), hardness test, and wear test were subjected to analyze the microstructure of the wrought Al-11Si-3Cu-0.5Mg alloys. The effect of eutectic silicon morphology and alloy hardness on wear properties was investigated. The results showed that in the cast state, the morphology of eutectic silicon modified by strontium and antimony is lamellar and finer fibrous structure. After homogenization, the eutectic Si modified by Sr coarsened, and the eutectic Si modified by Sb refined due to fragmentation. The addition of modifiers, hot rolling, and solution aging treatment can control eutectic silicon morphology and hardness. The finer eutectic silicon and higher hardness have better wear resistance. During the wearing process, a protective oxide layer, also known as Mechanical Mixed Layer (MML), is formed on the surface of the alloy. The MML has higher stability and cracking resistance in Sr-modified alloys than in Sb-modified alloys. The study found that the wearing behavior of Al-11Si-3Cu-0.5Mg alloy was enhanced by the combination of adding Sr with lower solution time and T6 peak aging.

Keywords: Al-Si-Cu-Mg alloy, eutectic silicon, heat treatment, wear property

Procedia PDF Downloads 44
2412 Laboratory Evaluation of Gilsonite Modified Bituminous Mixes

Authors: R. Vishnu, K. S. Reddy, Amrendra Kumar

Abstract:

The present guideline for the construction of flexible pavement in India, IRC 37: 2012 recommends to use viscous grade VG 40 bitumen in both wearing and binder bituminous layers. However, most of the bitumen production plants in India are unable to produce the air-blown VG40 grade bitumen. This requires plant’s air-blowing technique modification, and often the manufactures finds it as uneconomical. In this context, stiffer grade bitumen can be produced if bitumen is modified. Gilsonite, which is naturally occurring asphalt have been found to be used for increasing the stiffness of binders. The present study evaluates the physical, rheological characteristics of Gilsonite modified binders and the performance characteristics of these binders when used in the mix.

Keywords: bitumen, gilsonite, stiffness, laboratory evaluation

Procedia PDF Downloads 440
2411 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 75
2410 Experimental Investigations of a Modified Taylor-Couette Flow

Authors: Ahmed Esmael, Ali El Shrif

Abstract:

In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow.

Keywords: hydrodynamic instability, Modified Taylor-Couette Flow, turbulence, Taylor vortices

Procedia PDF Downloads 409
2409 Common Fixed Point Results and Stability of a Modified Jungck Iterative Scheme

Authors: Hudson Akewe

Abstract:

In this study, we introduce a modified Jungck (Dual Jungck) iterative scheme and use the scheme to approximate the unique common fixed point of a pair of generalized contractive-like operators in a Banach space. The iterative scheme is also shown to be stable with respect to the maps (S,T). An example is taken to justify the convergence of the scheme. Our result is a generalization and improvement of several results in the literature on single map T.

Keywords: generalized contractive-like operators, modified Jungck iterative scheme, stability results, weakly compatible maps, unique common fixed point

Procedia PDF Downloads 318
2408 Modeling and Validation of Microspheres Generation in the Modified T-Junction Device

Authors: Lei Lei, Hongbo Zhang, Donald J. Bergstrom, Bing Zhang, K. Y. Song, W. J. Zhang

Abstract:

This paper presents a model for a modified T-junction device for microspheres generation. The numerical model is developed using a commercial software package: COMSOL Multiphysics. In order to test the accuracy of the numerical model, multiple variables, such as the flow rate of cross-flow, fluid properties, structure, and geometry of the microdevice are applied. The results from the model are compared with the experimental results in the diameter of the microsphere generated. The comparison shows a good agreement. Therefore the model is useful in further optimization of the device and feedback control of microsphere generation if any.

Keywords: CFD modeling, validation, microsphere generation, modified T-junction

Procedia PDF Downloads 674
2407 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 177
2406 Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh

Authors: Ali M. Babalghaith, Hamad A. Alsoliman, Abdulrahman S. Al-Suhaibani

Abstract:

Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ).

Keywords: polymer modified asphalt, rheological properties, SBS, crumb rubber, EE-2

Procedia PDF Downloads 257
2405 Development of Biodegradable Plastic as Mango Fruit Bag

Authors: Andres M. Tuates Jr., Ofero A. Caparino

Abstract:

Plastics have achieved a dominant position in agriculture because of their transparency, lightness in weight, impermeability to water and their resistance to microbial attack. However, this generates a higher quantity of wastes that are difficult to dispose of by farmers. To address these problems, the project aim to develop and evaluate the biodegradable film for mango fruit bag during development. The PBS and starch were melt-blended in a twin-screw extruder and then blown into film extrusion machine. The physic-chemical-mechanical properties of biodegradable fruit bag were done following standard methods of test. Field testing of fruit bag was also conducted to evaluate its durability and efficiency field condition. The PHilMech-FiC fruit bag is made of biodegradable material measuring 6 x 8 inches with a thickness of 150 microns. The tensile strength is within the range of LDPE while the elongation is within the range of HDPE. It is projected that after thirty-six (36) weeks, the film will be totally degraded. Results of field testing show that the quality of harvested fruits using PHilMech-FiC biodegradable fruit bag in terms of percent marketable, non-marketable and export, peel color at the ripe stage, flesh color, TSS, oBrix, percent edible portion is comparable with the existing bagging materials such as Chinese brown paper bag and old newspaper.

Keywords: cassava starch, PBS, biodegradable, chemical, mechanical properties

Procedia PDF Downloads 252
2404 Sunflower Oil as a Nutritional Strategy to Reduce the Impacts of Heat Stress on Meat Quality and Dirtiness Pigs Score

Authors: Angela Cristina Da F. De Oliveira, Salma E. Asmar, Norbert P. Battlori, Yaz Vera, Uriel R. Valencia, Tâmara D. Borges, Antoni D. Bueno, Leandro B. Costa

Abstract:

The present study aimed to evaluate the replacement of 5% of starch per 5% of sunflower oil (SO) on meat quality and animal welfare of growing and finishing pigs (Iberic x Duroc), exposed to a heat stress environment. The experiment lasted 90 days, and it was carried out in a randomized block design, in a 2 x 2 factorial, composed of two diets (starch or sunflower oil (with or without) and two feed intake management (ad libitum and restriction). Seventy-two crossbred males (51± 6,29 kg body weight - BW) were housed in climate-controlled rooms, in collective pens and exposed to heat stress environment (32°C; 35% to 50% humidity). The treatments studies were: 1) control diet (5% starch x 0% SO) with ad libitum intake (n = 18); 2) SO diet (replacement of 5% of starch per 5% of SO) with ad libitum intake (n = 18); 3) control diet with restriction feed intake (n = 18); or 4) SO diet with restriction feed intake (n = 18). Feed were provided in two phases, 50-100 Kg BW for growing and 100-140 Kg BW for finishing, respectively. Within welfare evaluations, dirtiness score was evaluated all morning during ninety days of the experiment. The presence of manure was individually measured based on one side of the pig´s body and scored according to: 0 (less than 20% of the body surface); 1 (more than 20% but less than 50% of the body surface); 2 (over 50% of the body surface). After the experimental period, when animals reach 130-140 kg BW, they were slaughtered using carbon dioxide (CO2) stunning. Carcass weight, leanness and fat content, measured at the last rib, were recorded within 20 min post-mortem (PM). At 24h PM, pH, electrical conductivity and color measures (L, a*, b*) were recorded in the Longissimus thoracis and Semimembranosus muscles. Data shown no interaction between diet (control x SO) and management feed intake (ad libitum x restriction) on the meat quality parameters. Animals in ad libitum management presented an increase (p < 0.05) on BW, carcass weight (CW), back fat thickness (BT), and intramuscular fat content (IM) when compared with animals in restriction management. In contrast, animals in restriction management showing a higher (p < 0.05) carcass yield, percentage of lean and loin thickness. To welfare evaluations, the interaction between diet and management feed intake did not influence the degree of dirtiness. Although, the animals that received SO diet, independently of the management, were cleaner than animals in control group (p < 0,05), which, for pigs, demonstrate an important strategy to reduce body temperature. Based in our results, the diet and management feed intake had a significant influence on meat quality and animal welfare being considered efficient nutritional strategies to reduce heat stress and improved meat quality.

Keywords: dirtiness, environment, meat, pig

Procedia PDF Downloads 232
2403 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer

Authors: Hao-Su Liu, Jun-Qing Lei

Abstract:

This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.

Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge

Procedia PDF Downloads 291
2402 Removal of Samarium in Environmental Water Samples by Modified Yeast Cells

Authors: Homayon Ahmad Panahi, Seyed Mehdi Seyed Nejad, Elham Moniri

Abstract:

A novel bio-adsorbent is fabricated by attaching a cibacron blue to yeast cells. The modified bio-sorbent has been characterized by some techniques like Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (CHN) and applied for the preconcentration and determination of samarium from aqueous water samples. The best pH value for adsorption of the brilliant crecyle blue by yeast cells- cibacron blue was 7. The sorption capacity of modified biosorbent was 18.5 mg. g⁻¹. A recovery of 95.3% was obtained for Sm(III) when eluted with 0.5 M nitric acid. The method was applied for Sm(III) preconcentration and determination in river water sample.

Keywords: samarium, solid phase extraction, yeast cells, water sample, removal

Procedia PDF Downloads 224
2401 Efficacy of Modified Bottom Boards to Control Varroa Mite (Varroa Destructor) in Honeybee Colonies

Authors: Marwan Keshlaf, Hassan Fellah

Abstract:

This study was designed to test whether hive bottom boards modified with polyvinyl chloride pipe or screen-mesh reduces number of Varroa mites in naturally infested honeybee colonies comparing to chemical control. Fifty six colonies distributed equally between two location each received one of four experimental treatment 1) conventional solid board “control”, 2) Apistan in conventional solid board, 3) Mesh bottom board and 4) tube bottom board. Varroa infestation level on both adult bees and on capped brood was estimated. Stored pollen, capped brood area and honey production were also measured. Results of varroa infestation were inconsistent between apiaries. In apiary 1, colonies with Apistan had fewer Varroa destructor than other treatments, but this benefit was not apparent in Apiary 2. There were no effects of modified bottom boards on bee flight activity, brood production, honey yield and stored pollen. We conclude that the efficacy of modified bottom boards in reducing varroa mites population in bee colonies remains uncertain due to observed differences of hygienic behavior.

Keywords: Apis mellifera, modified bottom boards, Varroa destructor, Honeybee colonies

Procedia PDF Downloads 344
2400 Electrochemical Studies of Nickel Nanoparticles Decorated the Surface of Some Conducting Polymers for Glucose Oxidation in Biofuel Cells

Authors: Z. Khalifa, K. M. Hassan, M. Abdel Azzem

Abstract:

Potential strategies for deriving useful forms of renewable high density energy from abundant energy stored in carbohydrates is direct conversion of glucose (GLU) to electrical power. A three novel versatile modified electrodes, synthesized by electrochemical polymerization of organic monomers on glassy carbon electrodes (GC), have been developed for biofuel cells results in stable and long-term power production. Electrocatalytic oxidation of glucose in alkaline solution on conducting polymers electrodes modified by incorporation of Ni nanoparticles (NiNPs) onto poly(1,5-aminonaphthalene) (1,5-PDAN), poly(1,8-diaminonaphthalene) (1,8-PDAN) and poly(1-amino-2-methyl-9,10-anthraquinone) (PAMAQ) was investigated. The electrocatalytic oxidation of glucose at NiNPs-modified 1,5-PDAN/GC, 1,8-PDAN/GC and PAMAQ/GC electrodes has been studied using voltammetry technique. The PDAN electrodes show a slight activity in the potential of interest. The prepared NiNPs/PAMAQ/GC catalyst showed a very interesting catalytic activity that was nicely comparable to the NiNPs/1,5-PDAN/GC, NiNPs/1,8-PDAN/GC modified electrodes. In advance, both shows a significant more catalytic activity compared to the reported data for electrodes for glucose electrocatalytic oxidation.

Keywords: biofuel cells, glucose oxidation, electrocatalysis, nanoparticles and modified electrodes

Procedia PDF Downloads 216
2399 The Properties of Na2CO3 and Ti Hybrid Modified LM 6 Alloy Using Ladle Metallurgy

Authors: M. N. Ervina Efzan, H. J. Kong, C. K. Kok

Abstract:

The present work deals with a study on the influences of hybrid modifier on LM 6 added through ladle metallurgy. In this study, LM 6 served as the reference alloy while Na2CO3 and Ti powders were used as the hybrid modifier. The effects of hybrid modifier on the micro structural enhancement of LM 6 were investigated using optical microscope (OM) and Scanning Electron Microscope (SEM). The results showed fragmented Si-rich needles and strength enhanced petal/ globular-like structures without obvious formation of soft primary α-Al and β-Fe-rich inter metallic compound (IMC) after the hybrid modification. Hardness test was conducted to examine the mechanical improvement of hybrid modified LM 6. 10% of hardness improvement was recorded in the hybrid modified LM 6 through ladle metallurgy.

Keywords: Al-Si, hybrid modifier, ladle metallurgy, hardness

Procedia PDF Downloads 360
2398 Stabilization of Pb, Cr, Cd, Cu and Zn in Solid Waste and Sludge Pyrolysis by Modified Vermiculite

Authors: Yuxuan Yang, Zhaoping Zhong

Abstract:

Municipal solid waste and sludge are important sources of waste energy and their proper disposal is of great importance. Pyrolysis can fully decompose solid wastes and sludge, and the pyrolysis products (charcoal, oil and gas) have important recovery values. Due to the complex composition of solid wastes and sludge, the pyrolysis process at high temperatures is prone to heavy metal emissions, which are harmful to humans and the environment and reduce the safety of pyrolysis products. In this paper, heavy metal emissions during pyrolysis of municipal sewage sludge, paper mill sludge, municipal domestic waste, and aged refuse at 450-650°C were investigated and the emissions and hazards of heavy metals (Pb, Cr, Cd, Cu and Zn) were effectively reduced by adding modified vermiculite as an additive. The vermiculite was modified by intercalation with cetyltrimethylammonium bromide, which resulted in more than twice the original layer spacing of the vermiculite. Afterward, the interpolated vermiculite was made into vermiculite flakes by exfoliation modification. After that, the expansion rate of vermiculite flakes was increased by Mg2+ modification and thermal activation. The expanded vermiculite flakes were acidified to improve the textural characteristics of the vermiculite. The modified vermiculite was analysed by XRD, FT-IR, BET and SEM to clarify the modification effect. The incorporation of modified vermiculite resulted in more than 80% retention of all heavy metals at 450°C. Cr, Cu and Zn were better retained than Pb and Cd. The incorporation of modified vermiculite effectively reduced the risk of heavy metals, and all risks were low for Pb, Cr, Cu and Zn. The toxicity of all heavy metals was greatly reduced by the incorporation of modified vermiculite and the morphology of heavy metals was transformed from Exchangeable and acid-soluble (F1) and Reducible (F2) to Oxidizable (F3) and Residual (F4). In addition, the increase in temperature favored the stabilization of heavy metal forms. This study provides a new insight into the cleaner use of energy and the safe management of solid waste.

Keywords: heavy metal, pyrolysis, vermiculite, solid waste

Procedia PDF Downloads 36
2397 Stability of Composite Struts Using the Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The aim of this paper is to examine the behavior of elastic stability of reinforced and composite concrete struts with axial loads. The objective of this study is to verify the ability of the Modified Newmark Method to include geometric non-linearity in addition to non-linearity due to cracking, and also to show the advantage of the established method to reconsider an ignored minor parameter in mathematical modeling, such as the effect of the cracking by extra geometric bending moment Ny on cross-section properties. The purpose of this investigation is not to present some new results for the instability of reinforced or composite concrete columns. Therefore, no kinds of non-linearity involved in the problem are considered here. Only as mentioned, it is a part of the verification of the new established method to solve two kinds of non-linearity P- δ effect and cracking together simultaneously. However, the Modified Newmark Method can be used to solve non-linearity of materials and time-dependent behavior of concrete. However, since it is out of the scope of this article, it is not considered.

Keywords: stability, buckling, modified newmark method, reinforced

Procedia PDF Downloads 295
2396 Size Dependent Magnetic Properties of CoFe2-xGdxO4 (x = 0.1) Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this work, the effect of particle size on the structural and magnetic properties of CoFe2-xGdxO4 (x =0.1) spinel ferrite nanoparticles synthesized by starch-assisted sol-gel auto combustion method was investigated. The different sized CoFe2-xGdxO4 (x =0.1) spinel ferrite nanoparticles were achieved after annealing at different temperature 500, 700 and 900 oC. The structural phases, crystallite size and lattice parameter of synthesized ferrite nanoparticles were estimated from X-ray diffraction studies. The field emission scanning electron microscopy study demonstrated increase in particle size with increase of annealing temperature. Raman spectroscopy study indicated the change in octahedral and tetrahedral site related Raman modes in Gd3+ ions doped cobalt ferrite nanoparticles. An infrared spectroscopy study showed the presence of two absorption bands in the frequency range around 580 cm-1 (ν1) and around 340 cm-1 (ν2); which indicated the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Vibrating Sample magnetometer study showed that the saturation magnetization and coercivity changes with particle size of CoFe2-xGdxO4 (x =0.1) spinel ferrite.

Keywords: magnetic properties, spinel ferrite, nanoparticles, sol-gel synthesis

Procedia PDF Downloads 462