Search results for: membership categorization analysis
28037 Defuzzification of Periodic Membership Function on Circular Coordinates
Authors: Takashi Mitsuishi, Koji Saigusa
Abstract:
This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. The proposed methods are applied to the simple color construct system.Keywords: periodic membership function, polar coordinates transformation, defuzzification, circular coordinates
Procedia PDF Downloads 30928036 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: big data analysis, document classification, multi-category, text mining, topic analysis
Procedia PDF Downloads 27228035 Influence of Telkom Membership Card Customer Perceived Value on Retaining PT. Telkom Indonesia's Customer in 2013-2014
Authors: Eka Yuliana, Siska Shabrina Julyan
Abstract:
The competitive environment and high customer’s churn rate in telecommunication industries lead Indonesian telecommunication companies become strive to offer products with more value. Offering product with more value can encourage customers to keep using the companies product. One of way to retain customer is give a membership card to the customers as practiced by PT. Telkom by giving Telkom Membership Card to PT. Telkom loyal customer. This study aims to determine the influence of Telkom Membership Card customer perceived value on retaining PT. Telkom Indonesia’s customer in 2013-2014 by using quantitative method with causal study. Analythical technique used in this study is Structural Equation Modelling (SEM) to test the causal relationship with 216 owner of Telkom Membership Card in Indonesia. This study conclude that: (i) Customer perceived value on Telkom Membership Card is located in fair value zone, (ii) PT. Telkom efforts in order to retain the customers is classified as good, (iii) Customer perceived value is influencing the effort to retain the customer with the probability value less than 0.05 and level of influence 69%. Based on result of this study, PT. Telkom should (i) Improve Telkom Membership Card’s promotion because not all customer of PT. Telkom have the membership card. (iia) Adding Telkom Membership Card’s benefit such as discount at various merchant (iib) Making call center for member of Telkom Membership Card (iii) PT. Telkom should be ensure availability of their service. (iv) PT. Telkom should make a priority to customer who have telkom membership card and offers a better service.For future research should be use different variables.Keywords: customer perceived value, customer retention, marketing, relationship marketing
Procedia PDF Downloads 32128034 Membership Surface and Arithmetic Operations of Imprecise Matrix
Authors: Dhruba Das
Abstract:
In this paper, a method has been developed to construct the membership surfaces of row and column vectors and arithmetic operations of imprecise matrix. A matrix with imprecise elements would be called an imprecise matrix. The membership surface of imprecise vector has been already shown based on Randomness-Impreciseness Consistency Principle. The Randomness- Impreciseness Consistency Principle leads to defining a normal law of impreciseness using two different laws of randomness. In this paper, the author has shown row and column membership surfaces and arithmetic operations of imprecise matrix and demonstrated with the help of numerical example.Keywords: imprecise number, imprecise vector, membership surface, imprecise matrix
Procedia PDF Downloads 38628033 Similarity Based Membership of Elements to Uncertain Concept in Information System
Authors: M. Kamel El-Sayed
Abstract:
The process of determining the degree of membership for an element to an uncertain concept has been found in many ways, using equivalence and symmetry relations in information systems. In the case of similarity, these methods did not take into account the degree of symmetry between elements. In this paper, we use a new definition for finding the membership based on the degree of symmetry. We provide an example to clarify the suggested methods and compare it with previous methods. This method opens the door to more accurate decisions in information systems.Keywords: information system, uncertain concept, membership function, similarity relation, degree of similarity
Procedia PDF Downloads 22328032 Human Errors in IT Services, HFACS Model in Root Cause Categorization
Authors: Kari Saarelainen, Marko Jantti
Abstract:
IT service trending of root causes of service incidents and problems is an important part of proactive problem management and service improvement. Human error related root causes are an important root cause category also in IT service management, although it’s proportion among root causes is smaller than in the other industries. The research problem in this study is: How root causes of incidents related to human errors should be categorized in an ITSM organization to effectively support service improvement. Categorization based on IT service management processes and based on Human Factors Analysis and Classification System (HFACS) taxonomy was studied in a case study. HFACS is widely used in human error root cause categorization across many industries. Combining these two categorization models in a two dimensional matrix was found effective, yet impractical for daily work.Keywords: IT service management, ITIL, incident, problem, HFACS, swiss cheese model
Procedia PDF Downloads 48828031 Imprecise Vector: The Case of Subnormality
Authors: Dhruba Das
Abstract:
In this article, the author has put forward the actual mathematical explanation of subnormal imprecise vector. Every subnormal imprecise vector has to be defined with reference to a membership surface. The membership surface of normal imprecise vector has already defined based on Randomness-Impreciseness Consistency Principle. The Randomness- Impreciseness Consistency Principle leads to defining a normal law of impreciseness using two different laws of randomness. A normal imprecise vector is a special case of subnormal imprecise vector. Nothing however is available in the literature about the membership surface when a subnormal imprecise vector is defined. The author has shown here how to construct the membership surface of a subnormal imprecise vector.Keywords: imprecise vector, membership surface, subnormal imprecise number, subnormal imprecise vector
Procedia PDF Downloads 32028030 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor
Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong
Abstract:
Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.Keywords: variable speed refrigeration system, fuzzy logic control, membership function range, control performance
Procedia PDF Downloads 26528029 A Mega-Analysis of the Predictive Power of Initial Contact within Minimal Social Network
Authors: Cathal Ffrench, Ryan Barrett, Mike Quayle
Abstract:
It is accepted in social psychology that categorization leads to ingroup favoritism, without further thought given to the processes that may co-occur or even precede categorization. These categorizations move away from the conceptualization of the self as a unique social being toward an increasingly collective identity. Subsequently, many individuals derive much of their self-evaluations from these collective identities. The seminal literature on this topic argues that it is primarily categorization that evokes instances of ingroup favoritism. Apropos to these theories, we argue that categorization acts to enhance and further intergroup processes rather than defining them. More accurately, we propose categorization aids initial ingroup contact and this first contact is predictive of subsequent favoritism on individual and collective levels. This analysis focuses on Virtual Interaction APPLication (VIAPPL) based studies, a software interface that builds on the flaws of the original minimal group studies. The VIAPPL allows the exchange of tokens in an intra and inter-group manner. This token exchange is how we classified the first contact. The study involves binary longitudinal analysis to better understand the subsequent exchanges of individuals based on who they first interacted with. Studies were selected on the criteria of evidence of explicit first interactions and two-group designs. Our findings paint a compelling picture in support of a motivated contact hypothesis, which suggests that an individual’s first motivated contact toward another has strong predictive capabilities for future behavior. This contact can lead to habit formation and specific favoritism towards individuals where contact has been established. This has important implications for understanding how group conflict occurs, and how intra-group individual bias can develop.Keywords: categorization, group dynamics, initial contact, minimal social networks, momentary contact
Procedia PDF Downloads 14828028 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets
Authors: O. Poleshchuk, E. Komarov
Abstract:
This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval
Procedia PDF Downloads 37328027 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters
Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi
Abstract:
A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation
Procedia PDF Downloads 54028026 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model
Authors: Yolina A. Petrova, Georgi I. Petkov
Abstract:
The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.Keywords: analogy-making, categorization, category learning, cognitive modeling, role-governed categories
Procedia PDF Downloads 14228025 A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter
Authors: Jun-Ho Chung, Sung-Hyun Yoo, In-Hwan Choi, Hyun-Kook Lee, Moon-Kyu Song, Choon-Ki Ahn
Abstract:
The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example.Keywords: fuzzy logic system, optimization, membership function, extended FIR filter
Procedia PDF Downloads 72328024 Role of Physical Appearance in Associating People with a Group Identity
Authors: Gurleen Kaur
Abstract:
Being tall-short, fat-thin, black-white, etc. is an inevitable part of how people perceive you. This association of people with your external appearance carves out an identity for you. This paper will look at the reasons why people relate a person to a particular categorization on the basis of his/her physical appearance. The paper delves into reasons for this categorization into groups: Subconscious grouping, personal gain, ease of relating to the group, and social acceptance. Development of certain unique physical features also leads to a person relating himself to a collective identity. Thus, this paper will support the fact that physical appearance plays a crucial role in categorization of people into groups and hence forming a group identity for them. This paper is divided into three parts. The first part will discuss what physical appearance is and how is it linked to our daily lives. The second part will talk about why it works i.e. why this factor of external appearance is important in formation of identity. The last part will talk about the factors which lead to categorization of identity because of physical appearance.Keywords: group identity, physical appearance, subconscious grouping, collective identity
Procedia PDF Downloads 41928023 Amharic Text News Classification Using Supervised Learning
Authors: Misrak Assefa
Abstract:
The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.Keywords: text categorization, supervised machine learning, naive Bayes, decision tree
Procedia PDF Downloads 20928022 Preoperative Anxiety Evaluation: Comparing the Visual Facial Anxiety Scale/Yumul Faces Anxiety Scale, Numerical Verbal Rating Scale, Categorization Scale, and the State-Trait Anxiety Inventory
Authors: Roya Yumul, Chse, Ofelia Loani Elvir Lazo, David Chernobylsky, Omar Durra
Abstract:
Background: Preoperative anxiety has been shown to be caused by the fear associated with surgical and anesthetic complications; however, the current gold standard for assessing patient anxiety, the STAI, is problematic to use in the preoperative setting given the duration and concentration required to complete the 40-item extensive questionnaire. Our primary aim in the study is to investigate the correlation of the Visual Facial Anxiety Scale (VFAS) and Numerical Verbal Rating Scale (NVRS) to State-Trait Anxiety Inventory (STAI) to determine the optimal anxiety scale to use in the perioperative setting. Methods: A clinical study of patients undergoing various surgeries was conducted utilizing each of the preoperative anxiety scales. Inclusion criteria included patients undergoing elective surgeries, while exclusion criteria included patients with anesthesia contraindications, inability to comprehend instructions, impaired judgement, substance abuse history, and those pregnant or lactating. 293 patients were analyzed in terms of demographics, anxiety scale survey results, and anesthesia data via Spearman Coefficients, Chi-Squared Analysis, and Fischer’s exact test utilized for comparison analysis. Results: Statistical analysis showed that VFAS had a higher correlation to STAI than NVRS (rs=0.66, p<0.0001 vs. rs=0.64, p<0.0001). The combined VFAS-Categorization Scores showed the highest correlation with the gold standard (rs=0.72, p<0.0001). Subgroup analysis showed similar results. STAI evaluation time (247.7 ± 54.81 sec) far exceeds VFAS (7.29 ± 1.61 sec), NVRS (7.23 ± 1.60 sec), and Categorization scales (7.29 ± 1.99 sec). Patients preferred VFAS (54.4%), Categorization (11.6%), and NVRS (8.8%). Anesthesiologists preferred VFAS (63.9%), NVRS (22.1%), and Categorization Scales (14.0%). Of note, the top five causes of preoperative anxiety were determined to be waiting (56.5%), pain (42.5%), family concerns (40.5%), no information about surgery (40.1%), or anesthesia (31.6%). Conclusions: Combined VFAS-Categorization Score (VCS) demonstrates the highest correlation to the gold standard, STAI. Both VFAS and Categorization tests also take significantly less time than STAI, which is critical in the preoperative setting. Among both patients and anesthesiologists, VFAS was the most preferred scale. This forms the basis of the Yumul FACES Anxiety Scale, designed for quick quantization and assessment in the preoperative setting while maintaining a high correlation to the golden standard. Additional studies using the formulated Yumul FACES Anxiety Scale are merited.Keywords: numerical verbal anxiety scale, preoperative anxiety, state-trait anxiety inventory, visual facial anxiety scale
Procedia PDF Downloads 14028021 A New Categorization of Image Quality Metrics Based on a Model of Human Quality Perception
Authors: Maria Grazia Albanesi, Riccardo Amadeo
Abstract:
This study presents a new model of the human image quality assessment process: the aim is to highlight the foundations of the image quality metrics proposed in literature, by identifying the cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to create a novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effective objective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biases are not taken in account at all. We then propose a possible methodology to address this issue.Keywords: eye-tracking, image quality assessment metric, MOS, quality of user experience, visual perception
Procedia PDF Downloads 41128020 Comparison of the Yumul Faces Anxiety Scale to the Categorization Scale, the Numerical Verbal Rating Scale, and the State-Trait Anxiety Inventory for Preoperative Anxiety Evaluation
Authors: Ofelia Loani Elvir Lazo, Roya Yumul, David Chernobylsky, Omar Durra
Abstract:
Background: It is crucial to detect the patient’s existing anxiety to assist patients in a perioperative setting which is to be caused by the fear associated with surgical and anesthetic complications. However, the current gold standard for assessing patient anxiety, the STAI, is problematic to use in the preoperative setting, given the duration and concentration required to complete the 40-item questionnaire. Our primary aim in the study is to investigate the correlation of the Yumul Visual Facial Anxiety Scale (VFAS) and Numerical Verbal Rating Scale (NVRS) to State-Trait Anxiety Inventory (STAI) to determine the optimal anxiety scale to use in the perioperative setting. Methods: A clinical study of patients undergoing various surgeries was conducted utilizing each of the preoperative anxiety scales. Inclusion criteria included patients undergoing elective surgeries, while exclusion criteria included patients with anesthesia contraindications, inability to comprehend instructions, impaired judgement, substance abuse history, and those pregnant or lactating. 293 patients were analyzed in terms of demographics, anxiety scale survey results, and anesthesia data via Spearman Coefficients, Chi-Squared Analysis, and Fischer’s exact test utilized for comparative analysis. Results: Statistical analysis showed that VFAS had a higher correlation to STAI than NVRS (rs=0.66, p<0.0001 vs. rs=0.64, p<0.0001). The combined VFAS-Categorization Scores showed the highest correlation with the gold standard (rs=0.72, p<0.0001). Subgroup analysis showed similar results. STAI evaluation time (247.7 ± 54.81 sec) far exceeds VFAS (7.29 ± 1.61 sec), NVRS (7.23 ± 1.60 sec), and Categorization scales (7.29 ± 1.99 sec). Patients preferred VFAS (54.4%), Categorization (11.6%), and NVRS (8.8%). Anesthesiologists preferred VFAS (63.9%), NVRS (22.1%), and Categorization Scales (14.0%). Of note, the top five causes of preoperative anxiety were determined to be waiting (56.5%), pain (42.5%), family concerns (40.5%), no information about surgery (40.1%), or anesthesia (31.6%). Conclusıons: Both VFAS and Categorization tests also take significantly less time than STAI, which is critical in the preoperative setting. Combined VFAS-Categorization Score (VCS) demonstrates the highest correlation to the gold standard, STAI. Among both patients and anesthesiologists, VFAS was the most preferred scale. This forms the basis of the Yumul Faces Anxiety Scale, designed for quick quantization and assessment in the preoperative setting while maintaining a high correlation to the golden standard. Additional studies using the formulated Yumul Faces Anxiety Scale are merited.Keywords: numerical verbal anxiety scale, preoperative anxiety, state-trait anxiety inventory, visual facial anxiety scale
Procedia PDF Downloads 11728019 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 29728018 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates
Authors: Takashi Mitsuishi
Abstract:
Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation
Procedia PDF Downloads 36328017 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 19128016 Network Traffic Classification Scheme for Internet Network Based on Application Categorization for Ipv6
Authors: Yaser Miaji, Mohammed Aloryani
Abstract:
The rise of recent applications in everyday implementation like videoconferencing, online recreation and voice speech communication leads to pressing the need for novel mechanism and policy to serve this steep improvement within the application itself and users‟ wants. This diversity in web traffics needs some classification and prioritization of the traffics since some traffics merit abundant attention with less delay and loss, than others. This research is intended to reinforce the mechanism by analysing the performance in application according to the proposed mechanism implemented. The mechanism used is quite direct and analytical. The mechanism is implemented by modifying the queue limit in the algorithm.Keywords: traffic classification, IPv6, internet, application categorization
Procedia PDF Downloads 56528015 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming
Procedia PDF Downloads 29928014 Functional Dyspepsia and Irritable Bowel Syndrome: Life sketches of Functional Illnesses (Non-Organic) in West Bengal, India
Authors: Urmita Chakraborty
Abstract:
To start with, Organic Illnesses are no longer considered as only health difficulties. Functional Illnesses that are emotional in origin have become the search areas in many investigations. In the present study, an attempt has made to study the psychological nature of Functional Gastro-Intestinal Disorders (FGID) in West Bengal. In the specialty of Gastroenterology, the medically unexplained symptom-based conditions are known as Functional Gastrointestinal Disorder (FGID). In the present study, Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) have been taken for investigations. 72 cases have been discussed in this context. Results of the investigation have been analyzed in terms of a qualitative framework. Theoretical concepts on persistent thoughts and behaviors will be delineated in the analysis. Processes of self-categorization will be implemented too. Aspects of Attachments and controlling of affect as well as meta-cognitive appraisals are further considered for the depiction.Keywords: functional dyspepsia, irritable bowel syndrome, self-categorization
Procedia PDF Downloads 56628013 Multi-Cluster Overlapping K-Means Extension Algorithm (MCOKE)
Authors: Said Baadel, Fadi Thabtah, Joan Lu
Abstract:
Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper, we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold to be defined as a priority which can be difficult to determine by novice users.Keywords: data mining, k-means, MCOKE, overlapping
Procedia PDF Downloads 57528012 Electricity Market Categorization for Smart Grid Market Testing
Authors: Rebeca Ramirez Acosta, Sebastian Lenhoff
Abstract:
Decision makers worldwide need to determine if the implementation of a new market mechanism will contribute to the sustainability and resilience of the power system. Due to smart grid technologies, new products in the distribution and transmission system can be traded; however, the impact of changing a market rule will differ between several regions. To test systematically those impacts, a market categorization has been compiled and organized in a smart grid market testing toolbox. This toolbox maps all actual energy products and sets the basis for running a co-simulation test with the new rule to be implemented. It will help to measure the impact of the new rule, based on the sustainable and resilience indicators.Keywords: co-simulation, electricity market, smart grid market, market testing
Procedia PDF Downloads 18928011 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem
Authors: Ouafa Amira, Jiangshe Zhang
Abstract:
Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.Keywords: clustering, fuzzy c-means, regularization, relative entropy
Procedia PDF Downloads 25928010 Comparative Assessment of the Potential Impact of Joining the World Trade Organization and African Continental Free Trade Area on the Ethiopia Economy
Authors: Agidew Abay, Nobuhiro Hosoe
Abstract:
Ethiopia signed the AfCFTA in 2018 and is in ongoing negotiations to join the WTO. To assess the potential impacts of joining these trade agreements on Ethiopia's trade, output, and welfare, we conducted a comprehensive analysis using a world trade computable general equilibrium (CGE) model. The results of our policy experiment, which include scenarios involving the reduction of tariff and non-tariff measures, indicate that AfCFTA and WTO accession would positively affect Ethiopia's welfare, with WTO membership expected to bring more significant benefits. On the one hand, AfCFTA membership would significantly increase Ethiopian imports from AfCFTA regions while decreasing imports from non-AfCFTA regions. Conversely, it would boost Ethiopian exports to Southern Africa while showing minimal change to other AfCFTA and non-AfCFTA regions. By contrast, WTO membership would significantly increase Ethiopia’s imports from Asia and North Africa and decrease those from Europe, the rest of the world, and East Africa. It would increase exports to all regions, especially Europe, Asia, and the rest of the world. In terms of industrial output, while these two trade deals would largely favor agriculture and the meat and livestock sector and harm many manufacturing sectors (especially the light manufacturing sector), the impact of WTO accession on the Ethiopian economy would be overwhelmingly more significant than that of AfCFTA.Keywords: trade liberalization, AfCFTA, WTO, computable general equilibrium model, tariff, non-tariff measures
Procedia PDF Downloads 828009 Reasons for Adhesion of Membership: A Case Study of Brazilian Soccer Team
Authors: Alexandre Olkoski, Marcelo Curth
Abstract:
Football in Brazil is considered a passion, being the most popular sport in the country, both by the consumer public and by the means of communication that divulge it individually, when compared with other sports modalities. In the last two decades, the soccer teams have given greater importance to the management, since they understood that the same should be managed as a company, but with peculiarities related to the business. In this sense, Brazilian soccer clubs started to make bigger investments for the adhesion of fans in their social frames, allowing a greater need of understanding about the profile of this group of fans/clients. Thus, this work aims to understand the reasons that cause the fans to join the club and identify variables present in the process of intention to join the club. For that, a qualitative exploratory research was conducted, in which thirty-one membership of a soccer club from southern Brazil were interviewed. Based on the interviews, five categories were classified as emotional aspects (passion and love), cognitive aspects (easy access to the stadium and promotional values in tickets), external influences (family and friends), situational aspects (club moment) and aspects related to the event (engagement by modality). As results found in the analysis, it can be highlighted that the motivation of the majority of the respondents to become a member of the analyzed club, is related to the emotional aspects, such as passion and love. Thus, it is perceived that sport, in the case of soccer, generates in the involved ones (fans and leaders) different manifestations, suggesting that the management of this type of business has great complexity and should not be observed only by the spectrum of the club like a business.Keywords: consumer behavior, marketing, membership, soccer
Procedia PDF Downloads 33328008 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction
Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova
Abstract:
A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.Keywords: analogy-making, categorization, learning of categories, abstraction, hierarchical structure
Procedia PDF Downloads 191