Search results for: mechanically induced self-sustaining reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5134

Search results for: mechanically induced self-sustaining reaction

5074 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology

Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin

Abstract:

Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.

Keywords: ferulic acid, enzymatic synthesis, esters, RSM

Procedia PDF Downloads 303
5073 Predictions of Values in a Causticizing Process

Authors: R. Andreola, O. A. A. Santos, L. M. M. Jorge

Abstract:

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.

Keywords: causticizing, lime, prediction, process

Procedia PDF Downloads 331
5072 Attenuation of Homocysteine-Induced Cyclooxygenase-2 Expression in Human Monocytes by Fulvic Acid

Authors: Shao-Ju Chien, Yi-Chien Wu, Ting-Ying Huang, Li-Tsen Li, You-Jin Chen, Cheng-Nan Chen

Abstract:

Homocysteine and pro-inflammatory mediators such as cyclooxygenase-2 (COX-2) have been linked to vascular dysfunction and risks of cardiovascular diseases. Fulvic acid (FA) is class of compounds of humic substances and possesses various pharmacological properties. However, the effect of FA on inflammatory responses of the monocytes remains unclear. We investigated the regulatory effect of FA on homocysteine-induced COX-2 expression in human monocytes. Peripheral blood monocytes and U937 cells were kept as controls or pre-treated with FA, and then stimulated with homocysteine. The results show that pretreating monocytes with FA inhibited the homocysteine-induced COX-2 expression in a dose-dependent manner. The inhibitor for nuclear factor-kB (NF-kB) attenuated homocysteine-induced COX-2 expression. Our findings provide a molecular mechanism by which FA inhibit homocysteine-induced COX-2 expression in monocytes, and a basis for using FA in pharmaceutical therapy against inflammation.

Keywords: homocysteine, monocytes, cyclooxygenase-2, fulvic acid, anti-inflammation

Procedia PDF Downloads 561
5071 Enhancing the Engineering Properties of Clay by Using Mechanically Treated Rice Straw Fibers

Authors: Saeedullah J. Mandokhail, Meer H. Khan, Muhibullah Kakar

Abstract:

The studies on the mechanical behavior of randomly distributed short fiber soil composite are relatively new technique in geotechnical engineering. In this paper, mechanically treated rice straw (MTRS) fiber is used to improve the engineering properties of clay. Clay was mixed with 0 %, 0.5 %, 1 % and 2 % of MTRS fiber to analyze the effect of MTRS fiber on properties of soil. It was found that the plasticity index of soil decreases with increase in the MTRS fiber. Cohesion and angle of internal friction of soil were also found to increase with limiting increase in the amount of MTRS fiber and then decreases. The maximum dry density slightly decreases and the optimum moisture content slightly increases with increasing amount of MTRS fibers.

Keywords: cohesion, friction angle, optimum moisture content, rice straw fiber, short fiber

Procedia PDF Downloads 201
5070 Smartphone Addiction and Reaction Time in Geriatric Population

Authors: Anjali N. Shete, G. D. Mahajan, Nanda Somwanshi

Abstract:

Context: Smartphones are the new generation of mobile phones; they have emerged over the last few years. Technology has developed so much that it has become part of our life and mobile phones are one of them. These smartphones are equipped with the capabilities to display photos, play games, watch videos and navigation, etc. The advances have a huge impact on many walks of life. The adoption of new technology has been challenging for the elderly. But, the elder population is also moving towards digitally connected lives. As age advances, there is a decline in the motor and cognitive functions of the brain, and hence the reaction time is affected. The study was undertaken to assess the usefulness of smartphones in improving cognitive functions. Aims and Objectives: The aim of the study was to observe the effects of smartphone addiction on reaction time in elderly population Material and Methods: This is an experimental study. 100 elderly subjects were enrolled in this study randomly from urban areas. They all were using smartphones for several hours a day. They were divided into two groups according to the scores of the mobile phone addiction scale (MPAS). Simple reaction time was estimated by the Ruler drop method. The reaction time was then calculated for each subject in both groups. The data were analyzed using mean, standard deviation, and Pearson correlation test. Results: The mean reaction time in Group A is 0.27+ 0.040 and in Group B is 0.20 + 0.032. The values show a statistically significant change in reaction time. Conclusion: Group A with a high MPAS score has a low reaction time compared to Group B with a low MPAS score. Hence, it can be concluded that the use of smartphones in the elderly is useful, delaying the neurological decline, and smarten the brain.

Keywords: smartphones, MPAS, reaction time, elderly population

Procedia PDF Downloads 154
5069 Investigation of the Cathodic Behavior of AA2024-T3 in Neutral Medium

Authors: Nisrine Benzbiria, Mohammed Azzi, Mustapha Zertoubi

Abstract:

2XXX series of aluminum alloys are widely employed in several applications, such as beverages, automotive, and aerospace industries. However, they are particularly prone to localized corrosion, such as pitting, often induced by a difference in corrosion potential measured for intermetallic phases and pure metal. The galvanic cells comprising Al–Cu– Mn–Fe intermetallic phases control cathodically the dissolution rate as oxygen reduction reaction kinetics are privileged on Al–Cu–Mn–Fe particles. Hence, understanding the properties of cathode sites and the processes involved must be carried out. Our interest is to outline the cathodic behavior of AA2024-T3 in sodium sulfate solution using electrochemical techniques. Oxygen reduction reaction (ORR) was investigated in the mixed charge transfer and mass transport regime using the Koutecky-Levich approach. An environmentally benign inhibitor was considered to slow the ORR on the Cu-rich cathodic phases. The surface morphology of the electrodes was investigated with SEM/EDS and AFM. The obtained results were discussed accordingly.

Keywords: AA2024-T3, neutral medium, ORR kinetics, Koutecky-Levich, DFT

Procedia PDF Downloads 26
5068 Simultaneous Esterification and Transesterification of High FFA Jatropha Oil Using Reactive Distillation for Biodiesel Production

Authors: Ratna Dewi Kusumaningtyas, Prima Astuti Handayani, Arief Budiman

Abstract:

Reactive Distillation (RD) is a multifunctional reactor which integrates chemical reaction with in situ separation to shift the equilibrium towards the product formation. Thus, it is suitable for equilibrium limited reaction such as esterification and transesterification to enhance the reaction conversion. In this work, the application of RD for high FFA oil esterification-transterification for biodiesel production using sulphuric acid catalyst has been studied. Crude Jatropha Oil with FFA content of 30.57% was utilized as the feedstock. Effects of the catalyst concentration and molar ratio of the alcohol to oils were also investigated. It was revealed that best result was obtained with sulphuric acid catalyst (reaction conversion of 94.71% and FFA content of 1.62%) at 60C, molar ratio of methanol to FFA of 30:1, and catalyst loading of 3%. After undergoing esterification reaction, jatropha oil was then transesterified to produce biodiesel. Transesterification reaction was performed in the presence of NaOH catalyst in RD column at 60C, molar ratio of methanol to oil of 6:1, and catalyst concentration of 1%. It demonstrated that biodiesel produced in this work agreed with the Indonesian National and ASTM standard of fuel.

Keywords: reactive distillation, biodiesel, esterification, transesterification

Procedia PDF Downloads 429
5067 Catalytic Conversion of Methane into Benzene over CZO Promoted Mo/HZSM-5 for Methane Dehydroaromatization

Authors: Deepti Mishra, Arindam Modak, K. K. Pant, Xiu Song Zhao

Abstract:

The promotional effect of mixed ceria-zirconia oxides (CZO) over the Mo/HZSM-5 catalyst for methane dehydroaromatization (MDA) reaction was studied. The surface and structural properties of the synthesized catalyst were characterized using a range of spectroscopic and microscopic techniques, and the correlation between catalytic properties and its performance for MDA reaction is discussed. The impregnation of CZO solid solution on Mo/HZSM-5 was observed to give an excellent catalytic performance and improved benzene formation rate (4.5 μmol/gcat. s) as compared to the conventional Mo/HZSM-5 (3.1 μmol/gcat. s) catalyst. In addition, a significant reduction in coke formation was observed in the CZO-modified Mo/HZSM-5 catalyst. The prevailing comprehension for higher catalytic activity could be because of the redox properties of CZO deposited Mo/HZSM-5, which acts as a selective oxygen supplier and performs hydrogen combustion during the reaction, which is indirectly probed by O₂-TPD and H₂-TPR analysis. The selective hydrogen combustion prevents the over-oxidation of aromatic species formed during the reaction while the generated steam helps in reducing the amount of coke generated in the MDA reaction. Thus, the advantage of CZO incorporated Mo/HZSM-5 is manifested as it promotes the reaction equilibrium to shift towards the formation of benzene which is favourable for MDA reaction.

Keywords: Mo/HZSM-5, ceria-zirconia (CZO), in-situ combustion, methane dehydroaromatization

Procedia PDF Downloads 73
5066 Structural Magnetic Properties of Multiferroic (BiFeO3)1−x(PbTiO3)x Ceramics

Authors: Mohammad Shariq, Davinder Kaur

Abstract:

A series of multiferroic (BiFeO3)1−x(PbTiO3)x [x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5] solid solution ceramics were synthesised by conventional solid-state reaction method. Well crystalline phase has been optimized at sintering temperature of 950°C for 2 hours. X rays diffraction studies of these ceramics revealed the existence of a morphotropic phase boundary (MPB) region in this system, which exhibits co-existence of rhombohedral and tetragonal phase with a large tetragonality (c/a ratio) in the tetragonal phase region. The average grain size of samples was found to be between 1-1.5 µm. The M-H curve revealed the BiFeO3 (BFO) as antiferromanetic material whereas, induced weak ferromagnetism was observed for (BiFeO3)1−x(PbTiO3)x composites with x=0.1, 0.2, 0.3, 0.4 and 0.5 at temperature of 5 K. The results evidenced the destruction of a space-modulated spin structure in bulk materials, via substituent effects, releasing a latent magnetization locked within the cycloid. Relative to unmodified BiFeO3, modified BiFeO3-PbTiO3 -based ceramics revealed enhancement in the electric-field-induced polarization.

Keywords: BiFeO3)1−x(PbTiO3)x ceramic, multiferroic, SQUID, magnetic properties

Procedia PDF Downloads 326
5065 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges

Authors: Dianelys Vega, Carlos Magluta, Ney Roitman

Abstract:

The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.

Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction

Procedia PDF Downloads 102
5064 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts

Authors: Velid Demir, Mesut Akgün

Abstract:

The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations.

Keywords: biodiesel, heterogeneous catalyst, jatropha oil, supercritical methanol, transesterification

Procedia PDF Downloads 69
5063 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks

Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni

Abstract:

Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.

Keywords: chemical reaction networks, ratio computation, stability, robustness

Procedia PDF Downloads 138
5062 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes

Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland

Abstract:

This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.

Keywords: speech prosody, PTSD, machine learning, feature extraction

Procedia PDF Downloads 70
5061 FE Modelling of Structural Effects of Alkali-Silica Reaction in Reinforced Concrete Beams

Authors: Mehdi Habibagahi, Shami Nejadi, Ata Aminfar

Abstract:

A significant degradation factor that impacts the durability of concrete structures is the alkali-silica reaction. Engineers are frequently charged with the challenges of conducting a thorough safety assessment of concrete structures that have been impacted by ASR. The alkali-silica reaction has a major influence on the structural capacities of structures. In most cases, the reduction in compressive strength, tensile strength, and modulus of elasticity is expressed as a function of free expansion and crack widths. Predicting the effect of ASR on flexural strength is also relevant. In this paper, a nonlinear three-dimensional (3D) finite-element model was proposed to describe the flexural strength degradation induced byASR.Initial strains, initial stresses, initial cracks, and deterioration of material characteristics were all considered ASR factors in this model. The effects of ASR on structural performance were evaluated by focusing on initial flexural stiffness, force–deformation curve, and load-carrying capacity. Degradation of concrete mechanical properties was correlated with ASR growth using material test data conducted at Tech Lab, UTS, and implemented into the FEM for various expansions. The finite element study revealed a better understanding of the ASR-affected RC beam's failure mechanism and capacity reduction as a function of ASR expansion. Furthermore, in this study, decreasing of the residual mechanical properties due to ASRisreviewed, using as input data for the FEM model. Finally, analysis techniques and a comparison of the analysis and the experiment results are discussed. Verification is also provided through analyses of reinforced concrete beams with behavior governed by either flexural or shear mechanisms.

Keywords: alkali-silica reaction, analysis, assessment, finite element, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 145
5060 Effects of Structure on Density-Induced Flow in Coastal and Estuarine Navigation Channel

Authors: Shuo Huang, Huomiao Guo, Wenrui Huang

Abstract:

In navigation channels located in coasts and estuaries as the waterways connecting coastal water to ports or harbors, density-induced flow often exist due to the density-gradient or gravity gradient as the results of mixing between fresh water from coastal rivers and saline water in the coasts. The density-induced flow often carries sediment transport into navigation channels and causes sediment depositions in the channels. As a result, expensive dredging may need to maintain the water depth required for navigation. In our study, we conduct a series of experiments to investigate the characteristics of density-induced flow in the estuarine navigation channels under different density gradients. Empirical equations between density flow and salinity gradient were derived. Effects of coastal structures for regulating navigation channel on density-induced flow have also been investigated. Results will be very helpful for improving the understanding of the characteristics of density-induced flow in estuarine navigation channels. The results will also provide technical support for cost-effective waterway regulation and management to maintain coastal and estuarine navigation channels.

Keywords: density flow, estuarine, navigation channel, structure

Procedia PDF Downloads 229
5059 Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach

Authors: Chandrashekar, R. T. Radhika, B. M. Venkatesha, S. Ananda, Shivalingegowda, T. S. Shashikumar, H. Ramachandra

Abstract:

The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C6H5SO2NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO4) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH3C6H5SO2NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented.

Keywords: amitriptyline, bromamine-T, kinetics, oxidation

Procedia PDF Downloads 315
5058 Sizing and Thermal Analysis of Mechanically Pumped Fluid Loop Thermal Control Technique for Small Satellite Scientific Applications

Authors: Shanmugasundaram Selvadurai, Amal Chandran

Abstract:

Small satellites have become an alternative low-cost solution for several missions to accomplish specific missions such as Earth imaging, Technology demonstration, Education, and other commercial purposes. Small satellite missions focusing on Infrared imaging applications require lower temperature for scientific instruments and such low temperature can be achieved only using external cryocoolers but the disadvantage is that they generate a large amount of waste heat. Existing passive thermal control techniques are not capable to handle such large thermal loads and hence one of the traditional active Thermal Control System (TCS) is studied for a small satellite configuration. This work aims to downscale the existing Mechanically Pumped Fluid Loop (MPFL) TCS to a 27U CubeSat platform for an imaginary scientific instrument. The temperature-sensitive detector in the instrument considered to be maintained between 130K and 150K to reduce dark current noise and increase the data quality. A Single-Phase fluid based MPFL is chosen for this system-level study and this TCS consists of a microfluid pump, a micro-cryocooler, a fluid accumulator, external heaters, flow regulators, and sensors. This work also explains the thermal control system architecture with a conceptual design, arrangement of all the components, and thermal analysis for different low orbit conditions. Sizing and extensive trade studies for the components are conducted and the results have shown that the Single-phase MPFL system is able to handle the given thermal loads and maintain the satellite’s interface temperature within the desired limit.

Keywords: active thermal control system, satellite thermal, mechanically pumped fluid loop system, cryogenics, cryocooler

Procedia PDF Downloads 227
5057 Extracts of Ocimum gratissimum Leaves Inhibits Fe2+ and Sodium Nitroprusside Induced Oxidative Stress in Rat Liver

Authors: Oluwafemi Ojo, Omotade Oloyede

Abstract:

This study seeks to investigate the antioxidative properties and the ability of aqueous, ethanolic and ethyl acetate extracts from Ocimum gratissimum (OG) leaves to inhibit some pro-oxidants (Fe2+ and sodium nitroprusside) induced lipid peroxidation in rat’s liver homogenates in vitro. The ability of the extracts to inhibit 25 µM FeSO4 and 7.0 µM sodium nitroprusside induced lipid peroxidation in isolated rat’s liver was determined. The results of the study revealed that both pro-oxidants caused a significantly decrease in (p < 0.05) accumulation of lipid peroxides. However, aqueous extract of OG shows a high ability to inhibit lipid production in the liver induced with SNP than Fe2+. Ethanolic and ethyl acetate extract of OG which shows a high ability to inhibit lipid production more when induced with Fe2+ than SNP. However, ethyl acetate fraction of OG shows a higher inhibitory effect on both Fe2+ and SNP induced lipid peroxidation in rat’s liver. This applies to its significantly higher extractable phytochemicals. Therefore, Fe II and sodium nitroprusside induced oxidative stress could be managed by dietary intake of Ocimum gratissimum leaves.

Keywords: antioxidative, pro-oxidants, lipid peroxidation, Ocimum gratissimum

Procedia PDF Downloads 454
5056 Cissampelos capensis Rhizome Extract Induces Intracellular ROS Production, Capacitation, and DNA Fragmentation in Human Spermatozoa

Authors: S. Shalaweh, P. Bouic, F. Weitz, R. Henkel

Abstract:

More than 3000 plants of notable phyto-therapeutic value grow in South Africa; these include Cissampelos capensis, commonly known in Afrikaans as dawidjie or dawidjiewortel. C. capensis is the most significant and popular medicinal plant used by the Khoisan as well as other rural groups in the Western region of South Africa. Its rhizomes are traditionally used to treat male fertility problems. Yet, no studies have investigated the effects of this plant or its extracts on human spermatozoa. Therefore, this study aimed at investigating the effects of C. capensis rhizome extract (CRE) fractions on ejaculated human spermatozoa in vitro. Spermatozoa from a total of 77 semen samples were washed with human tubular fluid medium supplemented with bovine serum albumin (HTF-BSA) and incubated for 2 hourswith 20 µg/ml progesterone (P4) followed by incubation with different concentrations (0, 0.05, 0.5, 5, 50, 200 µg/ml) of fractionated CRE (F1=0% MeOH, F2=30% MeOH, F3=60% MeOH and F4=100% MeOH) for 1.5 hours at 37°C. A sample without addition of CRE fractions served as control. Samples were analyzed for sperm motility, reactive oxygen species (ROS), DNA-fragmentation, acrosome reaction and capacitation. Results showed that F1 resulted in significantly higher values for ROS, capacitation and hyper-activation compared to F2, F3, and F4 with P4-stimulated samples generally having higher values. No significant effect was found for the other parameters. In conclusion, alkaloids present in F1 of CRE appear to have triggered sperm intrinsic ROS production leading to sperm capacitation and acrosome reaction induced by P4.

Keywords: capacitaion, acrosome reaction, DNA fragmentation, ROS

Procedia PDF Downloads 278
5055 The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄

Authors: Burcu Kiren, Alattin CAkan, Nezihe Ayas

Abstract:

Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite.

Keywords: sodium borohydride, hydrolysis, catalyst, Ni/dolomite, hydrogen

Procedia PDF Downloads 132
5054 Kinetic Study of the Esterification of Unsaturated Fatty Acids from Salmon Oil (Salmosalar L.)

Authors: André Luis Lima de Oliveira, Vera Lúcia Viana do Nascimento, Victória Maura Silva Bermudez, Mauricio Nunes Kleinberg, João Carlos da Costa Assunção, José Osvaldo Beserra Carioca

Abstract:

The objective of this study was to synthesize a triglyceride with high content of unsaturated fatty acids from salmon oil (Salmo salar L.) by esterification with glycerol catalyzed dealuminized zeolite. A kinetic study was conducted to determine the reaction order and the activation energy. A statistical study was conducted to determine optimal reaction conditions. Initially, the crude oil was refined salmon physically and chemically. The crude oil was hydrolyzed and unsaturated free fatty acids were separated by urea complexation method. An experimental project to verify the parameters (temperature, glycerin and catalyst) with the greatest impact on the reaction was developed. In experiments aliquots were taken at predetermined times to measure the amount of free fatty acids. Pareto, surface, contour and hub graphs were used to determine the factors that maximized the reaction. According to the graphs the best reaction conditions were: temperature 80 ° C, the proportion glycerine/oil 5: 1 and 1% of catalyst. The kinetic data showed that the system was compatible with a second-order reaction. After analyzing the rate constant versus temperature charts a value of 85.31 kJ/mol was obtained for the reaction activation energy.

Keywords: esterification, kinect, oil, salmon

Procedia PDF Downloads 491
5053 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2

Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim

Abstract:

Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.

Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici

Procedia PDF Downloads 122
5052 The Power of in situ Characterization Techniques in Heterogeneous Catalysis: A Case Study of Deacon Reaction

Authors: Ramzi Farra, Detre Teschner, Marc Willinger, Robert Schlögl

Abstract:

Introduction: The conventional approach of characterizing solid catalysts under static conditions, i.e., before and after reaction, does not provide sufficient knowledge on the physicochemical processes occurring under dynamic conditions at the molecular level. Hence, the necessity of improving new in situ characterizing techniques with the potential of being used under real catalytic reaction conditions is highly desirable. In situ Prompt Gamma Activation Analysis (PGAA) is a rapidly developing chemical analytical technique that enables us experimentally to assess the coverage of surface species under catalytic turnover and correlate these with the reactivity. The catalytic HCl oxidation (Deacon reaction) over bulk ceria will serve as our example. Furthermore, the in situ Transmission Electron Microscopy is a powerful technique that can contribute to the study of atmosphere and temperature induced morphological or compositional changes of a catalyst at atomic resolution. The application of such techniques (PGAA and TEM) will pave the way to a greater and deeper understanding of the dynamic nature of active catalysts. Experimental/Methodology: In situ Prompt Gamma Activation Analysis (PGAA) experiments were carried out to determine the Cl uptake and the degree of surface chlorination under reaction conditions by varying p(O2), p(HCl), p(Cl2), and the reaction temperature. The abundance and dynamic evolution of OH groups on working catalyst under various steady-state conditions were studied by means of in situ FTIR with a specially designed homemade transmission cell. For real in situ TEM we use a commercial in situ holder with a home built gas feeding system and gas analytics. Conclusions: Two complimentary in situ techniques, namely in situ PGAA and in situ FTIR were utilities to investigate the surface coverage of the two most abundant species (Cl and OH). The OH density and Cl uptake were followed under multiple steady-state conditions as a function of p(O2), p(HCl), p(Cl2), and temperature. These experiments have shown that, the OH density positively correlates with the reactivity whereas Cl negatively. The p(HCl) experiments give rise to increased activity accompanied by Cl-coverage increase (opposite trend to p(O2) and T). Cl2 strongly inhibits the reaction, but no measurable increase of the Cl uptake was found. After considering all previous observations we conclude that only a minority of the available adsorption sites contribute to the reactivity. In addition, the mechanism of the catalysed reaction was proposed. The chlorine-oxygen competition for the available active sites renders re-oxidation as the rate-determining step of the catalysed reaction. Further investigations using in situ TEM are planned and will be conducted in the near future. Such experiments allow us to monitor active catalysts at the atomic scale under the most realistic conditions of temperature and pressure. The talk will shed a light on the potential and limitations of in situ PGAA and in situ TEM in the study of catalyst dynamics.

Keywords: CeO2, deacon process, in situ PGAA, in situ TEM, in situ FTIR

Procedia PDF Downloads 267
5051 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 331
5050 Control of IL-23 Release in Dendritic Cells Protects Mice from Imiquimod-Induced Psoriasis

Authors: Xingxin Wu, Fenli Shao, Tao Tan, Yang Tan, Yang Sun, Qiang Xu

Abstract:

Psoriasis is a chronic inflammatory skin disease that affects about 2% of the world's population. IL-23 signaling plays a key role in the pathogenesis of psoriasis. Control of IL-23 release by small molecule compounds during developing psoriasis has not been well established. Here, we show that compound 1, a small molecule nature product, protected mice from imiquimod-induced psoriasis with improved skin lesions, reduced skin thickness, and reduced IL-23 mRNA expression in the skin tissue. FACS results showed compound 1 reduced the number of dendritic cells in the skin. Interestingly, compound 1 was not able to ameliorate IL-23-induced psoriasis-like skin inflammation in mice. Further, compound 1 inhibited MyD88-dependent IL-23 mRNA expression induced by LPS, CpG and imiquimod in BMDC cells, but not MyD88-independent CD80 and CD86 expression induced by LPS. The methods included real-time PCR, western blot, H & E staining, FACS and ELISA et al. In conclusion, compound 1 regulates MyD88-dependent signaling to control IL-23 release in dendritic cells, which improves imiquimod-induced psoriasis.

Keywords: dendritic cells, IL-23, toll-like receptor signaling, psoriasis

Procedia PDF Downloads 617
5049 Suppression of DMBA/TPA-Induced Skin Tumorigenesis by Menthol through Inhibition of Inflammation, NF-kappaB, Ras-Raf-ERK Pathway

Authors: Zhaoguo Liu, Cunsi Shen, Yin Lu

Abstract:

Growing evidence has shown that menthol has potent anticancer activity in various human cancers. However, its effect on skin cancer remains largely unknown. In the present study, we investigated the chemopreventive potential of menthol against 7, 12-dimethylbenz[a] anthracene(DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA)-induced skin tumorigenesis in ICR mice. Our results showed that menthol significantly inhibited TPA-induced inflammatory responses and pro-inflammatory cytokine release. We also found that menthol treatment significantly inhibited TPA-induced lipid peroxidation (LPO), mouse UDP-glucumno-syltransferase (UGT), mouse NADH Dehydrogenase, Quinone 1 (NQO1) release. Furthermore, we found menthol treatment significantly inhibited the tumor incidence and number of tumors (P < 0.001). Interestingly, we observed that menthol treatment significantly inhibited TPA-induced altered activity of NF-κB in skin tumor. Consistently, menthol-treated tumors also showed significantly suppressed the Ras-Raf-ERK signaling pathway. Thus, our results suggest that menthol inhibits DMBA/TPA-induced skin tumorigenesis by attenuating the Ras and inhibiting NF-κB activity via inhibition of inflammation responses and pro-inflammatory cytokine release.

Keywords: DMBA/TPA, NF-κB, Ras-Raf-ERK, skin tumorigenesis

Procedia PDF Downloads 287
5048 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 91
5047 A Study of Effect of Yoga on Choice Visual Reaction Time of Soccer Players

Authors: Vikram Singh, Parmod Kumar Sethi

Abstract:

The objective of the study was to study the effectiveness of common yoga protocol on reaction time (choice visual reaction time, measured in milliseconds/seconds) of male football players in the age group of 16 to 21 years. The 40 boys were measured initially on parameters of years of experience, level of participation. They were randomly assigned into two groups i.e. control and experimental. CVRT for both the groups was measured on day-1 and post intervention (common yoga protocol here) was measured after 45 days of training to the experimental group after they had finished with their regular fitness and soccer skill training. One way ANOVA (Univariate analysis) and Independent t-test using SPSS 23 statistical package were applied to get and analyze the results. The experimental yoga protocol group showed a significant reduction in CVRT, whereas the insignificant difference in reaction times was observed for control group after 45 days. The effect size was more than 52% for CVRT indicating that the effect of treatment was large. Power of the study was also found to be high (> .80). There was a significant difference after 45 days of yoga protocol in choice visual reaction time of experimental group (p = .000), t (21.93) = 6.410, p = .000 (two-tailed). The null hypothesis (that there would be no difference in reaction times of control and experimental groups) was rejected. Where p< .05. Therefore alternate hypothesis was accepted.

Keywords: reaction time, yoga protocol, t-test, soccer players

Procedia PDF Downloads 215
5046 Ethanol Extract of Potentilla pradoxa Nutt Inhibits LPS-induced Inflammatory Responses via NF-κB and AP-1 Inactivation

Authors: Hae-Jun Lee, Ji-Sun Shin, Kyung-Tae Lee

Abstract:

Potentilla species (Rosasease) have been used in traditional medicine to treat different ailment, disease or malady. In this study, we investigated the anti-inflammatory effects of ethanol extracts of NUTT (EPP) in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages and septic mice. EPP suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in LPS-induced Raw 264.7 macrophages. Consistent with these observations, EPP reduced the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) by downregulation of their promoter activities. EPP inhibited tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) at production and mRNA levels. Molecularly, EPP attenuated the LPS-induced transcriptional activity, and DNA-binding activity of nuclear factor-κB (NF-κB), and this was associated with a decrease of translocation and phosphorylation of p65 NF-κB by inhibiting the inhibitory κB-α (IκB-α) degradation and IκB kinase-α/β (IKK-α/β) phosphorylation. Furthermore, EPP suppressed the LPS-induced activation of activator protein-1 (AP-1) by reducing the expression of c-Fos and c-Jun in nuclear. EPP also reduced the phosphorylation of mitogen-activated protein kinase (MAPK), such as p38 MAPK and c-Jun N-terminal kinase/stress-activated protein kinase (JNK). In a sepsis model, pretreatment with EPP reduced the LPS-induced lethality. Collectively, these results suggest that the anti-inflammatory effects of EPP were associated with the suppression of NF-κB and AP-1 activation, and support its possible therapeutic role for the treatment of sepsis.

Keywords: anti-inflammation, activator protein-1, nuclear factor κB, Potentilla paradoxa Nutt

Procedia PDF Downloads 300
5045 Teaching and Learning Dialectical Relationship between Thermodynamic Equilibrium and Reaction Rate Constant

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

The development of science and technology in the present era has an urgent demand for the training of thinking of undergraduates. This requirement actively promotes research and teaching of basic theories, beneficial to the career development of students. This study clarified the dialectical relation between the thermodynamic equilibrium constant and reaction rate constant through the contrast thinking method. Findings reveal that both the isobaric Van't Hoff equation and the Arrhenius equation had four similar forms, and the change in the trend of both constants showed a similar law. By the derivation of the formation rate constant of the product (KY) and the consumption rate constant of the reactant (KA), the ratio of both constants at the end state indicated the nature of the equilibrium state in agreement with that of the thermodynamic equilibrium constant (K^θ (T)). This study has thus presented that the thermodynamic equilibrium constant contained the characteristics of microscopic dynamics based on the analysis of the reaction mechanism, and both constants are organically connected and unified. The reaction enthalpy and activation energy are closely related to each other with the same connotation.

Keywords: thermodynamic equilibrium constant, reaction rate constant, PBL teaching, dialectical relation, innovative thinking

Procedia PDF Downloads 84