Search results for: mean square error (MSE)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3240

Search results for: mean square error (MSE)

3240 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.

Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX

Procedia PDF Downloads 392
3239 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows

Authors: Daniel Fulus Fom, Gau Patrick Damulak

Abstract:

In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.

Keywords: auto regressive, mean absolute error, neural network, root square mean error

Procedia PDF Downloads 268
3238 Statistical Tools for SFRA Diagnosis in Power Transformers

Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava

Abstract:

For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.

Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)

Procedia PDF Downloads 695
3237 Robust ANOVA: An Illustrative Study in Horticultural Crop Research

Authors: Dinesh Inamadar, R. Venugopalan, K. Padmini

Abstract:

An attempt has been made in the present communication to elucidate the efficacy of robust ANOVA methods to analyze horticultural field experimental data in the presence of outliers. Results obtained fortify the use of robust ANOVA methods as there was substantiate reduction in error mean square, and hence the probability of committing Type I error, as compared to the regular approach.

Keywords: outliers, robust ANOVA, horticulture, cook distance, type I error

Procedia PDF Downloads 389
3236 Channel Estimation for LTE Downlink

Authors: Rashi Jain

Abstract:

The LTE systems employ Orthogonal Frequency Division Multiplexing (OFDM) as the multiple access technology for the Downlink channels. For enhanced performance, accurate channel estimation is required. Various algorithms such as Least Squares (LS), Minimum Mean Square Error (MMSE) and Recursive Least Squares (RLS) can be employed for the purpose. The paper proposes channel estimation algorithm based on Kalman Filter for LTE-Downlink system. Using the frequency domain pilots, the initial channel response is obtained using the LS criterion. Then Kalman Filter is employed to track the channel variations in time-domain. To suppress the noise within a symbol, threshold processing is employed. The paper draws comparison between the LS, MMSE, RLS and Kalman filter for channel estimation. The parameters for evaluation are Bit Error Rate (BER), Mean Square Error (MSE) and run-time.

Keywords: LTE, channel estimation, OFDM, RLS, Kalman filter, threshold

Procedia PDF Downloads 353
3235 Evolution of Multimodulus Algorithm Blind Equalization Based on Recursive Least Square Algorithm

Authors: Sardar Ameer Akram Khan, Shahzad Amin Sheikh

Abstract:

Blind equalization is an important technique amongst equalization family. Multimodulus algorithms based on blind equalization removes the undesirable effects of ISI and cater ups the phase issues, saving the cost of rotator at the receiver end. In this paper a new algorithm combination of recursive least square and Multimodulus algorithm named as RLSMMA is proposed by providing few assumption, fast convergence and minimum Mean Square Error (MSE) is achieved. The excellence of this technique is shown in the simulations presenting MSE plots and the resulting filter results.

Keywords: blind equalizations, constant modulus algorithm, multi-modulus algorithm, recursive least square algorithm, quadrature amplitude modulation (QAM)

Procedia PDF Downloads 643
3234 Simulation of Growth and Yield of Rice Under Irrigation and Nitrogen Management Using ORYZA2000

Authors: Mojtaba Esmaeilzad Limoudehi

Abstract:

To evaluate the model ORYZA2000, under the management of irrigation and nitrogen fertilization experiment, a split plot with a randomized complete block design with three replications on hybrid cultivars (spring) in the 1388-1387 crop year was conducted at the Rice Research Institute. Permanent flood irrigation as the main plot in the fourth level, around 5 days, from 11 days to 8 days away, and the four levels of nitrogen fertilizer as the subplots 0, 90, 120, and 150 kg N Ha were considered. Simulated and measured values of leaf area index, grain yield, and biological parameters using the regression coefficient, t-test, the root mean square error (RMSE), and normalized root mean square error (RMSEn) were performed. Results, the normalized root mean square error of 10% in grain yield, the biological yield of 9%, and 23% of maximum LAI was determined. The simulation results show that grain yield and biological ORYZA2000 model accuracy are good but do not simulate maximum LAI well. The results show that the model can support ORYZA2000 test results and can be used under conditions of nitrogen fertilizer and irrigation management.

Keywords: evaluation, rice, nitrogen fertilizer, model ORYZA2000

Procedia PDF Downloads 69
3233 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 460
3232 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 240
3231 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest

Authors: Bharatendra Rai

Abstract:

Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).

Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error

Procedia PDF Downloads 321
3230 An Improved Model of Estimation Global Solar Irradiation from in situ Data: Case of Oran Algeria Region

Authors: Houcine Naim, Abdelatif Hassini, Noureddine Benabadji, Alex Van Den Bossche

Abstract:

In this paper, two models to estimate the overall monthly average daily radiation on a horizontal surface were applied to the site of Oran (35.38 ° N, 0.37 °W). We present a comparison between the first one is a regression equation of the Angstrom type and the second model is developed by the present authors some modifications were suggested using as input parameters: the astronomical parameters as (latitude, longitude, and altitude) and meteorological parameters as (relative humidity). The comparisons are made using the mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE). This comparison shows that the second model is closer to the experimental values that the model of Angstrom.

Keywords: meteorology, global radiation, Angstrom model, Oran

Procedia PDF Downloads 230
3229 Sensor Registration in Multi-Static Sonar Fusion Detection

Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin

Abstract:

In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.

Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem

Procedia PDF Downloads 169
3228 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement

Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad

Abstract:

An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.

Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter

Procedia PDF Downloads 398
3227 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate

Authors: Neetu Manocha

Abstract:

Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).

Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI

Procedia PDF Downloads 139
3226 Applying Genetic Algorithm in Exchange Rate Models Determination

Authors: Mehdi Rostamzadeh

Abstract:

Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models.

Keywords: exchange rate, genetic algorithm, fundamental models, technical models

Procedia PDF Downloads 271
3225 Acoustic Echo Cancellation Using Different Adaptive Algorithms

Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil

Abstract:

An adaptive filter is a filter that self-adjusts its transfer function according to an optimization algorithm driven by an error signal. Because of the complexity of the optimization algorithms, most adaptive filters are digital filters. Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications, including adaptive noise cancellation and echo cancellation. Acoustic echo cancellation is a common occurrence in today’s telecommunication systems. The signal interference caused by acoustic echo is distracting to both users and causes a reduction in the quality of the communication. In this paper, we review different techniques of adaptive filtering to reduce this unwanted echo. In this paper, we see the behavior of techniques and algorithms of adaptive filtering like Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step-Size Least Mean Square (VSLMS), Variable Step-Size Normalized Least Mean Square (VSNLMS), New Varying Step Size LMS Algorithm (NVSSLMS) and Recursive Least Square (RLS) algorithms to reduce this unwanted echo, to increase communication quality.

Keywords: adaptive acoustic, echo cancellation, LMS algorithm, adaptive filter, normalized least mean square (NLMS), variable step-size least mean square (VSLMS)

Procedia PDF Downloads 78
3224 A Comparative Study on a Tilt-Integral-Derivative Controller with Proportional-Integral-Derivative Controller for a Pacemaker

Authors: Aysan Esgandanian, Sabalan Daneshvar

Abstract:

The study is done to determine the comparison between proportional-integral-derivative controller (PID controller) and tilt-integral-derivative (TID controller) for cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The controller offers good adaption of heart to the physiological needs of the patient. The parameters of the both controllers are tuned by particle swarm optimization (PSO) algorithm which uses the integral of time square error as a fitness function to be minimized. Simulation results are performed on the developed cardiovascular system of humans and results demonstrate that the TID controller produces superior control performance than PID controllers. In this paper, all simulations were performed in Matlab.

Keywords: integral of time square error, pacemaker systems, proportional-integral-derivative controller, PSO algorithm, tilt-integral-derivative controller

Procedia PDF Downloads 460
3223 Effects of Manufacture and Assembly Errors on the Output Error of Globoidal Cam Mechanisms

Authors: Shuting Ji, Yueming Zhang, Jing Zhao

Abstract:

The output error of the globoidal cam mechanism can be considered as a relevant indicator of mechanism performance, because it determines kinematic and dynamical behavior of mechanical transmission. Based on the differential geometry and the rigid body transformations, the mathematical model of surface geometry of the globoidal cam is established. Then we present the analytical expression of the output error (including the transmission error and the displacement error along the output axis) by considering different manufacture and assembly errors. The effects of the center distance error, the perpendicular error between input and output axes and the rotational angle error of the globoidal cam on the output error are systematically analyzed. A globoidal cam mechanism which is widely used in automatic tool changer of CNC machines is applied for illustration. Our results show that the perpendicular error and the rotational angle error have little effects on the transmission error but have great effects on the displacement error along the output axis. This study plays an important role in the design, manufacture and assembly of the globoidal cam mechanism.

Keywords: globoidal cam mechanism, manufacture error, transmission error, automatic tool changer

Procedia PDF Downloads 572
3222 Study on Bending Characteristics of Square Tube Using Energy Absorption Part

Authors: Shigeyuki Haruyama, Zefry Darmawan, Ken Kaminishi

Abstract:

In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube.

Keywords: energy absorber, square tube, bending, rigidity

Procedia PDF Downloads 243
3221 Classification Earthquake Distribution in the Banda Sea Collision Zone with Point Process Approach

Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno

Abstract:

Banda Sea collision zone (BSCZ) of is the result of the interaction and convergence of Indo-Australian plate, Eurasian plate and Pacific plate. This location in the eastern part of Indonesia. This zone has a very high seismic activity. In this research, we will be calculated rate (λ) and Mean Square Eror (MSE). By this result, we will identification of Poisson distribution of earthquakes in the BSCZ with the point process approach. Chi-square test approach and test Anscombe made in the process of identifying a Poisson distribution in the partition area. The data used are earthquakes with Magnitude ≥ 6 SR and its period 1964-2013 and sourced from BMKG Jakarta. This research is expected to contribute to the Moluccas Province and surrounding local governments in performing spatial plan document related to disaster management.

Keywords: molluca banda sea collision zone, earthquakes, mean square error, poisson distribution, chi-square test, anscombe test

Procedia PDF Downloads 299
3220 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study

Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu

Abstract:

With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.

Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray

Procedia PDF Downloads 729
3219 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model

Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David

Abstract:

The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.

Keywords: national development, granite, profitability assessment, ANN models

Procedia PDF Downloads 100
3218 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 153
3217 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis

Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong

Abstract:

A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.

Keywords: radar cross section, fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model

Procedia PDF Downloads 341
3216 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel

Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis

Abstract:

Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Experience from previous generations has shown that establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links. This paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.

Keywords: C-V2X, channel estimation, link-level simulator, sidelink, 3GPP

Procedia PDF Downloads 126
3215 Identification and Control the Yaw Motion Dynamics of Open Frame Underwater Vehicle

Authors: Mirza Mohibulla Baig, Imil Hamda Imran, Tri Bagus Susilo, Sami El Ferik

Abstract:

The paper deals with system identification and control a nonlinear model of semi-autonomous underwater vehicle (UUV). The input-output data is first generated using the experimental values of the model parameters and then this data is used to compute the estimated parameter values. In this study, we use the semi-autonomous UUV LAURS model, which is developed by the Sensors and Actuators Laboratory in University of Sao Paolo. We applied three methods to identify the parameters: integral method, which is a classical least square method, recursive least square, and weighted recursive least square. In this paper, we also apply three different inputs (step input, sine wave input and random input) to each identification method. After the identification stage, we investigate the control performance of yaw motion of nonlinear semi-autonomous Unmanned Underwater Vehicle (UUV) using feedback linearization-based controller. In addition, we compare the performance of the control with an integral and a non-integral part along with state feedback. Finally, disturbance rejection and resilience of the controller is tested. The results demonstrate the ability of the system to recover from such fault.

Keywords: system identification, underwater vehicle, integral method, recursive least square, weighted recursive least square, feedback linearization, integral error

Procedia PDF Downloads 531
3214 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 139
3213 An ANOVA Approach for the Process Parameters Optimization of Al-Si Alloy Sand Casting

Authors: Manjinder Bajwa, Mahipal Singh, Manish Nagpal

Abstract:

This research paper aims to propose a novel approach using ANOVA technique for the strategic investigation of process parameters and their effects on the mechanical properties of Aluminium alloy cast. The two process parameters considered here were permeability of sand and pouring temperature of aluminium alloy. ANOVA has been employed for the first time to determine the effects of these selected parameters on the impact strength of alloy. The experimental results show that this proposed technique has great potential for analyzing sand casting process. Using this approach we have determined the treatment mean square, response mean square and mean square of error as 8.54, 8.255 and 0.435 respectively. The research concluded that at the 5% level of significance, permeability of sand is the more significant parameter influencing the impact strength of cast alloy.

Keywords: aluminium alloy, pouring temperature, permeability of sand, impact strength, ANOVA

Procedia PDF Downloads 447
3212 Mechanical Performance of Sandwich Square Honeycomb Structure from Sugar Palm Fibre

Authors: Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar

Abstract:

This study focus on the compression and tensile properties of new and recycle square honeycombs structure from sugar palm fibre (SPF) and polylactic acid (PLA) composite. The end data will determine the failure strength and energy absorption for both new and recycle composite. The control SPF specimens were fabricated from short fibre co-mingled with PLA by using a bra-blender set at 180°C and 50 rpm consecutively. The mixture of 30% fibre and 70% PLA were later on the hot press at 180°C into sheets with thickness 3mm consecutively before being assembled into a sandwich honeycomb structure. An INSTRON tensile machine and Abaqus 6.13 software were used for mechanical test and finite element simulation. The percentage of error from the simulation and experiment data was 9.20% and 9.17% for both new and recycled product. The small error of percentages was acceptable due to the nature of the simulation model to be assumed as a perfect model with no imperfect geometries. The energy absorption value from new to recycled product decrease from 312.86kJ to 282.10kJ. With this small decrements, it is still possible to implement a recycle SPF/PLA composite into everyday usages such as a car's interior or a small size furniture.

Keywords: failure modes, numerical modelling, polylactic acid, sugar palm fibres

Procedia PDF Downloads 292
3211 Solar Radiation Studies for Islamabad, Pakistan

Authors: Sidra A. Shaikh, M. A. Ahmed, M. W. Akhtar

Abstract:

Global and diffuse solar radiation studies have been carried out for Islamabad (Lat: 330 43’ N, Long: 370 71’) to access the solar potential of the area using sunshine hour data. A detailed analysis of global solar radiation values measured using several methods is presented. These values are then compared with the NASA SSE model. The variation in direct and diffuse components of solar radiation is observed in summer and winter months for Islamabad along with the clearness index KT. The diffuse solar radiation is found maximum in the month of July. Direct and beam radiation is found to be high in the month of April to June. From the results it appears that with the exception of monsoon months, July and August, solar radiation for electricity generation can be utilized very efficiently throughout the year. Finally, the mean bias error (MBE), root mean square error (RMSE) and mean percent error (MPE) for global solar radiation are also presented.

Keywords: solar potential, global and diffuse solar radiation, Islamabad, errors

Procedia PDF Downloads 436