Search results for: liquid phase sintering process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19144

Search results for: liquid phase sintering process

18904 Development of a Smart Liquid Level Controller

Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo

Abstract:

In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.

Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module

Procedia PDF Downloads 102
18903 Enhancement of Critical Current Density of Liquid Infiltration Processed Y-Ba-Cu-O Bulk Superconductors Used for Flywheel Energy Storage System

Authors: Asif Mahmood, Yousef Alzeghayer

Abstract:

The size effects of a precursor Y2BaCuO5 (Y211) powder on the microstructure and critical current density (Jc) of liquid infiltration growth (LIG)-processed YBa2Cu3O7-y (Y123) bulk superconductors were investigated in terms of milling time (t). YBCO bulk samples having high Jc values have been selected for the flywheel energy storage system. Y211 powders were attrition-milled for 0-10 h in 2 h increments at a fixed rotation speed of 400 RPM. Y211 pre-forms were made by pelletizing the milled Y211 powders followed by subsequent sintering, after which an LIG process with top seeding was applied to the Y211/Ba3Cu5O8 (Y035) pre-forms. Spherical pores were observed in all LIG-processed Y123 samples, and the pore density gradually decreased as t increased from 0 h to 8 h. In addition to the reduced pore density, the Y211 particle size in the final Y123 products also decreased with increasing t. As t increased further to 10 h, unexpected Y211 coarsening and large pore evolutions were observed. The magnetic susceptibility-temperature curves showed that the onset superconducting transition temperature (Tc, onset) of all samples was the same (91.5 K), but the transition width became greater as t increased. The Jc of the Y123 bulk superconductors fabricated in this study was observed to correlate well with t of the Y211 precursor powder. The maximum Jc of 1.0×105 A cm-2 (at 77 K, 0 T) was achieved at t = 8 h, which is attributed to the reduction in pore density and Y211 particle size. The prolonged milling time of t = 10 h decreased the Jc of the LIG-processed Y123 superconductor owing to the evolution of large pores and exaggerated Y211 growth. YBCO bulk samples having high Jc (samples prepared using 8 h milled powders) have been used for the energy storage system in flywheel energy storage system.

Keywords: critical current, bulk superconductor, liquid infiltration, bioinformatics

Procedia PDF Downloads 185
18902 Audit Is a Production Performance Tool

Authors: Lattari Samir

Abstract:

The performance of a production process is the result of proper operation where the management tools appear as the key to success through process management which consists of managing and implementing a quality policy, organizing and planning the manufacturing, and thus defining an efficient logic as the main areas covered by production management. To carry out this delicate mission, which requires reconciling often contradictory objectives, the auditor is called upon, who must be able to express an opinion on the effectiveness of the operation of the "production" function. To do this, the auditor must structure his mission in three phases, namely, the preparation phase to assimilate the particularities of this function, the implementation phase and the conclusion phase. The audit is a systematic and independent examination of all the stages of a manufacturing process intended to determine whether the pre-established arrangements for the combination of production factors are respected, whether their implementation is effective and whether they are relevant in relation to the goals.

Keywords: audit, performance of process, independent examination, management tools, audit of accounts

Procedia PDF Downloads 42
18901 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 378
18900 A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer

Authors: James Q. Feng

Abstract:

Pneumatic nebulizers (as variations based on the Collison nebulizer) have been widely used for producing fine aerosol droplets from a liquid material. As qualitatively described by many authors, the basic working principle of those nebulizers involves utilization of the negative pressure associated with an expanding gas jet to syphon liquid into the jet stream, then to blow and shear into liquid sheets, filaments, and eventually droplets. But detailed quantitative analysis based on fluid mechanics theory has been lacking in the literature. The purpose of present work is to investigate the nature of negative pressure distribution associated with compressible gas jet flow in the Collison nebulizer by a computational fluid dynamics (CFD) analysis, using an OpenFOAM® compressible flow solver. The value of the negative pressure associated with a gas jet flow is examined by varying geometric parameters of the jet expansion channel adjacent to the jet orifice outlet. Such an analysis can provide valuable insights into fundamental mechanisms in liquid aspiration process, helpful for effective design of the pneumatic atomizer in the Aerosol Jet® direct-write system for micro-feature, high-aspect-ratio material deposition in additive manufacturing.

Keywords: collison nebulizer, compressible gas jet flow, liquid aspiration, pneumatic atomization

Procedia PDF Downloads 140
18899 Rheological Properties of Polymer Systems in Magnetic Field

Authors: T. S. Soliman, A. G. Galyas, E. V. Rusinova, S. A. Vshivkov

Abstract:

The liquid crystals combining properties of a liquid and an anisotropic crystal substance play an important role in a science and engineering. Molecules of cellulose and its derivatives have rigid helical conformation, stabilized by intramolecular hydrogen bonds. Therefore the macromolecules of these polymers are capable to be ordered at dissolution and form liquid crystals of cholesteric type. Phase diagrams of solutions of some cellulose derivatives are known. However, little is known about the effect of a magnetic field on the viscosity of polymer solutions. The systems hydroxypropyl cellulose (HPC) – ethanol, HPC – ethylene glycol, HPC–DМАA, HPC–DMF, ethyl cellulose (EC)–ethanol, EC–DMF, were studied in the presence and absence of magnetic field. The solution viscosity was determined on a Rheotest RN 4.1 rheometer. The effect of a magnetic field on the solution properties was studied with the use of two magnets, which induces a magnetic-field-lines directed perpendicularly and parallel to the rotational axis of a rotor. Application of the magnetic field is shown to be accompanied by an increase in the additional assembly of macromolecules, as is evident from a gain in the radii of light scattering particles. In the presence of a magnetic field, the long chains of macromolecules are oriented in parallel with field lines. Such an orientation is associated with the molecular diamagnetic anisotropy of macromolecules. As a result, supramolecular particles are formed, especially in the vicinity of the region of liquid crystalline phase transition. The magnetic field leads to the increase in viscosity of solutions. The results were used to plot the concentration dependence of η/η0, where η and η0 are the viscosities of solutions in the presence and absence of a magnetic field, respectively. In this case, the values of viscosity corresponding to low shear rates were chosen because the concentration dependence of viscosity at low shear rates is typical for anisotropic systems. In the investigated composition range, the values of η/η0 are described by a curve with a maximum.

Keywords: rheology, liquid crystals, magnetic field, cellulose ethers

Procedia PDF Downloads 315
18898 Evaluation of Suspended Particles Impact on Condensation in Expanding Flow with Aerodynamics Waves

Authors: Piotr Wisniewski, Sławomir Dykas

Abstract:

Condensation has a negative impact on turbomachinery efficiency in many energy processes.In technical applications, it is often impossible to dry the working fluid at the nozzle inlet. One of the most popular working fluid is atmospheric air that always contains water in form of steam, liquid, or ice crystals. Moreover, it always contains some amount of suspended particles which influence the phase change process. It is known that the phenomena of evaporation or condensation are connected with release or absorption of latent heat, what influence the fluid physical properties and might affect the machinery efficiency therefore, the phase transition has to be taken under account. This researchpresents an attempt to evaluate the impact of solid and liquid particles suspended in the air on the expansion of moist air in a low expansion rate, i.e., with expansion rate, P≈1000s⁻¹. The numerical study supported by analytical and experimental research is presented in this work. The experimental study was carried out using an in-house experimental test rig, where nozzle was examined for different inlet air relative humidity values included in the range of 25 to 51%. The nozzle was tested for a supersonic flow as well as for flow with shock waves induced by elevated back pressure. The Schlieren photography technique and measurement of static pressure on the nozzle wall were used for qualitative identification of both condensation and shock waves. A numerical model validated against experimental data available in the literature was used for analysis of occurring flow phenomena. The analysis of the suspended particles number, diameter, and character (solid or liquid) revealed their connection with heterogeneous condensation importance. If the expansion of fluid without suspended particlesis considered, the condensation triggers so called condensation wave that appears downstream the nozzle throat. If the solid particles are considered, with increasing number of them, the condensation triggers upwind the nozzle throat, decreasing the condensation wave strength. Due to the release of latent heat during condensation, the fluid temperature and pressure increase, leading to the shift of normal shock upstream the flow. Owing relatively large diameters of the droplets created during heterogeneous condensation, they evaporate partially on the shock and continues to evaporate downstream the nozzle. If the liquid water particles are considered, due to their larger radius, their do not affect the expanding flow significantly, however might be in major importance while considering the compression phenomena as they will tend to evaporate on the shock wave. This research proves the need of further study of phase change phenomena in supersonic flow especially considering the interaction of droplets with the aerodynamic waves in the flow.

Keywords: aerodynamics, computational fluid dynamics, condensation, moist air, multi-phase flows

Procedia PDF Downloads 88
18897 Perceptions of Farmers against Liquid Fertilizer Benefits of Beef Cattle Urine

Authors: Sitti Nurani Sirajuddin, Ikrar Moh. Saleh, Kasmiyati Kasim

Abstract:

The aim of this study was to know the perception of livestock farmers on the use of liquid organic fertilizer from urine of cattle at Sinjai Regency, South Sulawesi Province. The choice of location for a farmer group manufactures and markets liquid organic fertilizer from cattle urine. This research was conducted in May to July 2013.The population were all livestock farmers who use organic liquid fertilizer from cattle urine samples while livestock farmers who are directly involved in the manufacture of liquid organic fertilizer totaled 42 people. Data were collected through observation and interview. Data were analyzed descriptively. The results showed that the perception of livestock farmers of using liquid organic fertilizer from cattle urine provide additional revenue benefits, cost minimization farming, reducing environmental pollution which not contrary to the customs.

Keywords: liquid organic fertilizer, perceptions, farmers, beef cattle

Procedia PDF Downloads 440
18896 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface

Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan

Abstract:

Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.

Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor

Procedia PDF Downloads 457
18895 Adsorptive Desulfurization of Tire Pyrolytic Oil Using Cu(I)–Y Zeolite via π-Complexation

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The accelerating requirement to reach 0% sulfur content in liquid fuels demands researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for removal of organosulfur compounds (OSC) present in TPO. The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion-exchange between Na-Y zeolite with a Cu(NO3)2 aqueous solution of 0.5M for 48 hours followed by reduction of Cu2+ to Cu+. Batch studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene (TH), benzothiophene (BTH), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophe (4,6-DMDBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of multiple operating conditions such as adsorbent dosage, reaction time and temperature were studied to optimize the process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order 4,6-DMDBT> DBT> BTH> TH. Interpretation of the results was justified using the molecular orbital theory and calculations. Langmuir and Freundlich isotherms were used to predict adsorption of the reaction mixture. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.

Keywords: adsorption, desulfurization, TPO, zeolite

Procedia PDF Downloads 207
18894 Research of Acoustic Propagation within Marine Riser in Deepwater Drilling

Authors: Xiaohui Wang, Zhichuan Guan, Roman Shor, Chuanbin Xu

Abstract:

Early monitoring and real-time quantitative description of gas intrusion under the premise of ensuring the integrity of the drilling fluid circulation system will greatly improve the accuracy and effectiveness of deepwater gas-kick monitoring. Therefore, in order to study the propagation characteristics of ultrasonic waves in the gas-liquid two-phase flow within the marine riser, in this paper, a numerical simulation method of ultrasonic propagation in the annulus of the riser was established, and the credibility of the numerical analysis was verified by the experimental results of the established gas intrusion monitoring simulation experimental device. The numerical simulation can solve the sound field in the gas-liquid two-phase flow according to different physical models, and it is easier to realize the single factor control. The influence of each parameter on the received signal can be quantitatively investigated, and the law with practical guiding significance can be obtained.

Keywords: gas-kick detection, ultrasonic, void fraction, coda wave velocity

Procedia PDF Downloads 126
18893 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: gasoline, diesel, pyrolysis, waste oil, Y zeolite

Procedia PDF Downloads 171
18892 Microstructural and Tribological Properties of Thermally Sprayed High Entropy Alloys Coating

Authors: Abhijith N. V., Abhijit Pattnayak, Deepak Kumar

Abstract:

Nowadays, a group of alloys, namely high entropy alloys (HEA), because of their excellent properties. However, the fabrication of HEAs requires multistage techniques, especially mill-ing, sieving, compaction, sintering, inert media, etc. These processes are laborious, costly, time-oriented, and unsuitable for commercial application. This study adopted a single-stage process-based HVOF thermal spray to develop HEA coating on SS304L substrates. The wear behavior of the deposited HEA coating was explored under different milling time durations (5h, 10h, and 15h, respectively). The effect of feedstock preparation, microstructure, surface chemistry, and mechanical and metallurgical properties on wear resistance was also investigated. The microstructure and composition of both coating and feedstock were evaluated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Finally, the phase distribution was correlated by X-ray diffraction (XRD ) analysis. The results showed that 15h milled powder coating indicated better tribological than the base substrate and 5h,10h milled powder coating. A chemically stable Body Centered Cubic (BCC) solid solution phase was generated within the 15h milled powder-coated system, which resulted in superior tribological properties.

Keywords: high entropy alloys coating, wear mechanism, HVOF coating, microstructure

Procedia PDF Downloads 61
18891 Numerical Investigation of Thermal Energy Storage System with Phase Change Materials

Authors: Mrityunjay Kumar Sinha, Mayank Srivastava

Abstract:

The position of interface and temperature variation of phase change thermal energy storage system under constant heat injection and radiative heat injection is analysed during charging/discharging process by Heat balance integral method. The charging/discharging process is solely governed by conduction. Phase change material is kept inside a rectangular cavity. Time-dependent fixed temperature and radiative boundary condition applied on one wall, all other walls are thermally insulated. Interface location and temperature variation are analysed by using MATLAB.

Keywords: conduction, melting/solidification, phase change materials, Stefan’s number

Procedia PDF Downloads 362
18890 Separation of Fexofenadine Enantiomers Using Beta Cyclodextrin as Chiral Counter Ion in Mobile Phase

Authors: R. Fegas, S. Zerkout, S. Taberkokt, M. Righezza

Abstract:

The present work demonstrate the potential of Betacyclodextrine (BCD) for the chiral analysis of a drug .Various separation mechanisms were applied and several parameters affecting the separation were studied, including the type and concentration of chiral selector, and pH of buffer. A simple and sensitive high-performance liquid chromatography (HPLC) method was developed as an assay for fexofenadine enantiomers in pharmaceutical preparation. Fexofenadine enantiomers were separated using a mobile phase of 0.25mM NaH2PO4–acetonitrile (65:35, v/v) – Betacyclodextrine on achiral phenyl-urea column at a flow rate of 1ml/min and measurement at 220nm. The chiral mechanism of separation was mainly based on specific interaction between the solute and the stationary phase. The retention was directly controlled by mobile phase composition but not the selectivity which results of the two mechanisms, electrostatic interactions and partition mechanism.

Keywords: fexofenadine enantiomer, HPLC, achiral phenyl-urea column

Procedia PDF Downloads 436
18889 Synthesis, Characterization, and Application of Novel Trihexyltetradecyl Phosphonium Chloride for Extractive Desulfurization of Liquid Fuel

Authors: Swapnil A. Dharaskar, Kailas L. Wasewar, Mahesh N. Varma, Diwakar Z. Shende

Abstract:

Owing to the stringent environmental regulations in many countries for production of ultra low sulfur petroleum fractions intending to reduce sulfur emissions results in enormous interest in this area among the scientific community. The requirement of zero sulfur emissions enhances the prominence for more advanced techniques in desulfurization. Desulfurization by extraction is a promising approach having several advantages over conventional hydrodesulphurization. Present work is dealt with various new approaches for desulfurization of ultra clean gasoline, diesel and other liquid fuels by extraction with ionic liquids. In present paper experimental data on extractive desulfurization of liquid fuel using trihexyl tetradecyl phosphonium chloride has been presented. The FTIR, 1H-NMR, and 13C-NMR have been discussed for the molecular confirmation of synthesized ionic liquid. Further, conductivity, solubility, and viscosity analysis of ionic liquids were carried out. The effects of reaction time, reaction temperature, sulfur compounds, ultrasonication, and recycling of ionic liquid without regeneration on removal of dibenzothiphene from liquid fuel were also investigated. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 84.5% for mass ratio of 1:1 in 30 min at 30OC under the mild reaction conditions. Phosphonium ionic liquids could be reused five times without a significant decrease in activity. Also, the desulfurization of real fuels, multistage extraction was examined. The data and results provided in present paper explore the significant insights of phosphonium based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.

Keywords: ionic liquid, PPIL, desulfurization, liquid fuel, extraction

Procedia PDF Downloads 586
18888 Dual-Phase High Entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅) BxCy Ceramics Produced by Spark Plasma Sintering

Authors: Ana-Carolina Feltrin, Daniel Hedman, Farid Akhtar

Abstract:

High entropy ceramic (HEC) materials are characterized by their compositional disorder due to different metallic element atoms occupying the cation position and non-metal elements occupying the anion position. Several studies have focused on the processing and characterization of high entropy carbides and high entropy borides, as these HECs present interesting mechanical and chemical properties. A few studies have been published on HECs containing two non-metallic elements in the composition. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BxCy ceramics with different amounts of x and y, (0.25 HfC + 0.25 ZrC + 0.25 VC + 0.25 TiB₂), (0.25 HfC + 0.25 ZrC + 0.25 VB2 + 0.25 TiB₂) and (0.25 HfC + 0.25 ZrB2 + 0.25 VB2 + 0.25 TiB₂) were sintered from boride and carbide precursor powders using SPS at 2000°C with holding time of 10 min, uniaxial pressure of 50 MPa and under Ar atmosphere. The sintered specimens formed two HEC phases: a Zr-Hf rich FCC phase and a Ti-V HCP phase, and both phases contained all the metallic elements from 5-50 at%. Phase quantification analysis of XRD data revealed that the molar amount of hexagonal phase increased with increased mole fraction of borides in the starting powders, whereas cubic FCC phase increased with increased carbide in the starting powders. SPS consolidated (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)BC0.5 and (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B1.5C0.25 had respectively 94.74% and 88.56% relative density. (Ti₀.₂₅V₀.₂₅Zr₀.₂₅Hf₀.₂₅)B0.5C0.75 presented the highest relative density of 95.99%, with Vickers hardness of 26.58±1.2 GPa for the borides phase and 18.29±0.8 GPa for the carbides phase, which exceeded the reported hardness values reported in the literature for high entropy ceramics. The SPS sintered specimens containing lower boron and higher carbon presented superior properties even though the metallic composition in each phase was similar to other compositions investigated. Dual-phase high entropy (Ti₀.₂₅V₀.₂₅Zr₀.₂₅H₀.₂₅)BxCy ceramics were successfully fabricated in a boride-carbide solid solution and the amount of boron and carbon was shown to influence the phase fraction, hardness of phases, and density of the consolidated HECs. The microstructure and phase formation was highly dependent on the amount of non-metallic elements in the composition and not only the molar ratio between metals when producing high entropy ceramics with more than one anion in the sublattice. These findings show the importance of further studies about the optimization of the ratio between C and B for further improvements in the properties of dual-phase high entropy ceramics.

Keywords: high-entropy ceramics, borides, carbides, dual-phase

Procedia PDF Downloads 140
18887 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 179
18886 Advancements in Dielectric Materials: A Comprehensive Study on Properties, Synthesis, and Applications

Authors: M. Mesrar, T. Lamcharfi, Nor-S. Echatoui, F. Abdi

Abstract:

The solid-state reaction method was used to synthesize ferroelectric systems with lead-free properties, specifically (1-x-y)(Na₀.₅Bi₀.₅)TiO₃-xBaTiO₃-y(K₀.₅ Bi₀.₅)TiO₃. To achieve a pure perovskite phase, the optimal calcination temperature was determined to be 1000°C for 4 hours. X-ray diffraction (XRD) analysis identified the presence of the morphotropic phase boundary (MPB) in the (1-x-y)NBT xBT-yKBT ceramics for specific molar compositions, namely (0.95NBT-0.05BT, 0.84NBT-0.16KBT, and 0.79NBT-0.05BT-0.16KBT). To enhance densification, the sintering temperature was set at 1100°C for 4 hours. Scanning electron microscopy (SEM) images exhibited homogeneous distribution and dense packing of the grains in the ceramics, indicating a uniform microstructure. These materials exhibited favorable characteristics, including high dielectric permittivity, low dielectric loss, and diffused phase transition behavior. The ceramics composed of 0.79NBT-0.05BT-0.16KBT exhibited the highest piezoelectric constant (d33=148 pC/N) and electromechanical coupling factor (kp = 0.292) among all compositions studied. This enhancement in piezoelectric properties can be attributed to the presence of the morphotropic phase boundary (MPB) in the material. This study presents a comprehensive approach to improving the performance of lead-free ferroelectric systems of composition 0.79(Na₀.₅Bi₀.₅)Ti O₃-0.05BaTiO₃-0.16(K₀.₅Bi₀.₅)TiO₃.

Keywords: solid-state method, (1-x-y)NBT-xBT-yKBT, morphotropic phase boundary, Raman spectroscopy, dielectric properties

Procedia PDF Downloads 25
18885 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid

Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet

Abstract:

The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.

Keywords: bio-oils, extraction, lignin, phenolic compounds

Procedia PDF Downloads 82
18884 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process

Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois

Abstract:

Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.

Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor

Procedia PDF Downloads 101
18883 Status Report of the GERDA Phase II Startup

Authors: Valerio D’Andrea

Abstract:

The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.

Keywords: gerda, double beta decay, LNGS, germanium

Procedia PDF Downloads 344
18882 ERP Implementation in Iran: A Successful Experience in DGC

Authors: Mohammad Reza Ostad Ali Naghi Kashani

Abstract:

Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing. Although ERP projects are expensive, time consuming, and complex, there are some successful experiences. These days, developing countries are striving to implement ERP projects successfully; however, there are many obstacles. Therefore, these projects would be failed or partially failed. This paper concerns the implementation of a successful ERP implementation, IFS, in Iran at Dana Geophysics Company (DGC). After a short review of ERP and ERP market in Iran, we propose a three phases deployment methodology (phase 1: Preparation and Business Process Management (BPM) phase 2: implementation and phase 3: testing, golive-1 (pilot) and golive-2 (final)). Then, we present five guidelines (Project Management, Change Management, Business Process Management (BPM), Training& Knowledge Management, and Technical Management), which were chose as work streams. In this case study we present lessons learned in Project management and Business process Management.

Keywords: business process management, critical success factors, ERP, project management

Procedia PDF Downloads 456
18881 Phytoremediation Waste Processing of Coffee in Various Concentration of Organic Materials Plant Using Kiambang

Authors: Siti Aminatu Zuhria

Abstract:

On wet coffee processing can improve the quality of coffee, but the coffee liquid waste that can pollute the environment. Liquid waste a lot of coffee resulting from the stripping and washing the coffee. This research will be carried out the process of handling liquid waste stripping coffee from the coffee skin with media phytoremediation using plants kiambang. The purpose of this study was to determine the characteristics of the coffee liquid waste and plant phytoremediation kiambang as agent in various concentrations of liquid waste coffee as well as determining the most optimal concentration in the improved quality of waste water quality standard approach. This research will be conducted through two stages, namely the preliminary study and the main study. In a preliminary study aims to determine the ability of the plant life kiambang as phytoremediation agent in the media well water, distilled water and liquid waste coffee. The main study will be conducted wastewater dilution and coffee will be obtained COD concentration variations. Results are expected at this research that can determine the ability of plants kiambang as an agent for phytoremediation in wastewater treatment with various concentrations of waste and the most optimal concentration in the improved quality of waste water quality standard approach.

Keywords: wet coffee processing, phytoremediation, Kiambang plant, variation concentration liquid waste

Procedia PDF Downloads 266
18880 Soybean Lecithin Based Reverse Micellar Extraction of Pectinase from Synthetic Solution

Authors: Sivananth Murugesan, I. Regupathi, B. Vishwas Prabhu, Ankit Devatwal, Vishnu Sivan Pillai

Abstract:

Pectinase is an important enzyme which has a wide range of applications including textile processing and bioscouring of cotton fibers, coffee and tea fermentation, purification of plant viruses, oil extraction etc. Selective separation and purification of pectinase from fermentation broth and recover the enzyme form process stream for reuse are cost consuming process in most of the enzyme based industries. It is difficult to identify a suitable medium to enhance enzyme activity and retain its enzyme characteristics during such processes. The cost effective, selective separation of enzymes through the modified Liquid-liquid extraction is of current research interest worldwide. Reverse micellar extraction, globally acclaimed Liquid-liquid extraction technique is well known for its separation and purification of solutes from the feed which offers higher solute specificity and partitioning, ease of operation and recycling of extractants used. Surfactant concentrations above critical micelle concentration to an apolar solvent form micelles and addition of micellar phase to water in turn forms reverse micelles or water-in-oil emulsions. Since, electrostatic interaction plays a major role in the separation/purification of solutes using reverse micelles. These interaction parameters can be altered with the change in pH, addition of cosolvent, surfactant and electrolyte and non-electrolyte. Even though many chemical based commercial surfactant had been utilized for this purpose, the biosurfactants are more suitable for the purification of enzymes which are used in food application. The present work focused on the partitioning of pectinase from the synthetic aqueous solution within the reverse micelle phase formed by a biosurfactant, Soybean Lecithin dissolved in chloroform. The critical micelle concentration of soybean lecithin/chloroform solution was identified through refractive index and density measurements. Effect of surfactant concentrations above and below the critical micelle concentration was considered to study its effect on enzyme activity, enzyme partitioning within the reverse micelle phase. The effect of pH and electrolyte salts on the partitioning behavior was studied by varying the system pH and concentration of different salts during forward and back extraction steps. It was observed that lower concentrations of soybean lecithin enhanced the enzyme activity within the water core of the reverse micelle with maximizing extraction efficiency. The maximum yield of pectinase of 85% with a partitioning coefficient of 5.7 was achieved at 4.8 pH during forward extraction and 88% yield with a partitioning coefficient of 7.1 was observed during backward extraction at a pH value of 5.0. However, addition of salt decreased the enzyme activity and especially at higher salt concentrations enzyme activity declined drastically during both forward and back extraction steps. The results proved that reverse micelles formed by Soybean Lecithin and chloroform may be used for the extraction of pectinase from aqueous solution. Further, the reverse micelles can be considered as nanoreactors to enhance enzyme activity and maximum utilization of substrate at optimized conditions, which are paving a way to process intensification and scale-down.

Keywords: pectinase, reverse micelles, soybean lecithin, selective partitioning

Procedia PDF Downloads 344
18879 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: Study of Regeneration Heat Duty

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

A high-pressure carbon dioxide (CO₂) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO₂ concentration, CO₂ loading, reboiler power supply, and regeneration heat duty to choose the most efficient solution in terms of CO₂ removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on the electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that piperazine, in addition to the mixture of piperazine and monoethanolamine (MEA), demands the highest regeneration heat duty compared with other studied single and blended amine solutions, respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of the process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO₂ content in the outlet gas, rich-CO₂ loading, and regeneration heat duty.

Keywords: absorption, amine solutions, aspen HYSYS, CO₂ loading, piperazine, regeneration heat duty

Procedia PDF Downloads 150
18878 Surface Morphology Refinement and Laves Phase Control of Inconel 718 during Plasma Arc Additive Manufacturing by Alternating Magnetic Field

Authors: Yi Zheng

Abstract:

Improving formability and mechanical properties have always been one of the challenges in the field of additive manufacturing (AM) of nickel-based superalloys. In this work, the effect of a coaxially coupled alternating magnetic field (AMF) on surface morphology and mechanical properties of plasma arc-based additive manufactured Inconel 718 deposit were investigated. Results show that the Lorentz force induced by AMF strongly alters the flow behavior of the plasma jet and the molten pool, suppressing the tendency of the liquid metal in the molten pool to flow down on the two sides face of the deposit, which in turn remarkably improved the surface accuracy of the thin-walled deposit. Furthermore, the electromagnetic stirring induced by AMF can effectively enhance the convection between the dendrites, which could not only contribute to the formation of finer dendrites but also alleviate the enrichment of the elements (i.e., Nb and Mo) at the solid-liquid interface and inhibits the precipitation of Laves phase. The smallest primary dendritic arm spacing (~13 μm) and lowest Laves phases area fraction (3.12%) were witnessed in the bottom region of the AMF-assisted deposit. The mechanical test confirmed that the deposit's micro-hardness and tensile properties were moderately improved compared with the counterpart without AMF.

Keywords: additive manufacturing, inconel 718, alternating magnetic field, laves phase

Procedia PDF Downloads 55
18877 Purity Monitor Studies in Medium Liquid Argon TPC

Authors: I. Badhrees

Abstract:

This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of laser in the Liquid Argon Time Projection Chamber. The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432 pb. The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.

Keywords: ATLAS, CERN, KACST, LArTPC, particle physics

Procedia PDF Downloads 320
18876 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding

Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng

Abstract:

Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.

Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding

Procedia PDF Downloads 276
18875 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 146