Search results for: liquefaction potential map
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10969

Search results for: liquefaction potential map

199 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets

Authors: Rabindranath Bag, Surjeet Singh

Abstract:

Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.

Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique

Procedia PDF Downloads 247
198 Medical Workforce Knowledge of Adrenaline (Epinephrine) Administration in Anaphylaxis in Adults Considerably Improved with Training in an UK Hospital from 2010 to 2017

Authors: Jan C. Droste, Justine Burns, Nithin Narayan

Abstract:

Introduction: Life-threatening detrimental effects of inappropriate adrenaline (epinephrine) administration, e.g., by giving the wrong dose, in the context of anaphylaxis management is well documented in the medical literature. Half of the fatal anaphylactic reactions in the UK are iatrogenic, and the median time to a cardio-respiratory arrest can be as short as 5 minutes. It is therefore imperative that hospital doctors of all grades have active and accurate knowledge of the correct route, site, and dosage of administration of adrenaline. Given this time constraint and the potential fatal outcome with inappropriate management of anaphylaxis, it is alarming that surveys over the last 15 years have repeatedly shown only a minority of doctors to have accurate knowledge of adrenaline administration as recommended by the UK Resuscitation Council guidelines (2008 updated 2012). This comparison of survey results of the medical workforce over several years in a small NHS District General Hospital was conducted in order to establish the effect of the employment of multiple educational methods regarding adrenaline administration in anaphylaxis in adults. Methods: Between 2010 and 2017, several education methods and tools were used to repeatedly inform the medical workforce (doctors and advanced clinical practitioners) in a single district general hospital regarding the treatment of anaphylaxis in adults. Whilst the senior staff remained largely the same cohort, junior staff had changed fully in every survey. Examples included: (i) Formal teaching -in Grand Rounds; during the junior doctors’ induction process; advanced life support courses (ii) In-situ simulation training performed by the clinical skills simulation team –several ad hoc sessions and one 3-day event in 2017 visiting 16 separate clinical areas performing an acute anaphylaxis scenario using actors- around 100 individuals from multi-disciplinary teams were involved (iii) Hospital-wide distribution of the simulation event via the Trust’s Simulation Newsletter (iv) Laminated algorithms were attached to the 'crash trolleys' (v) A short email 'alert' was sent to all medical staff 3 weeks prior to the survey detailing the emergency treatment of anaphylaxis (vi) In addition, the performance of the surveys themselves represented a teaching opportunity when gaps in knowledge could be addressed. Face to face surveys were carried out in 2010 ('pre-intervention), 2015, and 2017, in the latter two occasions including advanced clinical practitioners (ACP). All surveys consisted of convenience samples. If verbal consent to conduct the survey was obtained, the medical practitioners' answers were recorded immediately on a data collection sheet. Results: There was a sustained improvement in the knowledge of the medical workforce from 2010 to 2017: Answers improved regarding correct drug by 11% (84%, 95%, and 95%); the correct route by 20% (76%, 90%, and 96%); correct site by 40% (43%, 83%, and 83%) and the correct dose by 45% (27%, 54%, and 72%). Overall, knowledge of all components -correct drug, route, site, and dose-improved from 13% in 2010 to 62% in 2017. Conclusion: This survey comparison shows knowledge of the medical workforce regarding adrenaline administration for treatment of anaphylaxis in adults can be considerably improved by employing a variety of educational methods.

Keywords: adrenaline, anaphylaxis, epinephrine, medical education, patient safety

Procedia PDF Downloads 105
197 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 199
196 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia

Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju

Abstract:

Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.

Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization

Procedia PDF Downloads 36
195 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection

Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément

Abstract:

The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.

Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars

Procedia PDF Downloads 71
194 Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups

Authors: John Hardy

Abstract:

Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies.

Keywords: countering violent extremism, counter terrorism, intelligence, terrorism, violent extremism

Procedia PDF Downloads 272
193 A Proposed Framework for Better Managing Small Group Projects on an Undergraduate Foundation Programme at an International University Campus

Authors: Sweta Rout-Hoolash

Abstract:

Each year, selected students from around 20 countries begin their degrees at Middlesex University with the International Foundation Program (IFP), developing the skills required for academic study at a UK university. The IFP runs for 30 learning/teaching weeks at Middlesex University Mauritius Branch Campus, which is an international campus of UK’s Middlesex University. Successful IFP students join their degree courses already settled into life at their chosen campus (London, Dubai, Mauritius or Malta) and confident that they understand what is required for degree study. Although part of the School of Science and Technology, in Mauritius it prepares students for undergraduate level across all Schools represented on campus – including disciplines such as Accounting, Business, Computing, Law, Media and Psychology. The researcher has critically reviewed the framework and resources in the curriculum for a particular six week period of IFP study (dedicated group work phase). Despite working together closely for 24 weeks, IFP students approach the final 6 week small group work project phase with mainly inhibitive feelings. It was observed that students did not engage effectively in the group work exercise. Additionally, groups who seemed to be working well did not necessarily produce results reflecting effective collaboration, nor individual members’ results which were better than prior efforts. The researcher identified scope for change and innovation in the IFP curriculum and how group work is introduced and facilitated. The study explores the challenges of groupwork in the context of the Mauritius campus, though it is clear that the implications of the project are not restricted to one campus only. The presentation offers a reflective review on the previous structure put in place for the management of small group assessed projects on the programme from both the student and tutor perspective. The focus of the research perspective is the student voice, by taking into consideration past and present IFP students’ experiences as written in their learning journals. Further, it proposes the introduction of a revised framework to help students take greater ownership of the group work process in order to engage more effectively with the learning outcomes of this crucial phase of the programme. The study has critically reviewed recent and seminal literature on how to achieve greater student ownership during this phase especially under an environment of assessed multicultural group work. The presentation proposes several new approaches for encouraging students to take more control of the collaboration process. Detailed consideration is given to how the proposed changes impact on the work of other stakeholders, or partners to student learning. Clear proposals are laid out for evaluation of the different approaches intended to be implemented during the upcoming academic year (student voice through their own submitted reflections, focus group interviews and through the assessment results). The proposals presented are all realistic and have the potential to transform students’ learning. Furthermore, the study has engaged with the UK Professional Standards Framework for teaching and supporting learning in higher education, and demonstrates practice at the level of ‘fellow’ of the Higher Education Academy (HEA).

Keywords: collaborative peer learning, enhancing learning experiences, group work assessment, learning communities, multicultural diverse classrooms, studying abroad

Procedia PDF Downloads 297
192 Exploring Type V Hydrogen Storage Tanks: Shape Analysis and Material Evaluation for Enhanced Safety and Efficiency Focusing on Drop Test Performance

Authors: Mariam Jaber, Abdullah Yahya, Mohammad Alkhedher

Abstract:

The shift toward sustainable energy solutions increasingly focuses on hydrogen, recognized for its potential as a clean energy carrier. Despite its benefits, hydrogen storage poses significant challenges, primarily due to its low energy density and high volatility. Among the various solutions, pressure vessels designed for hydrogen storage range from Type I to Type V, each tailored for specific needs and benefits. Notably, Type V vessels, with their all-composite, liner-less design, significantly reduce weight and costs while optimizing space and decreasing maintenance demands. This study focuses on optimizing Type V hydrogen storage tanks by examining how different shapes affect performance in drop tests—a crucial aspect of achieving ISO 15869 certification. This certification ensures that if a tank is dropped, it will fail in a controlled manner, ideally by leaking before bursting. While cylindrical vessels are predominant in mobile applications due to their manufacturability and efficient use of space, spherical vessels offer superior stress distribution and require significantly less material thickness for the same pressure tolerance, making them advantageous for high-pressure scenarios. However, spherical tanks are less efficient in terms of packing and more complex to manufacture. Additionally, this study introduces toroidal vessels to assess their performance relative to the more traditional shapes, noting that the toroidal shape offers a more space-efficient option. The research evaluates how different shapes—spherical, cylindrical, and toroidal—affect drop test outcomes when combined with various composite materials and layup configurations. The ultimate goal is to identify optimal vessel geometries that enhance the safety and efficiency of hydrogen storage systems. For our materials, we selected high-performance composites such as Carbon T-700/Epoxy, Kevlar/Epoxy, E-Glass Fiber/Epoxy, and Basalt/Epoxy, configured in various orientations like [0,90]s, [45,-45]s, and [54,-54]. Our tests involved dropping tanks from different angles—horizontal, vertical, and 45 degrees—with an internal pressure of 35 MPa to replicate real-world scenarios as closely as possible. We used finite element analysis and first-order shear deformation theory, conducting tests with the Abaqus Explicit Dynamics software, which is ideal for handling the quick, intense stresses of an impact. The results from these simulations will provide valuable insights into how different designs and materials can enhance the durability and safety of hydrogen storage tanks. Our findings aim to guide future designs, making them more effective at withstanding impacts and safer overall. Ultimately, this research will contribute to the broader field of lightweight composite materials and polymers, advancing more innovative and practical approaches to hydrogen storage. By refining how we design these tanks, we are moving toward more reliable and economically feasible hydrogen storage solutions, further emphasizing hydrogen's role in the landscape of sustainable energy carriers.

Keywords: hydrogen storage, drop test, composite materials, type V tanks, finite element analysis

Procedia PDF Downloads 9
191 Design Thinking and Project-Based Learning: Opportunities, Challenges, and Possibilities

Authors: Shoba Rathilal

Abstract:

High unemployment rates and a shortage of experienced and qualified employees appear to be a paradox that currently plagues most countries worldwide. In a developing country like South Africa, the rate of unemployment is reported to be approximately 35%, the highest recorded globally. At the same time, a countrywide deficit in experienced and qualified potential employees is reported in South Africa, which is causing fierce rivalry among firms. Employers have reported that graduates are very rarely able to meet the demands of the job as there are gaps in their knowledge and conceptual understanding and other 21st-century competencies, attributes, and dispositions required to successfully negotiate the multiple responsibilities of employees in organizations. In addition, the rates of unemployment and suitability of graduates appear to be skewed by race and social class, the continued effects of a legacy of inequitable educational access. Higher Education in the current technologically advanced and dynamic world needs to serve as an agent of transformation, aspiring to develop graduates to be creative, flexible, critical, and with entrepreneurial acumen. This requires that higher education curricula and pedagogy require a re-envisioning of our selection, sequencing, and pacing of the learning, teaching, and assessment. At a particular Higher education Institution in South Africa, Design Thinking and Project Based learning are being adopted as two approaches that aim to enhance the student experience through the provision of a “distinctive education” that brings together disciplinary knowledge, professional engagement, technology, innovation, and entrepreneurship. Using these methodologies forces the students to solve real-time applied problems using various forms of knowledge and finding innovative solutions that can result in new products and services. The intention is to promote the development of skills for self-directed learning, facilitate the development of self-awareness, and contribute to students being active partners in the application and production of knowledge. These approaches emphasize active and collaborative learning, teamwork, conflict resolution, and problem-solving through effective integration of theory and practice. In principle, both these approaches are extremely impactful. However, at the institution in this study, the implementation of the PBL and DT was not as “smooth” as anticipated. This presentation reports on the analysis of the implementation of these two approaches within higher education curricula at a particular university in South Africa. The study adopts a qualitative case study design. Data were generated through the use of surveys, evaluation feedback at workshops, and content analysis of project reports. Data were analyzed using document analysis, content, and thematic analysis. Initial analysis shows that the forces constraining the implementation of PBL and DT range from the capacity to engage with DT and PBL, both from staff and students, educational contextual realities of higher education institutions, administrative processes, and resources. At the same time, the implementation of DT and PBL was enabled through the allocation of strategic funding and capacity development workshops. These factors, however, could not achieve maximum impact. In addition, the presentation will include recommendations on how DT and PBL could be adapted for differing contexts will be explored.

Keywords: design thinking, project based learning, innovative higher education pedagogy, student and staff capacity development

Procedia PDF Downloads 50
190 Particle Size Characteristics of Aerosol Jets Produced by A Low Powered E-Cigarette

Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida

Abstract:

Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.

Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry

Procedia PDF Downloads 14
189 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture

Authors: Zakia Hbellaq

Abstract:

The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.

Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants

Procedia PDF Downloads 117
188 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence

Authors: Gus Calderon, Richard McCreight, Tammy Schwartz

Abstract:

Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.

Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.

Procedia PDF Downloads 76
187 Service Blueprinting: A New Application for Evaluating Service Provision in the Hospice Sector

Authors: L. Sudbury-Riley, P. Hunter-Jones, L. Menzies, M. Pyrah, H. Knight

Abstract:

Just as manufacturing firms aim for zero defects, service providers strive to avoid service failures where customer expectations are not met. However, because services comprise unique human interactions, service failures are almost inevitable. Consequently, firms focus on service recovery strategies to fix problems and retain their customers for the future. Because a hospice offers care to terminally ill patients, it may not get the opportunity to correct a service failure. This situation makes the identification of what hospice users really need and want, and to ascertain perceptions of the hospice’s service delivery from the user’s perspective, even more important than for other service providers. A well-documented and fundamental barrier to improving end-of-life care is a lack of service quality measurement tools that capture the experiences of user’s from their own perspective. In palliative care, many quantitative measures are used and these focus on issues such as how quickly patients are assessed, whether they receive information leaflets, whether a discussion about their emotional needs is documented, and so on. Consequently, quality of service from the user’s perspective is overlooked. The current study was designed to overcome these limitations by adapting service blueprinting - never before used in the hospice sector - in order to undertake a ‘deep-dive’ to examine the impact of hospice services upon different users. Service blueprinting is a customer-focused approach for service innovation and improvement, where the ‘onstage’ visible service user and provider interactions must be supported by the ‘backstage’ employee actions and support processes. The study was conducted in conjunction with East Cheshire Hospice in England. The Hospice provides specialist palliative care for patients with progressive life-limiting illnesses, offering services to patients, carers and families via inpatient and outpatient units. Using service blueprinting to identify every service touchpoint, in-depth qualitative interviews with 38 in-patients, outpatients, visitors and bereaved families enabled a ‘deep-dive’ to uncover perceptions of the whole service experience among these diverse users. Interviews were recorded and transcribed, and thematic analysis of over 104,000 words of data revealed many excellent aspects of Hospice service. Staff frequently exceed people’s expectations. Striking gratifying comparisons to hospitals emerged. The Hospice makes people feel safe. Nevertheless, the technique uncovered many areas for improvement, including serendipity of referrals processes, the need for better communications with external agencies, improvements amid the daunting arrival and admissions process, a desperate need for more depression counselling, clarity of communication pertaining to actual end of life, and shortcomings in systems dealing with bereaved families. The study reveals that the adapted service blueprinting tool has major advantages of alternative quantitative evaluation techniques, including uncovering the complex nature of service user’s experiences in health-care service systems, highlighting more fully the interconnected configurations within the system and making greater sense of the impact of the service upon different service users. Unlike other tools, this in-depth examination reveals areas for improvement, many of which have already been implemented by the Hospice. The technique has potential to improve experiences of palliative and end-of-life care among patients and their families.

Keywords: hospices, end-of-life-care, service blueprinting, service delivery

Procedia PDF Downloads 169
186 Prevalence of Antibiotic-Resistant Bacteria Isolated from Fresh Vegetables Retailed in Eastern Spain

Authors: Miguel García-Ferrús, Yolanda Domínguez, M Angeles Castillo, M Antonia Ferrús, Ana Jiménez-Belenguer

Abstract:

Antibiotic resistance is a growing public health concern worldwide, and it is now regarded as a critical issue within the "One Health" approach that affects human and animal health, agriculture, and environmental waste management. This concept focuses on the interconnected nature of human, animal and environmental health, and WHO highlights zoonotic diseases, food safety, and antimicrobial resistance as three particularly relevant areas for this framework. Fresh vegetables are garnering attention in the food chain due to the presence of pathogens and because they can act as a reservoir for Antibiotic Resistance Bacteria (ARB) and Antibiotic Resistance Genes (ARG). These fresh products are frequently consumed raw, thereby contributing to the spread and transmission of antibiotic resistance. Therefore, the aim of this research was to study the microbiological quality, the prevalence of ARB, and their role in the dissemination of ARG in fresh vegetables intended for human consumption. For this purpose, 102 samples of fresh vegetables (30 lettuce, 30 cabbage, 18 strawberries and 24 spinach) from different retail establishments in Valencia (Spain) have been analyzed to determine their microbiological quality and their role in spreading ARB and ARG. The samples were collected and examined according to standardized methods for total viable bacteria, coliforms, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes and Salmonella spp. Isolation was made in culture media supplemented with antibiotics (cefotaxime and meropenem). A total of 239 strains resistant to beta-lactam antibiotics (Third-Generation Cephalosporins and Carbapenems) were isolated. Thirty Gram-negative isolates were selected and biochemically identified or partial sequencing of 16S rDNA. Their sensitivity to 12 antibiotic discs was determined using the Kirby-Bauer disc diffusion technique to different therapeutic groups. To determine the presence of ARG, PCR assays for the direct sample and selected isolate DNA were performed for main expanded spectrum beta-lactamase (ESBL)-, carbapenemase-encoding genes and plasmid-mediated quinolone resistance genes. From the total samples, 68% (24/24 spinach, 28/30 lettuce and 17/30 cabbage) showed total viable bacteria levels over the accepted standard 10(2)-10(5) cfu/g range; and 48% (24/24 spinach, 19/30 lettuce and 6/30) showed coliforms levels over the accepted standard 10(2)-10(4) cfu/g range. In 9 samples (3/24 spinach, 3/30 lettuce, 3/30 cabbage; 9/102 (9%)) E. coli levels were higher than the standard 10(3) cfu/g limit. Listeria monocytogenes, Salmonella and STEC have not been detected. Six different bacteria species were isolated from samples. Stenotrophomonas maltophilia (64%) was the prevalent species, followed by Acinetobacter pitii (14%) and Burkholderia cepacia (7%). All the isolates were resistant to at least one tested antibiotic, including meropenem (85%) and ceftazidime (46%). Of the total isolates, 86% were multidrug-resistant and 68% were ESBL productors. Results of PCR showed the presence of resistance genes to beta-lactams blaTEM (4%) and blaCMY-2 (4%), to carbapenemes blaOXA-48 (25%), blaVIM (7%), blaIMP (21%) and blaKPC (32%), and to quinolones QnrA (7%), QnrB (11%) and QnrS (18%). Thus, fresh vegetables harboring ARB and ARG constitute a potential risk to consumers. Further studies must be done to detect ARG and how they propagate in non-medical environments.

Keywords: ESBL, β-lactams, resistances, fresh vegetables.

Procedia PDF Downloads 39
185 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 263
184 Strategy to Evaluate Health Risks of Short-Term Exposure of Air Pollution in Vulnerable Individuals

Authors: Sarah Nauwelaerts, Koen De Cremer, Alfred Bernard, Meredith Verlooy, Kristel Heremans, Natalia Bustos Sierra, Katrien Tersago, Tim Nawrot, Jordy Vercauteren, Christophe Stroobants, Sigrid C. J. De Keersmaecker, Nancy Roosens

Abstract:

Projected climate changes could lead to exacerbation of respiratory disorders associated with reduced air quality. Air pollution and climate changes influence each other through complex interactions. The poor air quality in urban and rural areas includes high levels of particulate matter (PM), ozone (O3) and nitrogen oxides (NOx), representing a major threat to public health and especially for the most vulnerable population strata, and especially young children. In this study, we aim to develop generic standardized policy supporting tools and methods that allow evaluating in future follow-up larger scale epidemiological studies the risks of the combined short-term effects of O3 and PM on the cardiorespiratory system of children. We will use non-invasive indicators of airway damage/inflammation and of genetic or epigenetic variations by using urine or saliva as alternative to blood samples. Therefore, a multi-phase field study will be organized in order to assess the sensitivity and applicability of these tests in large cohorts of children during episodes of air pollution. A first test phase was planned in March 2018, not yet taking into account ‘critical’ pollution periods. Working with non-invasive samples, choosing the right set-up for the field work and the volunteer selection were parameters to consider, as they significantly influence the feasibility of this type of study. During this test phase, the selection of the volunteers was done in collaboration with medical doctors from the Centre for Student Assistance (CLB), by choosing a class of pre-pubertal children of 9-11 years old in a primary school in Flemish Brabant, Belgium. A questionnaire, collecting information on the health and background of children and an informed consent document were drawn up for the parents as well as a simplified cartoon-version of this document for the children. A detailed study protocol was established, giving clear information on the study objectives, the recruitment, the sample types, the medical examinations to be performed, the strategy to ensure anonymity, and finally on the sample processing. Furthermore, the protocol describes how this field study will be conducted in relation with the prevision and monitoring of air pollutants for the future phases. Potential protein, genetic and epigenetic biomarkers reflecting the respiratory function and the levels of air pollution will be measured in the collected samples using unconventional technologies. The test phase results will be used to address the most important bottlenecks before proceeding to the following phases of the study where the combined effect of O3 and PM during pollution peaks will be examined. This feasibility study will allow identifying possible bottlenecks and providing missing scientific knowledge, necessary for the preparation, implementation and evaluation of federal policies/strategies, based on the most appropriate epidemiological studies on the health effects of air pollution. The research leading to these results has been funded by the Belgian Science Policy Office through contract No.: BR/165/PI/PMOLLUGENIX-V2.

Keywords: air pollution, biomarkers, children, field study, feasibility study, non-invasive

Procedia PDF Downloads 146
183 SWOT Analysis on the Prospects of Carob Use in Human Nutrition: Crete, Greece

Authors: Georgios A. Fragkiadakis, Antonia Psaroudaki, Theodora Mouratidou, Eirini Sfakianaki

Abstract:

Research: Within the project "Actions for the optimal utilization of the potential of carob in the Region of Crete" which is financed-supervised by the Region, with collaboration of Crete University and Hellenic Mediterranean University, a SWOT (strengths, weaknesses, opportunities, threats) survey was carried out, to evaluate the prospects of carob in human nutrition, in Crete. Results and conclusions: 1). Strengths: There exists a local production of carob for human consumption, based on international reports, and local-product reports. The data on products in the market (over 100 brands of carob food), indicates a sufficiency of carob materials offered in Crete. The variety of carob food products retailed in Crete indicates a strong demand-production-consumption trend. There is a stable number (core) of businesses that invest significantly (Creta carob, Cretan mills, etc.). The great majority of the relevant food stores (bakery, confectionary etc.) do offer carob products. The presence of carob products produced in Crete is strong on the internet (over 20 main professionally designed websites). The promotion of the carob food-products is based on their variety and on a few historical elements connected with the Cretan diet. 2). Weaknesses: The international prices for carob seed affect the sector; the seed had an international price of €20 per kg in 2021-22 and fell to €8 in 2022, causing losses to carob traders. The local producers do not sort the carobs they deliver for processing, causing 30-40% losses of the product in the industry. The occasional high price triggers the collection of degraded raw material; large losses may emerge due to the action of insects. There are many carob trees whose fruits are not collected, e.g. in Apokoronas, Chania. The nutritional and commercial value of the wild carob fruits is very low. Carob trees-production is recorded by Greek statistical services as "other cultures" in combination with prickly pear i.e., creating difficulties in retrieving data. The percentage of carob used for human nutrition, in contrast to animal feeding, is not known. The exact imports of carob are not closely monitored. We have no data on the recycling of carob by-products in Crete. 3). Opportunities: The development of a culture of respect for carob trade may improve professional relations in the sector. Monitoring carob market and connecting production with retailing-industry needs may allow better market-stability. Raw material evaluation procedures may be implemented to maintain carob value-chain. The state agricultural services may be further involved in carob-health protection. The education of farmers on carob cultivation/management, can improve the quality of the product. The selection of local productive varieties, may improve the sustainability of the culture. Connecting the consumption of carob with health-food products, may create added value in the sector. The presence and extent of wild carob threes in Crete, represents, potentially, a target for grafting. 4). Threats: The annual fluctuation of carob yield challenges the programming of local food industry activities. Carob is a forest species also - there is danger of wrong classification of crops as forest areas, where land ownership is not clear.

Keywords: human nutrition, carob food, SWOT analysis, crete, greece

Procedia PDF Downloads 47
182 Internet of Things, Edge and Cloud Computing in Rock Mechanical Investigation for Underground Surveys

Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo

Abstract:

Rock mechanical investigation is one of the most crucial activities in underground operations, especially in surveys related to hydrocarbon exploration and production, geothermal reservoirs, energy storage, mining, and geotechnics. There is a wide range of traditional methods for driving, collecting, and analyzing rock mechanics data. However, these approaches may not be suitable or work perfectly in some situations, such as fractured zones. Cutting-edge technologies have been provided to solve and optimize the mentioned issues. Internet of Things (IoT), Edge, and Cloud Computing technologies (ECt & CCt, respectively) are among the most widely used and new artificial intelligence methods employed for geomechanical studies. IoT devices act as sensors and cameras for real-time monitoring and mechanical-geological data collection of rocks, such as temperature, movement, pressure, or stress levels. Structural integrity, especially for cap rocks within hydrocarbon systems, and rock mass behavior assessment, to further activities such as enhanced oil recovery (EOR) and underground gas storage (UGS), or to improve safety risk management (SRM) and potential hazards identification (P.H.I), are other benefits from IoT technologies. EC techniques can process, aggregate, and analyze data immediately collected by IoT on a real-time scale, providing detailed insights into the behavior of rocks in various situations (e.g., stress, temperature, and pressure), establishing patterns quickly, and detecting trends. Therefore, this state-of-the-art and useful technology can adopt autonomous systems in rock mechanical surveys, such as drilling and production (in hydrocarbon wells) or excavation (in mining and geotechnics industries). Besides, ECt allows all rock-related operations to be controlled remotely and enables operators to apply changes or make adjustments. It must be mentioned that this feature is very important in environmental goals. More often than not, rock mechanical studies consist of different data, such as laboratory tests, field operations, and indirect information like seismic or well-logging data. CCt provides a useful platform for storing and managing a great deal of volume and different information, which can be very useful in fractured zones. Additionally, CCt supplies powerful tools for predicting, modeling, and simulating rock mechanical information, especially in fractured zones within vast areas. Also, it is a suitable source for sharing extensive information on rock mechanics, such as the direction and size of fractures in a large oil field or mine. The comprehensive review findings demonstrate that digital transformation through integrated IoT, Edge, and Cloud solutions is revolutionizing traditional rock mechanical investigation. These advanced technologies have empowered real-time monitoring, predictive analysis, and data-driven decision-making, culminating in noteworthy enhancements in safety, efficiency, and sustainability. Therefore, by employing IoT, CCt, and ECt, underground operations have experienced a significant boost, allowing for timely and informed actions using real-time data insights. The successful implementation of IoT, CCt, and ECt has led to optimized and safer operations, optimized processes, and environmentally conscious approaches in underground geological endeavors.

Keywords: rock mechanical studies, internet of things, edge computing, cloud computing, underground surveys, geological operations

Procedia PDF Downloads 26
181 The Impacts of New Digital Technology Transformation on Singapore Healthcare Sector: Case Study of a Public Hospital in Singapore from a Management Accounting Perspective

Authors: Junqi Zou

Abstract:

As one of the world’s most tech-ready countries, Singapore has initiated the Smart Nation plan to harness the full power and potential of digital technologies to transform the way people live and work, through the more efficient government and business processes, to make the economy more productive. The key evolutions of digital technology transformation in healthcare and the increasing deployment of Internet of Things (IoTs), Big Data, AI/cognitive, Robotic Process Automation (RPA), Electronic Health Record Systems (EHR), Electronic Medical Record Systems (EMR), Warehouse Management System (WMS in the most recent decade have significantly stepped up the move towards an information-driven healthcare ecosystem. The advances in information technology not only bring benefits to patients but also act as a key force in changing management accounting in healthcare sector. The aim of this study is to investigate the impacts of digital technology transformation on Singapore’s healthcare sector from a management accounting perspective. Adopting a Balanced Scorecard (BSC) analysis approach, this paper conducted an exploratory case study of a newly launched Singapore public hospital, which has been recognized as amongst the most digitally advanced healthcare facilities in Asia-Pacific region. Specifically, this study gains insights on how the new technology is changing healthcare organizations’ management accounting from four perspectives under the Balanced Scorecard approach, 1) Financial Perspective, 2) Customer (Patient) Perspective, 3) Internal Processes Perspective, and 4) Learning and Growth Perspective. Based on a thorough review of archival records from the government and public, and the interview reports with the hospital’s CIO, this study finds the improvements from all the four perspectives under the Balanced Scorecard framework as follows: 1) Learning and Growth Perspective: The Government (Ministry of Health) works with the hospital to open up multiple training pathways to health professionals that upgrade and develops new IT skills among the healthcare workforce to support the transformation of healthcare services. 2) Internal Process Perspective: The hospital achieved digital transformation through Project OneCare to integrate clinical, operational, and administrative information systems (e.g., EHR, EMR, WMS, EPIB, RTLS) that enable the seamless flow of data and the implementation of JIT system to help the hospital operate more effectively and efficiently. 3) Customer Perspective: The fully integrated EMR suite enhances the patient’s experiences by achieving the 5 Rights (Right Patient, Right Data, Right Device, Right Entry and Right Time). 4) Financial Perspective: Cost savings are achieved from improved inventory management and effective supply chain management. The use of process automation also results in a reduction of manpower costs and logistics cost. To summarize, these improvements identified under the Balanced Scorecard framework confirm the success of utilizing the integration of advanced ICT to enhance healthcare organization’s customer service, productivity efficiency, and cost savings. Moreover, the Big Data generated from this integrated EMR system can be particularly useful in aiding management control system to optimize decision making and strategic planning. To conclude, the new digital technology transformation has moved the usefulness of management accounting to both financial and non-financial dimensions with new heights in the area of healthcare management.

Keywords: balanced scorecard, digital technology transformation, healthcare ecosystem, integrated information system

Procedia PDF Downloads 130
180 Chemopreventive Properties of Cannabis sativa L. var. USO31 in Relation to Its Phenolic and Terpenoid Content

Authors: Antonella Di Sotto, Cinzia Ingallina, Caterina Fraschetti, Simone Circi, Marcello Locatelli, Simone Carradori, Gabriela Mazzanti, Luisa Mannina, Silvia Di Giacomo

Abstract:

Cannabis sativa L. is one of the oldest cultivated plant species known not only for its voluptuous use but also for the wide application in food, textile, and therapeutic industries. Recently, the progress of biotechnologies applied to medicinal plants has allowed to produce different hemp varieties with low content of psychotropic phytoconstituents (tetrahydrocannabinol < 0.2% w/v), thus leading to a renewed industrial and therapeutic interest for this plant. In this context, in order to discover new potential remedies of pharmaceutical and/or nutraceutical interest, the chemopreventive properties of different organic and hydroalcoholic extracts, obtained from the inflorescences of C. sativa L. var. USO31, collected in June and September harvesting, were assessed. Particularly, the antimutagenic activity towards the oxidative DNA-damage induced by tert-butyl hydroperoxide (t-BOOH) was evaluated, and the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging power of the samples were assessed as possible mechanisms of antimutagenicity. Furthermore, the ability of the extracts to inhibit the glucose-6-phosphate dehydrogenase (G6PD), whose overexpression has been found to play a critical role in neoplastic transformation and tumor progression, has been studied as a possible chemopreventive strategy. A careful phytochemical characterization of the extracts for phenolic and terpenoid composition has been obtained by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) methods. Under our experimental condition, all the extracts were found able to interfere with the tBOOH-induced mutagenicity in WP2uvrAR strain, although with different potency and effectiveness. The organic extracts from both the harvesting periods were found to be the main effective antimutagenic samples, reaching about a 55% inhibition of the tBOOH-mutagenicity at the highest concentration tested (250 μg/ml). All the extracts exhibited radical scavenger activity against DPPH and ABTS radicals, with a higher potency of the hydroalcoholic samples. The organic extracts were also able to inhibit the G6PD enzyme, being the samples from September harvesting the highly potent (about 50% inhibition respect to the vehicle). At the phytochemical analysis, all the extracts resulted to contain both polar and apolar phenolic compounds. The HPLC analysis revealed the presence of catechin and rutin as the major constituents of the hydroalcoholic extracts, with lower levels of quercetin and ferulic acid. The monoterpene carvacrol was found to be an ubiquitarian constituent. At GC-MS analysis, different terpenoids, among which caryophyllene sesquiterpenes, were identified. This evidence suggests a possible role of both polyphenols and terpenoids in the chemopreventive properties of the extracts from the inflorescences of C. sativa var. USO31. According to the literature, carvacrol and caryophyllene sesquiterpenes can contribute to the strong antimutagenicity although the role of all the hemp phytocomplex cannot be excluded. In conclusion, present results highlight a possible interest for the inflorescences of C. sativa var. USO31 as source of bioactive molecules and stimulate further studies in order to characterize its possible application for nutraceutical and pharmaceutical purposes.

Keywords: antimutagenicity, glucose-6-phosphate dehydrogenase, hemp inflorescences, nutraceuticals, sesquiterpenes

Procedia PDF Downloads 123
179 Raman Spectral Fingerprints of Healthy and Cancerous Human Colorectal Tissues

Authors: Maria Karnachoriti, Ellas Spyratou, Dimitrios Lykidis, Maria Lambropoulou, Yiannis S. Raptis, Ioannis Seimenis, Efstathios P. Efstathopoulos, Athanassios G. Kontos

Abstract:

Colorectal cancer is the third most common cancer diagnosed in Europe, according to the latest incidence data provided by the World Health Organization (WHO), and early diagnosis has proved to be the key in reducing cancer-related mortality. In cases where surgical interventions are required for cancer treatment, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. The current study focuses on the ex vivo handling of surgically excised colorectal specimens and the acquisition of their spectral fingerprints using Raman spectroscopy. Acquired data were analyzed in an effort to discriminate, in microscopic scale, between healthy and malignant margins. Raman spectroscopy is a spectroscopic technique with high detection sensitivity and spatial resolution of few micrometers. The spectral fingerprint which is produced during laser-tissue interaction is unique and characterizes the biostructure and its inflammatory or cancer state. Numerous published studies have demonstrated the potential of the technique as a tool for the discrimination between healthy and malignant tissues/cells either ex vivo or in vivo. However, the handling of the excised human specimens and the Raman measurement conditions remain challenging, unavoidably affecting measurement reliability and repeatability, as well as the technique’s overall accuracy and sensitivity. Therefore, tissue handling has to be optimized and standardized to ensure preservation of cell integrity and hydration level. Various strategies have been implemented in the past, including the use of balanced salt solutions, small humidifiers or pump-reservoir-pipette systems. In the current study, human colorectal specimens of 10X5 mm were collected from 5 patients up to now who underwent open surgery for colorectal cancer. A novel, non-toxic zinc-based fixative (Z7) was used for tissue preservation. Z7 demonstrates excellent protein preservation and protection against tissue autolysis. Micro-Raman spectra were recorded with a Renishaw Invia spectrometer from successive random 2 micrometers spots upon excitation at 785 nm to decrease fluorescent background and secure avoidance of tissue photodegradation. A temperature-controlled approach was adopted to stabilize the tissue at 2 °C, thus minimizing dehydration effects and consequent focus drift during measurement. A broad spectral range, 500-3200 cm-1,was covered with five consecutive full scans that lasted for 20 minutes in total. The average spectra were used for least square fitting analysis of the Raman modes.Subtle Raman differences were observed between normal and cancerous colorectal tissues mainly in the intensities of the 1556 cm-1 and 1628 cm-1 Raman modes which correspond to v(C=C) vibrations in porphyrins, as well as in the range of 2800-3000 cm-1 due to CH2 stretching of lipids and CH3 stretching of proteins. Raman spectra evaluation was supported by histological findings from twin specimens. This study demonstrates that Raman spectroscopy may constitute a promising tool for real-time verification of clear margins in colorectal cancer open surgery.

Keywords: colorectal cancer, Raman spectroscopy, malignant margins, spectral fingerprints

Procedia PDF Downloads 68
178 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control

Authors: Marco Frieslaar, Bing Chu, Eric Rogers

Abstract:

Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.

Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation

Procedia PDF Downloads 239
177 Antimicrobial, Antioxidant and Enzyme Activities of Geosmithia pallida (KU693285): A Fungal Endophyte Associated with Brucea mollis Wall Ex. Kurz, an Endangered and Medicinal Plant of N. E. India

Authors: Deepanwita Deka, Dhruva Kumar Jha

Abstract:

Endophytes are the microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects. Endophytes are rich source of therapeutic substances like antimicrobial, anticancerous, herbicidal, insecticidal, immunomodulatory compounds. Brucea mollis, commonly known as Quinine in Assam, belonging to the family Simaroubaceae, is a shrub or small tree, recorded as endangered species in North East India by CAMP survey in 2003. It is traditionally being used as antimalarial and antimicrobial agent and has antiplasmodial, cytotoxic, anticancer, diuretic, cardiovascular effect etc. Being endangered and medicinal; this plant may host certain noble endophytes which need to be studied in depth. The aim of the present study was isolation and identification of potent endophytic fungi from Brucea mollis, an endangered medicinal plant, to protect it from extinction due to over use for medicinal purposes. Aseptically collected leaves, barks and roots samples of healthy plants were washed and cut into a total of 648 segments of about 2 cm long and 0.5 cm broad with sterile knife, comprising 216 segments each from leaves, barks and roots. These segments were surface sterilized using ethanol, mercuric chloride (HgCl2) and aqueous solution of sodium hypochlorite (NaClO). Different media viz., Czapeck-Dox-Agar (CDA, Himedia), Potato-Dextrose-Agar (PDA, Himedia), Malt Extract Agar (MEA, Himedia), Sabourad Dextrose Agar (SDA, Himedia), V8 juice agar, nutrient agar and water agar media and media amended with plant extracts were used separately for the isolation of the endophytic fungi. A total of 11 fungal species were recovered from leaf, bark and root tissues of B. mollis. The isolates were screened for antimicrobial, antioxidant and enzymatic activities using certain protocols. Cochliobolus geniculatus was identified as the most dominant species. The mycelia sterilia (creamy white) showing highest inhibitory activity against Candida albicans (MTCC 183) was induced to sporulate using modified PDA media. The isolate was identified as Geosmithia pallida. The internal transcribed spacer of rDNA was sequenced for confirmation of the taxonomic identity of the sterile mycelia (creamy white). The internal transcribed spacer r-DNA sequence was submitted to the NCBI (KU693285) for the first time from India. G. pallida and Penicillium showed highest antioxidant activity among all the isolates. The antioxidant activity of G. pallida and Penicillium didn’t show statistically significant difference (P˃0.05). G. pallida, Cochliobolus geniculatus and P. purpurogenum respectively showed highest cellulase, amylase and protease activities. Thus, endopytic fungal isolates may be used as potential natural resource of pharmaceutical importance. The endophytic fungi, Geosmithia pallida, may be used for synthesis of pharmaceutically important natural products and consequently can replace plants hitherto used for the same purpose. This study suggests that endophytes should be investigated more aggressively to better understand the endophyte biology of B. mollis.

Keywords: Antimicrobial activity, antioxidant activity, Brucea mollis, endophytic fungi, enzyme activity, Geosmithia pallida

Procedia PDF Downloads 151
176 The Safe Introduction of Tocilizumab for the Treatment of SARS-CoV-2 Pneumonia at an East London District General Hospital

Authors: Andrew Read, Alice Parry, Kate Woods

Abstract:

Since the advent of the SARS-CoV-2 pandemic, the search for medications that can reduce mortality and morbidity has been a global research priority. Several multi-center trials have recently demonstrated improved mortality associated with the use of Tocilizumab, an interleukin-6 receptor antagonist, in patients with severe SARS-CoV-2 pneumonia. Initial data supported the administration in patients requiring respiratory support (non-invasive or invasive ventilation), but more recent data has shown benefit in all hypoxic patients. At the height of the second wave of COVID-19 infections in London, our hospital introduced the use of Tocilizumab for patients with severe COVID-19. Tocilizumab is licensed for use in chronic inflammatory conditions and has been associated with an increased risk of severe bacterial and fungal infections, as well as reactivation of chronic viral infections (e.g., hepatitis B). It is a specialist drug that suppresses the formation of C-reactive protein (CRP) for 6 – 12 weeks. It is not widely used by the general medical community. We aimed to assess Tocilizumab use in our hospital and to implement changes to the protocol as required to ensure administration was safe and appropriate. A retrospective study design was used to assess prescriptions over an initial 3-week period in both intensive care and on the medical wards. This amounted to a total of 13 patients. The initial data collection identified four key areas of concern: adherence to national and local inclusion & exclusion criteria; a collection of appropriate screening blood prior to administration; documentation of informed consent or best interest decision and documentation of Tocilizumab administration on patient discharge information, to alert future healthcare providers that typical measures of inflammation and infection, such as CRP, are unreliable for up to 3-months. Data were collected from electronic notes, blood results and observation charts, and cross referenced with pharmacy data. Initial results showed that all four key areas were completed in approximately 50% of cases. Of particular concern was adherence to exclusion criteria, such as current evidence of bacterial infection, and ensuring the correct screening blood was sent to exclude infections such as hepatitis. To remedy this and improve patient safety, the initial data was presented to relevant healthcare professionals. Subsequently, three interventions were introduced and education on each provided to hospital staff. An electronic ‘order set’ collating the appropriate screening blood was created simplifying the screening process. Pre-formed electronic documentation which can be inserted into the notes was created to provide a framework for consent discussions and reduce the time needed for junior doctors to complete this task. Additionally, a ‘Tocilizumab’ administration card was created and administered via pharmacy. This was distributed to each patient on discharge to ensure future healthcare professionals were aware of the potential effects of Tocilizumab administration, including suppression of CRP. Following these changes, repeat data collection over two months illustrated that each of the 4 safety aspects was met with a 100% success rate in every patient. Although this demonstrates good progress and effective interventions the challenge will be to maintain this progress. The audit data collection is ongoing

Keywords: education, patient safety , SARS-CoV-2, Tocilizumab

Procedia PDF Downloads 150
175 Use of computer and peripherals in the Archaeological Surveys of Sistan in Eastern Iran

Authors: Mahyar Mehrafarin, Reza Mehrafarin

Abstract:

The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.

Keywords: archaeological surveys, computer use, iran, modern technologies, sistan

Procedia PDF Downloads 49
174 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation

Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy

Abstract:

The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.

Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis

Procedia PDF Downloads 366
173 Improving the Utility of Social Media in Pharmacovigilance: A Mixed Methods Study

Authors: Amber Dhoot, Tarush Gupta, Andrea Gurr, William Jenkins, Sandro Pietrunti, Alexis Tang

Abstract:

Background: The COVID-19 pandemic has driven pharmacovigilance towards a new paradigm. Nowadays, more people than ever before are recognising and reporting adverse reactions from medications, treatments, and vaccines. In the modern era, with over 3.8 billion users, social media has become the most accessible medium for people to voice their opinions and so provides an opportunity to engage with more patient-centric and accessible pharmacovigilance. However, the pharmaceutical industry has been slow to incorporate social media into its modern pharmacovigilance strategy. This project aims to make social media a more effective tool in pharmacovigilance, and so reduce drug costs, improve drug safety and improve patient outcomes. This will be achieved by firstly uncovering and categorising the barriers facing the widespread adoption of social media in pharmacovigilance. Following this, the potential opportunities of social media will be explored. We will then propose realistic, practical recommendations to make social media a more effective tool for pharmacovigilance. Methodology: A comprehensive systematic literature review was conducted to produce a categorised summary of these barriers. This was followed by conducting 11 semi-structured interviews with pharmacovigilance experts to confirm the literature review findings whilst also exploring the unpublished and real-life challenges faced by those in the pharmaceutical industry. Finally, a survey of the general public (n = 112) ascertained public knowledge, perception, and opinion regarding the use of their social media data for pharmacovigilance purposes. This project stands out by offering perspectives from the public and pharmaceutical industry that fill the research gaps identified in the literature review. Results: Our results gave rise to several key analysis points. Firstly, inadequacies of current Natural Language Processing algorithms hinder effective pharmacovigilance data extraction from social media, and where data extraction is possible, there are significant questions over its quality. Social media also contains a variety of biases towards common drugs, mild adverse drug reactions, and the younger generation. Additionally, outdated regulations for social media pharmacovigilance do not align with new, modern General Data Protection Regulations (GDPR), creating ethical ambiguity about data privacy and level of access. This leads to an underlying mindset of avoidance within the pharmaceutical industry, as firms are disincentivised by the legal, financial, and reputational risks associated with breaking ambiguous regulations. Conclusion: Our project uncovered several barriers that prevent effective pharmacovigilance on social media. As such, social media should be used to complement traditional sources of pharmacovigilance rather than as a sole source of pharmacovigilance data. However, this project adds further value by proposing five practical recommendations that improve the effectiveness of social media pharmacovigilance. These include: prioritising health-orientated social media; improving technical capabilities through investment and strategic partnerships; setting clear regulatory guidelines using multi-stakeholder processes; creating an adverse drug reaction reporting interface inbuilt into social media platforms; and, finally, developing educational campaigns to raise awareness of the use of social media in pharmacovigilance. Implementation of these recommendations would speed up the efficient, ethical, and systematic adoption of social media in pharmacovigilance.

Keywords: adverse drug reaction, drug safety, pharmacovigilance, social media

Procedia PDF Downloads 49
172 India’s Neighborhood Policy and the Northeast: Exploratory Study of the Nagas in the Indo-Myanmar Border

Authors: Sachoiba Inkah

Abstract:

The Northeast region has not been a major factor in India’s foreign policy calculation since independence. Instead, the region was ignored and marginalized even to the extent of using force and repressive Acts such as AFSPA(Armed Forces Special Powers Act) to suppress the voices of both states and non-state actors. The liberalization of the economy in the 90s in the wake of globalization gave India a new outlook and the Look East Policy (LEP) was a paradigm shift in India’s engagement with the Southeast Asian nations as it seeks to explore the benefits of the ASEAN. The reorienting of India’s foreign policy to ‘Neighborhood First” is attributed to the present political dispensation, which is further widened to include ‘Extended Neighborhood.’ As a result, the Northeastern states have become key players in India’s participation in regional groupings such as SAARC, BIMSTEC, and BCIM. The need for external balancing, diplomacy and development has reset India’s foreign policy priorities as the Northeast states lie in the confluence of South Asia, Southeast and East Asia, and a stakeholder in Act East Policy. The paper will explore the role of Northeastern states in the framework of Indian foreign policy as it shares international boundaries with China, Bhutan, Bangladesh, and Myanmar and most importantly, study the case of Nagas who are spread across Manipur, Nagaland, and Arunachal Pradesh bordering Myanmar. The Indo-Myanmar border is an area of conflict and various illegal activities such as arms trafficking, illegal migrants, drug, and human trafficking are still being carried out and in order to address this issue, both India and Myanmar need to take into consideration the various communities living across the border. And conflict and insurgency should not be a yardstick to curtailed development of infrastructures such as roads, health facilities, transport, and communication in the contested region. The realities, perceptions, and contentions of the Northeastern states and the different communities living in the border areas need a wider discourse as the region the potential to drive India’s diplomatic relations with its neighbors and extended neighborhood. The methods employed are analytical and more of a descriptive analysis on India’s foreign policy framework with a focus on Nagas in Myanmar, drawing from both primary and secondary sources. Primary sources include official documents, data, and statistics released by various governmental agencies, parliamentary debates, political speeches, press releases, treaties and agreements, historical biographies and organizational policy papers, protocols and procedures of government conferences, regional organization study reports etc. The paper concludes that the recent proactive engagement between India and Myanmar on trade, defense, economic, and infrastructure development are positive signs cementing bilateral ties, but there is not much room for the people-to-people connect, especially for people living in the borderland. The Freedom of Movement Regime that is in place is limited and there is more scope for improvement as people in the borderland looks towards trade and commerce to not only uplift the border economy but also act as a catalyst for robust engagement between the two countries, albeit with more infrastructure such as road, healthcare, education, a tourist hotspot, trade centers, mobile connectivity, etc.

Keywords: foreign policy, infrastructure development, insurgency, people to people connect

Procedia PDF Downloads 176
171 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers

Authors: Catherine Vasnetsov, Victor Vasnetsov

Abstract:

Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.

Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers

Procedia PDF Downloads 46
170 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 101