Search results for: linear array feed antenna
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5223

Search results for: linear array feed antenna

5133 A Novel Antenna Design for Telemedicine Applications

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

To develop a reliable and cost effective communication platform for the telemedicine applications, novel antenna design has been presented using bacterial foraging optimization (BFO) technique. The proposed antenna geometry is achieved by etching a modified Koch curve fractal shape at the edges and a square shape slot at the center of the radiating element of a patch antenna. It has been found that the new antenna has achieved 43.79% size reduction and better resonating characteristic than the original patch. Representative results for both simulations and numerical validations are reported in order to assess the effectiveness of the developed methodology.

Keywords: BFO, electrical permittivity, fractals, Koch curve

Procedia PDF Downloads 481
5132 Complementary Split Ring Resonator-Loaded Microstrip Patch Antenna Useful for Microwave Communication

Authors: Subal Kar, Madhuja Ghosh, Amitesh Kumar, Arijit Majumder

Abstract:

Complementary split-ring resonator (CSRR) loaded microstrip square patch antenna has been optimally designed with the help of high frequency structure simulator (HFSS). The antenna has been fabricated on the basis of the simulation design data and experimentally tested in anechoic chamber to evaluate its gain, bandwidth, efficiency and polarization characteristics. The CSRR loaded microstrip patch antenna has been found to realize significant size miniaturization (to the extent of 24%) compared to the conventional-type microstrip patch antenna both operating at the same frequency (5.2 GHz). The fabricated antenna could realize a maximum gain of 4.17 dB, 10 dB impedance bandwidth of 34 MHz, efficiency 50.73% and with maximum cross-pol of 10.56 dB down at the operating frequency. This practically designed antenna with its miniaturized size is expected to be useful for airborne and space borne applications at microwave frequency.

Keywords: split ring resonator, metamaterial, CSRR loaded patch antenna, microstrip patch antenna, LC resonator

Procedia PDF Downloads 331
5131 A Compact Wearable Slot Antenna for LTE and WLAN Applications

Authors: Haider K. Raad

Abstract:

In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.

Keywords: wearable electronics, slot Antenna, LTE, WLAN

Procedia PDF Downloads 202
5130 A Dual-Polarized Wideband Probe for Near-Field Antenna Measurement

Authors: K. S. Sruthi

Abstract:

Antennas are one of the most important parts of a communication chain. They are used for both communication and calibration purposes. New developments in probe technologies have enabled near-field probes with much larger bandwidth. The objective of this paper is to design, simulate and fabricate a dual polarized wide band inverted quad ridged shape horn antenna which can be used as measurement probe for near field measurements. The inverted quad-ridged horn antenna probe not only provides measurement in the much wider range but also provides dual-polarization measurement thus enabling antenna developers to measure UWB, UHF, VHF antennas more precisely and at lower cost. The antenna is designed to meet the characteristics such as high gain, light weight, linearly polarized with suppressed side lobes for near-field measurement applications. The proposed antenna is simulated with commercially available packages such as Ansoft HFSS. The antenna gives a moderate gain over operating range while delivering a wide bandwidth.

Keywords: near-field antenna measurement, inverted quad-ridge horn antenna, wideband Antennas, dual polarized antennas, ansoft HFSS

Procedia PDF Downloads 396
5129 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications

Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.

Abstract:

Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.

Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.

Procedia PDF Downloads 32
5128 Wideband Planar Antenna Based on Composite Right/Left-Handed Transmission-Line (CRLH-TL) for Operation across UHF/L/S-Bands

Authors: Mohammad Alibakhshikenari, Ernesto Limiti, Bal S. Virdee

Abstract:

The paper presents a miniature wideband antenna using composite right/left-handed transmission-line (CRLH-TL) metamaterial. The proposed planar antenna has a fractional bandwidth of 100% and is designed to operate in several frequency bands from 800MHz to 2.40GHz. The antenna is constructed using just two CRLH-TL unit cells comprising of two T-shaped slots that are inverted. The slots contribute towards generating the series left-handed (LH) capacitance CL. The rectangular patch on which the slots are created is grounded with spiral shaped high impedance stubs that contribute towards LH inductance LL. The antenna has a size of 14×6×1.6mm3 (0.037λ0×0.016λ0× 0.004λ0, where λ0 is free space wavelength at 800MHz). The peak gain and efficiency of the antenna are 1.5 dBi and ~75%, respectively, at 1.6GHz. Proposed antenna is suitable for use in wireless systems working at UHF/L/S-bands, in particular, AMPS, GSM, WCDMA, UMTS, PCS, cellular, DCS, IMT-2000, JCDMA, KPCS, GPS, lower band of WiMAX.

Keywords: miniature antenna, composite right/left-handed transmission line (CRLH-TL), wideband antenna, communication transceiver, metamaterials

Procedia PDF Downloads 195
5127 Enhancement of Performance Utilizing Low Complexity Switched Beam Antenna

Authors: P. Chaipanya, R. Keawchai, W. Sombatsanongkhun, S. Jantaramporn

Abstract:

To manage the demand of wireless communication that has been dramatically increased, switched beam antenna in smart antenna system is focused. Implementation of switched beam antennas at mobile terminals such as notebook or mobile handset is a preferable choice to increase the performance of the wireless communication systems. This paper proposes the low complexity switched beam antenna using single element of antenna which is suitable to implement at mobile terminal. Main beam direction is switched by changing the positions of short circuit on the radiating patch. There are four cases of switching that provide four different directions of main beam. Moreover, the performance in terms of Signal to Interference Ratio when utilizing the proposed antenna is compared with the one using omni-directional antenna to confirm the performance improvable.

Keywords: switched beam, shorted circuit, single element, signal to interference ratio

Procedia PDF Downloads 142
5126 Design of S-Shape GPS Application Electrically Small Antenna

Authors: Riki H. Patel, Arpan Desai, Trushit Upadhyaya, Shobhit K. Patel

Abstract:

The micro strip antennas area has seen some inventive work in recent years and is now one of the most dynamic fields of antenna theory. A novel and simple printed wideband monopole antenna is presented. Printed on a single dielectric substrate and easily fed by using a 50 ohm microstip line, low-profile antenna structure with two parallel S-shaped meandered line of same size. In this research, S–form micro strip patch antenna is designed from measuring the prototypes of the proposed antenna one available bands with 10db return loss bandwidths of about GPS application (GPS L2 1490 MHz) and covering the 1400 to 1580 MHz frequency band at 1.5 GHz The simulated results for main parameters such as return loss, impedance bandwidth, radiation patterns and gains are also discussed herein. The modeling study shows that such antennas, in simplicity design and supply, and can satisfy GPS application. Two parallel slots are incorporated to disturb the surface flow path, introducing local inductive effect. This antenna is fed by a coaxial feeding tube.

Keywords: bandwidth, electrically small antenna, microstrip, patch antenna, GPS

Procedia PDF Downloads 469
5125 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm³). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.

Keywords: liver cancer, T-Prong antenna, finite element, microwave ablation

Procedia PDF Downloads 298
5124 Design of Circular Patch Antenna in Terahertz Band for Medical Applications

Authors: Moulfi Bouchra, Ferouani Souheyla, Ziani Kerarti Djalal, Moulessehoul Wassila

Abstract:

The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition.

Keywords: circular patch antenna, Terahertz transmission, WBAN applications, real-time monitoring

Procedia PDF Downloads 283
5123 A Miniaturized Circular Patch Antenna Based on Metamaterial for WI-FI Applications

Authors: Fatima Zahra Moussa, Yamina Belhadef, Souheyla Ferouani

Abstract:

In this work, we present a new form of miniature circular patch antenna based on CSRR metamaterials with an extended bandwidth proposed for 5 GHz Wi-Fiapplications. A reflection coefficient of -35 dB and a radiation pattern of 7.47 dB are obtained when simulating the initial proposed antenna with the CST microwave studio simulation software. The notch insertion technique in the radiating element was used for matching the antenna to the desired frequency in the frequency band [5150-5875] MHz.An extension of the bandwidth from 332 MHz to 1423 MHz was done by the DGS (defected ground structure) technique to meet the user's requirement in the 5 GHz Wi-Fi frequency band.

Keywords: patch antenna, miniaturisation, CSRR, notches, wifi, DGS

Procedia PDF Downloads 84
5122 A Wideband Low-Profile Circularly-Polarized Slotted Patch Antenna

Authors: Sai Radavaram

Abstract:

A wideband low-profile circularly-polarized antenna, consisting of 2×2 sequentially-rotated, differentially-fed, slotted rectangular patch elements, is proposed. To realize the right-hand circular polarization, an anti-clockwise phase rotation of 0o, -90o, -180o and -270o is applied between the antenna elements. The proposed antenna, with a height of only 0.02lambda (where lambda is the wavelength of the antenna at the center frequency of the antenna), exhibits a 68% impedance bandwidth from 2 to 4.05 GHz with a 3dB axial ratio bandwidth in the order of 56% from 2.25 to 4.05 GHz. Moreover, a wide 3dB axial ratio beamwidth of 140o is obtained at the center frequency of 3 GHz, along with symmetrical radiation patterns over the operating frequency band.

Keywords: circular polarization, sequentially rotated, slotted patch antennas, wideband

Procedia PDF Downloads 53
5121 Dual Band Shared Aperture Antenna for 5G Communications

Authors: Zunnurain Ahmad

Abstract:

This work presents design of a dual band antenna for the 5G communications in the millimeter wave band. As opposed to conventional patch antennas which are limited to single narrow band operation a shared aperture concept is utilized for this antenna. The patch aperture is coupled through two rectangular slots etched on a thin printed circuit board (100μm). The patch is elevated in air thus avoiding excitation of surface waves and minimizing dielectric losses at millimeter wave frequencies. With this approach the radiator can cover lower band of 28 GHz and upper band of 37/ 39 GHz dedicated for the fifth generation communications. The simulated radiation efficiency of the antenna stays above 90%.

Keywords: antenna, millimeter wave, 5G, 3D

Procedia PDF Downloads 23
5120 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm

Authors: Sundara Subramanian Karuppasamy, Che Hua Yang

Abstract:

In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.

Keywords: laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging

Procedia PDF Downloads 100
5119 High Gain Broadband Plasmonic Slot Nano-Antenna

Authors: H. S. Haroyan, V. R. Tadevosyan

Abstract:

High gain broadband plasmonic slot nano-antenna has been considered. The theory of plasmonic slot nano-antenna (PSNA) has been developed. The analytical model takes into account also the electrical field inside the metal due to imperfectness of metal in optical range, as well as numerical investigation based on FEM method has been realized. It should be mentioned that Yagi-Uda configuration improves directivity in the plane of structure. In contrast, in this paper the possibility of directivity improvement of proposed PSNA in perpendicular plane of structure by using reflection metallic surface placed under the slot in fixed distance has been demonstrated. It is well known that a directivity improvement brings to the antenna gain increasing. This method of diagram improving is also well known from RF antenna design theory. Moreover the improvement of directivity in the perpendicular plane gives more flexibility in such application as improving the light and atom, ion, molecule interactions by using such type of plasmonic slot antenna. By the analogy of dipole type optical antennas the widening of working wavelengths has been realized by using bowtie geometry of slots, which made the antenna broadband.

Keywords: broadband antenna, high gain, slot nano-antenna, plasmonics.

Procedia PDF Downloads 345
5118 Signal Processing Techniques for Adaptive Beamforming with Robustness

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

Adaptive beamforming using antenna array of sensors is useful in the process of adaptively detecting and preserving the presence of the desired signal while suppressing the interference and the background noise. For conventional adaptive array beamforming, we require a prior information of either the impinging direction or the waveform of the desired signal to adapt the weights. The adaptive weights of an antenna array beamformer under a steered-beam constraint are calculated by minimizing the output power of the beamformer subject to the constraint that forces the beamformer to make a constant response in the steering direction. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering operation. In the literature, it is well known that the performance of an adaptive beamformer will be deteriorated by any steering angle error encountered in many practical applications, e.g., the wireless communication systems with massive antennas deployed at the base station and user equipment. Hence, developing effective signal processing techniques to deal with the problem due to steering angle error for array beamforming systems has become an important research work. In this paper, we present an effective signal processing technique for constructing an adaptive beamformer against the steering angle error. The proposed array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. Based on the presumed steering vector and a preset angle range for steering mismatch tolerance, we first create a matrix related to the direction vector of signal sources. Two projection matrices are generated from the matrix. The projection matrix associated with the desired signal information and the received array data are utilized to iteratively estimate the actual direction vector of the desired signal. The estimated direction vector of the desired signal is then used for appropriately finding the quiescent weight vector. The other projection matrix is set to be the signal blocking matrix required for performing adaptive beamforming. Accordingly, the proposed beamformer consists of adaptive quiescent weights and partially adaptive weights. Several computer simulation examples are provided for evaluating and comparing the proposed technique with the existing robust techniques.

Keywords: adaptive beamforming, robustness, signal blocking, steering angle error

Procedia PDF Downloads 96
5117 A Monopole Intravascular Antenna with Three Parasitic Elements Optimized for Higher Tesla MRI Systems

Authors: Mohammad Mohammadzadeh, Alireza Ghasempour

Abstract:

In this paper, a new design of monopole antenna has been proposed that increases the contrast of intravascular magnetic resonance images through increasing the homogeneity of the intrinsic signal-to-noise ratio (ISNR) distribution around the antenna. The antenna is made of a coaxial cable with three parasitic elements. Lengths and positions of the elements are optimized by the improved genetic algorithm (IGA) for 1.5, 3, 4.7, and 7Tesla MRI systems based on a defined cost function. Simulations were also conducted to verify the performance of the designed antenna. Our simulation results show that each time IGA is executed different values for the parasitic elements are obtained so that the cost functions of those antennas are high. According to the obtained results, IGA can also find the best values for the parasitic elements (regarding cost function) in the next executions. Additionally, two dimensional and one-dimensional maps of ISNR were drawn for the proposed antenna and compared to the previously published monopole antenna with one parasitic element at the frequency of 64MHz inside a saline phantom. Results verified that in spite of ISNR decreasing, there is a considerable improvement in the homogeneity of ISNR distribution of the proposed antenna so that their multiplication increases.

Keywords: intravascular MR antenna, monopole antenna, parasitic elements, signal-to-noise ratio (SNR), genetic algorithm

Procedia PDF Downloads 270
5116 Bandwidth Control Using Reconfigurable Antenna Elements

Authors: Sudhina H. K, Ravi M. Yadahalli, N. M. Shetti

Abstract:

Reconfigurable antennas represent a recent innovation in antenna design that changes from classical fixed-form, Fixed function antennas to modifiable structures that can be adapted to fit the requirements of a time varying system. The ability to control the operating band of an antenna system can have many useful applications. Systems that operate in an acquire-and-track configuration would see a benefit from active bandwidth control. In such systems a wide band search mode is first employed to find a desired signal, Then a narrow band track mode is used to follow only that signal. Utilizing active antenna bandwidth control, A single antenna would function for both the wide band and narrow band configurations providing the rejection of unwanted signals with the antenna hardware. This ability to move a portion of the RF filtering out of the receiver and onto the antenna itself will also aid in reducing the complexity of the often expensive RF processing subsystems.

Keywords: designing methods, mems, stack, reconfigurable elements

Procedia PDF Downloads 242
5115 DOA Estimation Using Golden Section Search

Authors: Niharika Verma, Sandeep Santosh

Abstract:

DOA technique is a localization technique used in the communication field. Various algorithms have been developed for direction of arrival estimation like MUSIC, ROOT MUSIC, etc. These algorithms depend on various parameters like antenna array elements, number of snapshots and various others. Basically the MUSIC spectrum is evaluated and peaks obtained are considered as the angle of arrivals. The angles evaluated using this process depends on the scanning interval chosen. The accuracy of the results obtained depends on the coarseness of the interval chosen. In this paper, golden section search is applied to the MUSIC algorithm and therefore, more accurate results are achieved. Initially the coarse DOA estimations is done using the MUSIC algorithm in the range -90 to 90 degree at the interval of 10 degree. After the peaks obtained then fine DOA estimation is done using golden section search. Also, the partitioning method is applied to estimate the number of signals incident on the antenna array. Dependency of the algorithm on the number of snapshots is also being explained. Hence, the accurate results are being determined using this algorithm.

Keywords: Direction of Arrival (DOA), golden section search, MUSIC, number of snapshots

Procedia PDF Downloads 424
5114 12x12 MIMO Terminal Antennas Covering the Whole LTE and WiFi Spectrum

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A broadband resonant terminal antenna has been developed. It can be used in different MIMO arrangements such as 2x2, 4x4, 8x8, or even 12x12 MIMO configurations. The antenna covers the whole LTE and WiFi bands besides the existing 2G/3G bands (700-5800 MHz), without using any matching/tuning circuits. Matching circuits significantly reduce the efficiency of any antenna and reduce the battery life. They also reduce the bandwidth because they are frequency dependent. The antenna can be implemented in smartphone handsets, tablets, laptops, notebooks or any other terminal. It is also suitable for different IoT and vehicle applications. The antenna is manufactured from a flexible material and can be bent or folded and shaped in any form to fit any available space in any terminal. It is self-contained and does not need to use the ground plane, the chassis or any other component of the terminal. Hence, it can be mounted on any terminal at different positions and configurations. Its performance does not get affected by the terminal, regardless of its type, shape or size. Moreover, its performance does not get affected by the human body of the terminal’s users. Because of all these unique features of the antenna, multiples of them can be simultaneously used for MIMO diversity coverage in any terminal device with a high isolation and a low correlation factor between them.

Keywords: IOT, LTE, MIMO, terminal antenna, WiFi

Procedia PDF Downloads 161
5113 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna

Authors: Chuanzhi Chen, Wenjing Yu

Abstract:

Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.

Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation

Procedia PDF Downloads 115
5112 Frequency Reconfigurable Multiband Patch Antenna Using PIN-Diode for ITS Applications

Authors: Gaurav Upadhyay, Nand Kishore, Prashant Ranjan, V. S. Tripathi, Shivesh Tripathi

Abstract:

A frequency reconfigurable multiband antenna for intelligent transportation system (ITS) applications is proposed in this paper. A PIN-diode is used for reconfigurability. Centre frequencies are 1.38, 1.98, 2.89, 3.86, and 4.34 GHz in “ON” state of Diode and 1.56, 2.16, 2.88, 3.91 and 4.45 GHz in “OFF” state. Achieved maximum bandwidth is 18%. The maximum gain of the proposed antenna is 2.7 dBi in “ON” state and 3.95 dBi in “OFF” state of the diode. The antenna is simulated, fabricated, and tested in the lab. Measured and simulated results are in good confirmation.

Keywords: ITS, multiband antenna, PIN-diode, reconfigurable

Procedia PDF Downloads 315
5111 Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm

Authors: Ramnath Narhete, Saket Pandey, Puran Gour

Abstract:

This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network.

Keywords: genetic algorithm, dual-band E, dual-band L, WLAN, compact radiator

Procedia PDF Downloads 554
5110 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.

Keywords: base station antenna, multi-beam antenna, smart antenna, vertical sectorization

Procedia PDF Downloads 231
5109 Effect of Ionized Plasma Medium on the Radiation of a Rectangular Microstrip Antenna on Ferrite Substrate

Authors: Ayman Al Sawalha

Abstract:

This paper presents theoretical investigations on the radiation of rectangular microstrip antenna printed on a magnetized ferrite substrate Ni0.62Co0.02Fe1.948O4 in the presence of ionized plasma medium. The theoretical study of rectangular microstrip antenna in free space is carried out by applying the transmission line model combining with potential function techniques while hydrodynamic theory is used for it is analysis in plasma medium. By taking the biased and unbiased ferrite cases, far-field radiation patterns in free space and plasma medium are obtained which in turn are applied in computing radiated power, directivity, quality factor and bandwidth of antenna. It is found that the presence of plasma medium affects the performance of rectangular microstrip antenna structure significantly.

Keywords: ferrite, microstrip antenna, plasma, radiation

Procedia PDF Downloads 291
5108 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance

Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria

Abstract:

This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.

Keywords: plasma antenna, fluorescent tube, CST, plasma parameters

Procedia PDF Downloads 363
5107 Photovoltaic Array Cleaning System Design and Evaluation

Authors: Ghoname Abdullah, Hidekazu Nishimura

Abstract:

Dust accumulation on the photovoltaic module's surface results in appreciable loss and negatively affects the generated power. Hence, in this paper, the design of a photovoltaic array cleaning system is presented. The cleaning system utilizes one drive motor, two guide rails, and four sweepers during the cleaning process. The cleaning system was experimentally implemented for one month to investigate its efficiency on PV array energy output. The energy capture over a month for PV array cleaned using the proposed cleaning system is compared with that of the energy capture using soiled PV array. The results show a 15% increase in energy generation from PV array with cleaning. From the results, investigating the optimal scheduling of the PV array cleaning could be an interesting research topic.

Keywords: cleaning system, dust accumulation, PV array, PV module, soiling

Procedia PDF Downloads 105
5106 Design, Simulation and Construction of 2.4GHz Microstrip Patch Antenna for Improved Wi-Fi Reception

Authors: Gabriel Ugalahi, Dominic S. Nyitamen

Abstract:

This project seeks to improve Wi-Fi reception by utilizing the properties of directional microstrip patch antennae. Where there is a dense population of Wi-Fi signal, several signal sources transmitting on the same frequency band and indeed channel constitutes interference to each other. The time it takes for request to be received, resolved and response given between a user and the resource provider is increased considerably. By deploying a directional patch antenna with a narrow bandwidth, the range of frequency received is reduced and should help in limiting the reception of signal from unwanted sources. A rectangular microstrip patch antenna (RMPA) is designed to operate at the Industrial Scientific and Medical (ISM) band (2.4GHz) commonly used in Wi-Fi network deployment. The dimensions of the antenna are calculated and these dimensions are used to generate a model on Advanced Design System (ADS), a microwave simulator. Simulation results are then analyzed and necessary optimization is carried out to further enhance the radiation quality so as to achieve desired results. Impedance matching at 50Ω is also obtained by using the inset feed method. Final antenna dimensions obtained after simulation and optimization are then used to implement practical construction on an FR-4 double sided copper clad printed circuit board (PCB) through a chemical etching process using ferric chloride (Fe2Cl). Simulation results show an RMPA operating at a centre frequency of 2.4GHz with a bandwidth of 40MHz. A voltage standing wave ratio (VSWR) of 1.0725 is recorded on a return loss of -29.112dB at input port showing an appreciable match in impedance to a source of 50Ω. In addition, a gain of 3.23dBi and directivity of 6.4dBi is observed during far-field analysis. On deployment, signal reception from wireless devices is improved due to antenna gain. A test source with a received signal strength indication (RSSI) of -80dBm without antenna installed on the receiver was improved to an RSSI of -61dBm. In addition, the directional radiation property of the RMPA prioritizes signals by pointing in the direction of a preferred signal source thus, reducing interference from undesired signal sources. This was observed during testing as rotation of the antenna on its axis resulted to the gain of signal in-front of the patch and fading of signals away from the front.

Keywords: advanced design system (ADS), inset feed, received signal strength indicator (RSSI), rectangular microstrip patch antenna (RMPA), voltage standing wave ratio (VSWR), wireless fidelity (Wi-Fi)

Procedia PDF Downloads 188
5105 Effects of Magnetization Patterns on Characteristics of Permanent Magnet Linear Synchronous Generator for Wave Energy Converter Applications

Authors: Sung-Won Seo, Jang-Young Choi

Abstract:

The rare earth magnets used in synchronous generators offer many advantages, including high efficiency, greatly reduced the size, and weight. The permanent magnet linear synchronous generator (PMLSG) allows for direct drive without the need for a mechanical device. Therefore, the PMLSG is well suited to translational applications, such as wave energy converters and free piston energy converters. This manuscript compares the effects of different magnetization patterns on the characteristics of double-sided PMLSGs in slotless stator structures. The Halbach array has a higher flux density in air-gap than the Vertical array, and the advantages of its performance and efficiency are widely known. To verify the advantage of Halbach array, we apply a finite element method (FEM) and analytical method. In general, a FEM and an analytical method are used in the electromagnetic analysis for determining model characteristics, and the FEM is preferable to magnetic field analysis. However, the FEM is often slow and inflexible. On the other hand, the analytical method requires little time and produces accurate analysis of the magnetic field. Therefore, the flux density in air-gap and the Back-EMF can be obtained by FEM. In addition, the results from the analytical method correspond well with the FEM results. The model of the Halbach array reveals less copper loss than the model of the Vertical array, because of the Halbach array’s high output power density. The model of the Vertical array is lower core loss than the model of Halbach array, because of the lower flux density in air-gap. Therefore, the current density in the Vertical model is higher for identical power output. The completed manuscript will include the magnetic field characteristics and structural features of both models, comparing various results, and specific comparative analysis will be presented for the determination of the best model for application in a wave energy converting system.

Keywords: wave energy converter, permanent magnet linear synchronous generator, finite element method, analytical method

Procedia PDF Downloads 270
5104 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 138