Search results for: knee joint injury
2016 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle
Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan
Abstract:
The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.Keywords: spring, mass, damper, knee joint
Procedia PDF Downloads 2702015 A Sports-Specific Physiotherapy Center Treats Sports Injuries
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
Introduction: Sports- and physical activity-related injuries may be more likely if there is a genetic predisposition, improper coaching and/or training, and no follow-up care from sports medicine. Goal: To evaluate the frequency of injuries among athletes receiving care at a sportsfocused physical therapy clinic. Methods: The survey of injuries in athletes' treatment records over a period of eight years of activity was done to obtain data. The data collected included: the patient's features, the sport, the type of injury, the injury's characteristics, and the body portion injured. Results: The athletes were drawn from 1090 patient/athlete records, had an average age of 25, participated in 44 different sports, and were 75% men on average. Joint injuries were the most frequent type of injury, then damage to the muscles and bones. The most prevalent type of injury was chronic (47%), while the knee, ankle, and shoulder were the most frequently damaged body parts. The most injured athletes were seen in soccer, futsal, and track and field, respectively, out of all the sports. Conclusion: The most popular sport among injured players was soccer, and the most common injury type was joint damage, with the knee being the most often damaged body area. The majority of the injuries were chronic.Keywords: sports injuries, athletes, joint injuries, injured players
Procedia PDF Downloads 732014 Unpowered Knee Exoskeleton with Compliant Joints for Stair Descent Assistance
Authors: Pengfan Wu, Xiaoan Chen, Ye He, Tianchi Chen
Abstract:
This paper introduces the design of an unpowered knee exoskeleton to assist human walking by redistributing the moment of the knee joint during stair descent (SD). Considering the knee moment varying with the knee joint angle and the work of the knee joint is all negative, the custom-built spring was used to convert negative work into the potential energy of the spring during flexion, and the obtained energy work as assistance during extension to reduce the consumption of lower limb muscles. The human-machine adaptability problem was left by traditional rigid wearable due to the knee involves sliding and rotating without a fixed-axis rotation, and this paper designed the two-direction grooves to follow the human-knee kinematics, and the wire spring provides a certain resistance to the pin in the groove to prevent extra degrees of freedom. The experiment was performed on a normal stair by healthy young wearing the device on both legs with the surface electromyography recorded. The results show that the quadriceps (knee extensor) were reduced significantly.Keywords: unpowered exoskeleton, stair descent, knee compliant joint, energy redistribution
Procedia PDF Downloads 1242013 Virtual Test Model for Qualification of Knee Prosthesis
Authors: K. Zehouani, I. Oldal
Abstract:
Purpose: In the human knee joint, degenerative joint disease may happen with time. The standard treatment of this disease is the total knee replacement through prosthesis implanting. The reason lies in the fact that this phenomenon causes different material abrasion as compare to pure sliding or rolling alone. This study focuses on developing a knee prosthesis geometry, which fulfills the mechanical and kinematical requirements. Method: The MSC ADAMS program is used to describe the rotation of the human knee joint as a function of flexion, and to investigate how the flexion and rotation movement changes between the condyles of a multi-body model of the knee prosthesis as a function of flexion angle (in the functional arc of the knee (20-120º)). Moreover, the multi-body model with identical boundary conditions is constituted, and the numerical simulations are carried out using the MSC ADAMS program system. Results: It is concluded that the use of the multi-body model reduces time and cost since it does not need to manufacture the tibia and the femur as it requires for the knee prosthesis of the test machine. Moreover, without measuring or by dispensing with a test machine for the knee prosthesis geometry, approximation of the results of our model to a human knee is carried out directly. Conclusion: The pattern obtained by the multi-body model provides an insight for future experimental tests related to the rotation and flexion of the knee joint concerning the actual average and friction load.Keywords: biomechanics, knee joint, rotation, flexion, kinematics, MSC ADAMS
Procedia PDF Downloads 1432012 Visco-Hyperelastic Finite Element Analysis for Diagnosis of Knee Joint Injury Caused by Meniscal Tearing
Authors: Eiji Nakamachi, Tsuyoshi Eguchi, Sayo Yamamoto, Yusuke Morita, H. Sakamoto
Abstract:
In this study, we aim to reveal the relationship between the meniscal tearing and the articular cartilage injury of knee joint by using the dynamic explicit finite element (FE) method. Meniscal injuries reduce its functional ability and consequently increase the load on the articular cartilage of knee joint. In order to prevent the induction of osteoarthritis (OA) caused by meniscal injuries, many medical treatment techniques, such as artificial meniscus replacement and meniscal regeneration, have been developed. However, it is reported that these treatments are not the comprehensive methods. In order to reveal the fundamental mechanism of OA induction, the mechanical characterization of meniscus under the condition of normal and injured states is carried out by using FE analyses. At first, a FE model of the human knee joint in the case of normal state – ‘intact’ - was constructed by using the magnetron resonance (MR) tomography images and the image construction code, Materialize Mimics. Next, two types of meniscal injury models with the radial tears of medial and lateral menisci were constructed. In FE analyses, the linear elastic constitutive law was adopted for the femur and tibia bones, the visco-hyperelastic constitutive law for the articular cartilage, and the visco-anisotropic hyperelastic constitutive law for the meniscus, respectively. Material properties of articular cartilage and meniscus were identified using the stress-strain curves obtained by our compressive and the tensile tests. The numerical results under the normal walking condition revealed how and where the maximum compressive stress occurred on the articular cartilage. The maximum compressive stress and its occurrence point were varied in the intact and two meniscal tear models. These compressive stress values can be used to establish the threshold value to cause the pathological change for the diagnosis. In this study, FE analyses of knee joint were carried out to reveal the influence of meniscal injuries on the cartilage injury. The following conclusions are obtained. 1. 3D FE model, which consists femur, tibia, articular cartilage and meniscus was constructed based on MR images of human knee joint. The image processing code, Materialize Mimics was used by using the tetrahedral FE elements. 2. Visco-anisotropic hyperelastic constitutive equation was formulated by adopting the generalized Kelvin model. The material properties of meniscus and articular cartilage were determined by curve fitting with experimental results. 3. Stresses on the articular cartilage and menisci were obtained in cases of the intact and two radial tears of medial and lateral menisci. Through comparison with the case of intact knee joint, two tear models show almost same stress value and higher value than the intact one. It was shown that both meniscal tears induce the stress localization in both medial and lateral regions. It is confirmed that our newly developed FE analysis code has a potential to be a new diagnostic system to evaluate the meniscal damage on the articular cartilage through the mechanical functional assessment.Keywords: finite element analysis, hyperelastic constitutive law, knee joint injury, meniscal tear, stress concentration
Procedia PDF Downloads 2442011 Comparison of the Proprioception Sense and Standing Balance in Patients with Osteoarthritis Before and After Total Knee Arthroplasty Surgery
Authors: S. Daneshi, G. Shahcheraghi, F. Ghaffarinejad
Abstract:
Back ground: Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people around the world during the aging process. Knee joint proprioception sense decrease with OA and Total Knee Arthroplasty (TKA) surgery may affect them. We investigated two parameters of proprioception sense (the joint position sense and kinesthesia) and standing balance in affected limbs before and after TKA, in patient with Knee OA. Methods and Materials: In this Analytic study, 10 patients who were candidate for TKA during two months in Dena Hospital of Shiraz, selected for further analysis. All of cases were female in range of 55-70 years old. Participants assessed before and two weeks after TKA using three instruments: electrogoniometer and continuous passive motion (CPM) to assess Knee joint position sense and kinesthesia in 20 and 45 degrees; and chronometer to assess duration of standing balance on affected leg with open and closed eyes. Results: To examine differences between before and after of TKA scorings Willcoxon Signed Rank and Mann-Whitney was performed which indicated no significant differences between knee joint position sense and kinesthesia in 20 and 45 degrees (P>0.05) and no significant differences between Standing Balance in a patient with knee OA before and after TKA (P>0.05). Conclusion: The study indicates that, OA can affect proprioception sense and standing balance but TKA doesn’t have any effect on these parameters. Intra articular structures such as cruciate ligaments and mines are responsible for proprioception sense in normal knee joint. Since in severe knee OA the number of mechanoreceptors in these intra articular structures decrease and their function reduce more than normal knee joint, so the anterior cruciate ligaments (ACL) become defected, thus after TKA surgery which this ligament is removed no significant change was found in proprioception sense. As a result of involving proprioception sense, muscles strength and the function of vestibular system in balance, standing balance did not show significant difference before and after TKA.Keywords: knee joint, proprioception sense, standing balance, rehabilitation sciences
Procedia PDF Downloads 3782010 Kinematic Analysis of Heel Height Effect on Knee Direction Correction in a Patient with Genu Recurvatum: A Case Study
Authors: Parya Salimitari, Farhad Tabatabai Ghomsheh, Siyamak Khorramymehr, Hossein Taghadosi, Mohammad Hossein Dashti
Abstract:
The aim of this study was to evaluate the effect of heel height on the knee joint direction in Genu recurvatum patients compared to normal state. The test was performed on a patient with Genu recurvatum and a healthy person with similar and match biomechanical conditions. Subjects were tested under six different positions of shoes with heels 0, 1, 2, 3, 4 and 5 cm after marking during the gate. The results of the spatial temporal geometry obtained from Vicon Motion System (six-camera T10 model, Oxford Metrics Ltd., Oxford, UK), and were used to compute and analyze the kinematic results. In this study, we tried to determine the effect of shoe heel intervention on knee joint direction correction. The results indicate that the 1 cm heel has been optimized and significantly improved in knee joint flexion and flexion-extension angle so that the difference in knee flexion-extension angle between the patient and the healthy person at some stages of walking has reached zero (good posture). The 3 cm heel compared with the 0 cm heel has reduced the knee recurvatum index (KRI) by up to 21.74% in the patient (from 219.233 mm to 47.6714 mm). According to the findings of this study, it can be concluded that heel increase is effective in correcting knee joints in Genu recurvatum and the optimum heel height is 1 cm.Keywords: joint alignment of knee, gait analysis, genu recurvatum, heel lift, kinematics, motion-analysis
Procedia PDF Downloads 2002009 Comparing the Knee Kinetics and Kinematics during Non-Steady Movements in Recovered Anterior Cruciate Ligament Injured Badminton Players against an Uninjured Cohort: Case-Control Study
Authors: Anuj Pathare, Aleksandra Birn-Jeffery
Abstract:
Background: The Anterior Cruciate Ligament(ACL) helps stabilize the knee joint minimizing tibial anterior translation. Anterior Cruciate Ligament (ACL) injury is common in racquet sports and often occurs due to sudden acceleration, deceleration or changes of direction. This mechanism in badminton most commonly occurs during landing after an overhead stroke. Knee biomechanics during dynamic movements such as walking, running and stair negotiation, do not return to normal for more than a year after an ACL reconstruction. This change in the biomechanics may lead to re-injury whilst performing non-steady movements during sports, where these injuries are most prevalent. Aims: To compare if the knee kinetics and kinematics in ACL injury recovered athletes return to the same level as those from an uninjured cohort during standard movements used for clinical assessment and badminton shots. Objectives: The objectives of the study were to determine: Knee valgus during the single leg squat, vertical drop jump, net shot and drop shot; Degree of internal or external rotation during the single leg squat, vertical drop jump, net shot and drop shot; Maximum knee flexion during the single leg squat, vertical drop jump and net shot. Methods: This case-control study included 14 participants with three ACL injury recovered athletes and 11 uninjured participants. The participants performed various functional tasks including vertical drop jump, single leg squat; the forehand net shot and the forehand drop shot. The data was analysed using the two-way ANOVA test, and the reliability of the data was evaluated using the Intra Class Coefficient. Results: The data showed a significant decrease in the range of knee rotation in ACL injured participants as compared to the uninjured cohort (F₇,₅₅₆=2.37; p=0.021). There was also a decrease in the maximum knee flexion angles and an increase in knee valgus angles in ACL injured participants although they were not statistically significant. Conclusion: There was a significant decrease in the knee rotation angles in the ACL injured participants which could be a potential cause for re-injury in these athletes in the future. Although the results for decrease in maximum knee flexion angles and increase in knee valgus angles were not significant, this may be due to a limited sample of ACL injured participants; there is potential for it to be identified as a variable of interest in the rehabilitation of ACL injuries. These changes in the knee biomechanics could be vital in the rehabilitation of ACL injured athletes in the future, and an inclusion of sports based tasks, e.g., Net shot along with standard protocol movements for ACL assessment would provide a better measure of the rehabilitation of the athlete.Keywords: ACL, biomechanics, knee injury, racquet sport
Procedia PDF Downloads 1732008 Osteoarthritis (OA): A Total Knee Replacement Surgery
Authors: Loveneet Kaur
Abstract:
Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR
Procedia PDF Downloads 462007 Collaborative Learning Aspect for Training Hip and Knee Joint Anatomy
Authors: Nasir Mustafa
Abstract:
One of the prerequisites required for an efficient diagnosis in a medical practice is to have a strong command of both functional and clinical anatomy. In this study, we introduce a new collaborative approach to the effective teaching of the knee and hip joints. In the present teaching model, anatomists, orthopedists and physical therapists present the anatomy of the hip and knee joints in small groups. Courses for the hip and knee joints were scheduled during the early stages of the medical curriculum. Students of nursing and physical therapy were grouped together to sensitize to the importance of a collaborative effort. The study results clearly demonstrate that nursing students and physical therapy students appreciated this teaching approach. The collaborative approach further proved to be a suitable method to teach both functional and clinical anatomy of the hip and knee joints. Aside from this training, a collaborative approach between medical students and physical therapy students was also successful for a healthcare organization.Keywords: hip and knee joint anatomy, collaborative, Anatomy teaching, Nursing students, Physiotherapy students
Procedia PDF Downloads 922006 Seismic Behaviour of RC Knee Joints in Closing and Opening Actions
Authors: S. Mogili, J. S. Kuang, N. Zhang
Abstract:
Knee joints, the beam column connections found at the roof level of a moment resisting frame buildings, are inherently different from conventional interior and exterior beam column connections in the way that forces from adjoining members are transferred into joint and then resisted by the joint. A knee connection has two distinct load resisting mechanisms, each for closing and opening actions acting simultaneously under reversed cyclic loading. In spite of many distinct differences in the behaviour of shear resistance in knee joints, there are no special design provisions in the major design codes available across the world due to lack of in-depth research on the knee connections. To understand the relative importance of opening and closing actions in design, it is imperative to study knee joints under varying shear stresses, especially at higher opening-to-closing shear stress ratios. Three knee joint specimens, under different input shear stresses, were designed to produce a varying ratio of input opening to closing shear stresses. The design was carried out in such a way that the ratio of flexural strength of beams with consideration of axial forces in opening to closing actions are maintained at 0.5, 0.7, and 1.0, thereby resulting in the required variation of opening to closing joint shear stress ratios among the specimens. The behaviour of these specimens was then carefully studied in terms of closing and opening capacities, hysteretic behaviour, and envelope curves to understand the differences in joint performance based on which an attempt to suggest design guidelines for knee joints is made emphasizing the relative importance of opening and closing actions. Specimens with relatively higher opening stresses were observed to be more vulnerable under the action of seismic loading.Keywords: Knee-joints, large-scale testing, opening and closing shear stresses, seismic performance
Procedia PDF Downloads 2202005 F-IVT Actuation System to Power Artificial Knee Joint
Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo
Abstract:
The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint
Procedia PDF Downloads 6002004 Development the Sensor Lock Knee Joint and Evaluation of Its Effect on Walking and Energy Consumption in Subjects With Quadriceps Weakness
Authors: Mokhtar Arazpour
Abstract:
Objectives: Recently a new kind of stance control knee joint has been developed called the 'sensor lock.' This study aimed to develop and evaluate 'sensor lock', which could potentially solve the problems of walking parameters and gait symmetry in subjects with quadriceps weakness. Methods: Nine subjects with quadriceps weakness were enrolled in this study. A custom-made knee ankle foot orthosis (KAFO) with the same set of components was constructed for each participant. Testing began after orthotic gait training was completed with each of the KAFOs and subjects demonstrated that they could safely walk with crutches. Subjects rested 30 minutes between each trial. The 10 meters walking test is used to assess walking speed in meters/second (m/s). The total time taken to ambulate 6 meters (m) is recorded to the nearest hundredth of a second. 6 m is then divided by the total time (in seconds) taken to ambulate and recorded in m/s. The 6 Minutes Walking Test was used to assess walking endurance in this study. Participants walked around the perimeter of a set circuit for a total of six minutes. To evaluate Physiological cost index (PCI), the subjects were asked to walk using each type of KAFOs along a pre-determined 40 m rectangular walkway at their comfortable self-selected speed. A stopwatch was used to calculate the speed of walking by measuring the time between starting and stopping time and the distance walked. Results: The use of a KAFO fitted with the “sensor lock” knee joint resulted in improvements to walking speed, distance walked and physiological cost index when compared with the knee joint in lock mode. Conclusions: This study demonstrated that the use of a KAFO with the “sensor lock” knee joint could provide significant benefits for subjects with a quadriceps weakness when compared to a KAFO with the knee joint in lock mode.Keywords: stance control knee joint, knee ankle foot orthosis, quadriceps weakness, walking, energy consumption
Procedia PDF Downloads 1242003 Knee Pain Reduction: Holistic vs. Traditional
Authors: Renee Moten
Abstract:
Introduction: Knee pain becomes chronic because the therapy used focuses only on the symptoms of knee pain and not the causes of knee pain. Preventing knee injuries is not in the toolbox of the traditional practitioner. This research was done to show that we must reduce the inflammation (holistically), reduce the swelling and regain flexibility before considering any type of exercise. This method of performing the correct exercise stops the bowing of the knee, corrects the walking gait, and starts to relieve knee, hip, back, and shoulder pain. Method: The holistic method that is used to heal knees is called the Knee Pain Recipe. It’s a six step system that only uses alternative medicine methods to reduce, relieve and restore knee joint mobility. The system is low cost, with no hospital bills, no physical therapy, and no painkillers that can cause damage to the kidneys and liver. This method has been tested on 200 women with knee, back, hip, and shoulder pain. Results: All 200 women reduce their knee pain by 50%, some by as much as 90%. Learning about ankle and foot flexibility, along with understanding the kinetic chain, helps improve the walking gait, which takes the pressure off the knee, hip and back. The knee pain recipe also has helped to reduce the need for a cortisone injection, stem cell procedures, to take painkillers, and surgeries. What has also been noted in the research was that if the women's knees were too far gone, the Knee Pain Recipe helped prepare the women for knee replacement surgery. Conclusion: It is believed that the Knee Pain Recipe, when performed by men and women from around the world, will give them a holistic alternative to drugs, injections, and surgeries.Keywords: knee, surgery, healing, holistic
Procedia PDF Downloads 742002 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison
Authors: B. S. Abdelwahed, B. B. Belkassem
Abstract:
Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance
Procedia PDF Downloads 4632001 Clinical and Structural Differences in Knee Osteoarthritis with/without Synovial Hypertrophy
Authors: Gi-Young Park, Dong Rak Kwon, Sung Cheol Cho
Abstract:
Objective: The synovium is known to be involved in many pathological characteristic processes. Also, synovitis is common in advanced osteoarthritis. We aimed to evaluate the clinical, radiographic, and ultrasound findings in patients with knee osteoarthritis and to compare the clinical and imaging findings between knee osteoarthritis with and without synovial hypertrophy confirmed by ultrasound. Methods: One hundred knees (54 left, 46 right) in 95 patients (64 women, 31 men; mean age, 65.9 years; range, 43-85 years) with knee osteoarthritis were recruited. The Visual Analogue Scale (VAS) was used to assess the intensity of knee pain. The severity of knee osteoarthritis was classified according to Kellgren and Lawrence's (K-L) grade on a radiograph. Ultrasound examination was performed by a physiatrist who had 24 years of experience in musculoskeletal ultrasound. Ultrasound findings, including the thickness of joint effusion in the suprapatellar pouch, synovial hypertrophy, infrapatellar tendinosis, meniscal tear or extrusion, and Baker cyst, were measured and detected. The thickness of knee joint effusion was measured at the maximal anterior-posterior diameter of fluid collection in the suprapatellar pouch. Synovial hypertrophy was identified as the soft tissue of variable echogenicity, which is poorly compressible and nondisplaceable by compression of an ultrasound transducer. The knees were divided into two groups according to the presence of synovial hypertrophy. The differences in clinical and imaging findings between the two groups were evaluated by independent t-test and chi-square test. Results: Synovial hypertrophy was detected in 48 knees of 100 knees on ultrasound. There were no significant differences in demographic parameters and VAS score except in sex between the two groups (P<0.05). Medial meniscal extrusion and tear were significantly more frequent in knees with synovial hypertrophy than those in knees without synovial hypertrophy. K-L grade and joint effusion thickness were greater in patients with synovial hypertrophy than those in patients without synovial hypertrophy (P<0.05). Conclusion: Synovial hypertrophy in knee osteoarthritis was associated with greater suprapatellar joint effusion and higher K-L grade and maybe a characteristic ultrasound feature of late knee osteoarthritis. These results suggest that synovial hypertrophy on ultrasound can be regarded as a predictor of rapid progression in patients with knee osteoarthritis.Keywords: knee osteoarthritis, synovial hypertrophy, ultrasound, K-L grade
Procedia PDF Downloads 742000 Morphometric Study of Human Anterior and Posterior Meniscofemoral Ligaments of the Knee Joint on Thiel Embalmed Cadavers
Authors: Mohammad Alobaidy, David Nicoll, Tracey Wilkinson
Abstract:
Background: Many patients suffer postoperative knee stability after total knee arthroplasty (joint replacement) involving posterior cruciate ligament (PCL) sacrificing or retaining, but is not clear whether the meniscofemoral ligaments (MFLs) are retained during these procedures; their function in terms of knee stability is not well established in the literature. Purpose: Macroscopic, detailed, morphometric investigation of the anterior and posterior MFLs of the knee joint was undertaken to assist understanding of knee stability after total knee arthroplasty and ligament reconstruction. Methods: Dissection of eighty Thiel embalmed knees from 19 male and 21 female cadavers was conducted, mean age 77 (range 47-99 years). The origin and insertion of the anterior and posterior MFLs were measured using high accuracy, calibrated, digital Vernier calipers at 0.01mm. Results: The means were: anterior meniscofemoral ligament (aMFL) length 28.4 ± 2.7mm; posterior meniscofemoral ligament (pMFL) length 29 ± 3.7mm; aMFL femoral width 6.4 ± 1.7mm, mid-distance ligament width 4 ± 1.1mm, meniscal ligament width 3.9 ± 1.2mm; pMFL femoral width 5.6 ± 1.5mm, mid-distance ligament width 4.1 ± 1.1mm, meniscal ligament width 4.1 ± 1.3mm. Some of the male measurements were larger than female, with significant differences in the length of the aMFL femoral length p<0.01 and pMFL femoral length p<0.007, and width of the pMFL mid-distance p<0.04. Conclusion: This study may help explore the role of the meniscofemoral ligaments in knee stability after total knee arthroplasty with a posterior cruciate ligament retaining prosthesis. Anatomical information for Thiel embalmed knees may aid orthopaedic surgeons in ligament reconstruction.Keywords: anterior and posterior meniscofemoral ligaments, morphometric analysis, Thiel embalmed knees, knee arthroplasty
Procedia PDF Downloads 3761999 Correlation Study between Clinical and Radiological Findings in Knee Osteoarthritis
Authors: Nabil A. A. Mohamed, Alaa A. A. Balbaa, Khaled E. Ayad
Abstract:
Osteoarthritis (OA) of the knee is the most common form of arthritis and leads to more activity limitations (e.g., disability in walking and stair climbing) than any other disease, especially in the elderly. Recently, impaired proprioceptive accuracy of the knee has been proposed as a local factor in the onset and progression of radiographic knee OA (ROA). Purpose: To compare the clinical and radiological findings in healthy with that of knee OA. Also, to determine if there is a correlation between the clinical and radiological findings in patients with knee OA. Subjects: Fifty one patients diagnosed as unilateral or bilateral knee OA with age ranged between 35-70 years, from both gender without any previous history of knee trauma or surgery, and twenty one normal subjects with age ranged from 35 - 68 years. METHODS: peak torque/body weight (PT/BW) was recorded from knee extensors at isokinetic isometric mode at angle of 45 degree. Also, the Absolute Angular Error was recorded at 45O and 30O to measure joint position sense (JPS). They made anteroposterior (AP) plain X-rays from standing semiflexed knee position and their average score of Timed Up and Go test(TUG) and WOMAC were recorded as a measure of knee pain, stiffness and function. Comparison between the mean values of different variables in the two groups was performed using unpaired student t test. The P value less or equal to 0.05 was considered significant. Results: There were significant differences between the studied variables between the experimental and control groups except the values of AAE at 30O. Also, there were no significant correlation between the clinical findings (pain, function, muscle strength and proprioception) and the severity of arthritic changes in X-rays. CONCLUSION: From the finding of the current study we can conclude that there were a significant difference between the both groups in all studied parameters (the WOMAC, functional level, quadriceps muscle strength and the joint proprioception). Also this study did not support the dependency on radiological findings in management of knee OA as the radiological features did not necessarily indicate the level of structural damage of patients with knee OA and we should consider the clinical features in our treatment plan.Keywords: joint position sense, peak torque, proprioception, radiological knee osteoarthritis
Procedia PDF Downloads 3011998 A Review of Kinematics and Joint Load Forces in Total Knee Replacements Influencing Surgical Outcomes
Authors: Samira K. Al-Nasser, Siamak Noroozi, Roya Haratian, Adrian Harvey
Abstract:
A total knee replacement (TKR) is a surgical procedure necessary when there is severe pain and/or loss of function in the knee. Surgeons balance the load in the knee and the surrounding soft tissue by feeling the tension at different ranges of motion. This method can be unreliable and lead to early failure of the joint. The ideal kinematics and load distribution have been debated significantly based on previous biomechanical studies surrounding both TKRs and normal knees. Intraoperative sensors like VERASENSE and eLibra have provided a method for the quantification of the load indicating a balanced knee. A review of the literature written about intraoperative sensors and tension/stability of the knee was done. Studies currently debate the quantification of the load in medial and lateral compartments specifically. However, most research reported that following a TKR the medial compartment was loaded more heavily than the lateral compartment. In several cases, these results were shown to increase the success of the surgery because they mimic the normal kinematics of the knee. In conclusion, most research agrees that an intercompartmental load differential of between 10 and 20 pounds, where the medial load was higher than the lateral, and an absolute load of less than 70 pounds was ideal. However, further intraoperative sensor development could help improve the accuracy and understanding of the load distribution on the surgical outcomes in a TKR. A reduction in early revision surgeries for TKRs would provide an improved quality of life for patients and reduce the economic burden placed on both the National Health Service (NHS) and the patient.Keywords: intraoperative sensors, joint load forces, kinematics, load balancing, and total knee replacement
Procedia PDF Downloads 1351997 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections
Authors: N. Zhang, J. S. Kuang, S. Mogili
Abstract:
To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.Keywords: large-scale tests, RC beam-column knee joints, seismic performance, shear strength
Procedia PDF Downloads 2491996 Successful Rehabilitation of Recalcitrant Knee Pain Due to Anterior Cruciate Ligament Injury Masked by Extensive Skin Graft: A Case Report
Authors: Geum Yeon Sim, Tyler Pigott, Julio Vasquez
Abstract:
A 38-year-old obese female with no apparent past medical history presented with left knee pain. Six months ago, she sustained a left knee dislocation in a motor vehicle accident that was managed with a skin graft over the left lower extremity without any reconstructive surgery. She developed persistent pain and stiffness in her left knee that worsened with walking and stair climbing. Examination revealed healed extensive skin graft over the left lower extremity, including the left knee. Palpation showed moderate tenderness along the superior border of the patella, exquisite tenderness over MCL, and mild tenderness on the tibial tuberosity. There was normal sensation, reflexes, and strength in her lower extremities. There was limited active and passive range of motion of her left knee during flexion. There was instability noted upon the valgus stress test of the left knee. Left knee magnetic resonance imaging showed high-grade (grade 2-3) injury of the proximal superficial fibers of the MCL and diffuse thickening and signal abnormality of the cruciate ligaments, as well as edema-like subchondral marrow signal change in the anterolateral aspect of the lateral femoral condyle weight-bearing surface. There was also notable extensive scarring and edema of the skin, subcutaneous soft tissues, and musculature surrounding the knee. The patient was managed with left knee immobilization for five months, which was complicated by limited knee flexion. Physical therapy consisting of quadriceps, hamstrings, gastrocnemius stretching and strengthening, range of motion exercises, scar/soft tissue mobilization, and gait training was given with marked improvement in pain and range of motion. The patient experienced a further reduction in pain as well as an improvement in function with home exercises consisting of continued strengthening and stretching.Keywords: ligamentous injury, trauma, rehabilitation, knee pain
Procedia PDF Downloads 1071995 The Osteocutaneous Distal Tibia Turn-over Fillet Flap: A Novel Spare-parts Orthoplastic Surgery Option for Functional Below-knee Amputation
Authors: Harry Burton, Alexios Dimitrios Iliadis, Neil Jones, Aaron Saini, Nicola Bystrzonowski, Alexandros Vris, Georgios Pafitanis
Abstract:
This article portrays the authors’ experience with a complex lower limb bone and soft tissue defect, following chronic osteomyelitis and pathological fracture, which was managed by the multidisciplinary orthoplastic team. The decision for functional amputation versus limb salvage was deemed necessary, enhanced by the principles of “spares parts” in reconstructive microsurgery. This case describes a successful use of the osteocutaneous distal tibia turn-over fillet flap that allowed ‘lowering the level of the amputation’ from a through knee to the conventional level of a below-knee amputation to preserve the knee joint function. This case demonstrates the value of ‘spare-parts’ surgery principles and how these concepts refine complex orthoplastic approaches when limb salvage is not possible to enhance function. The osteocutaneous distal tibia turn-over fillet flap is a robust technique for modified BKA reconstructions that provides sufficient bone length to achieve a tough, sensate stump and functional knee joint.Keywords: osteocutaneous flap, fillet flap, spare-parts surgery, Below knee amputation
Procedia PDF Downloads 1651994 Identification of Knee Dynamic Profiles in High Performance Athletes with the Use of Motion Tracking
Authors: G. Espriú-Pérez, F. A. Vargas-Oviedo, I. Zenteno-Aguirrezábal, M. D. Moya-Bencomo
Abstract:
One of the injuries with a higher incidence among university-level athletes in the North of Mexico is presented in the knee. This injury generates absenteeism in training and competitions for at least 8 weeks. There is no active quantitative methodology, or protocol, that directly contributes to the clinical evaluation performed by the medical personnel at the prevalence of knee injuries. The main objective is to contribute with a quantitative tool that allows further development of preventive and corrective measures to these injuries. The study analyzed 55 athletes for 6 weeks, belonging to the disciplines of basketball, volleyball, soccer and swimming. Using a motion capture system (Nexus®, Vicon®), a three-dimensional analysis was developed that allows the measurement of the range of movement of the joint. To focus on the performance of the lower limb, eleven different movements were chosen from the Functional Performance Test, Functional Movement Screen, and the Cincinnati Jump Test. The research identifies the profile of the natural movement of a healthy knee, with the use of medical guidance, and its differences between each sport. The data recovered by the single-leg crossover hop managed to differentiate the type of knee movement among athletes. A maximum difference of 60° of offset was found in the adduction movement between male and female athletes of the same discipline. The research also seeks to serve as a guideline for the implementation of protocols that help identify the recovery level of such injuries.Keywords: Cincinnati jump test, functional movement screen, functional performance test, knee, motion capture system
Procedia PDF Downloads 1231993 Effect of Different Knee-Joint Positions on Passive Stiffness of Medial Gastrocnemius Muscle and Aponeuroses during Passive Ankle Motion
Authors: Xiyao Shan, Pavlos Evangelidis, Adam Kositsky, Naoki Ikeda, Yasuo Kawakami
Abstract:
The human triceps surae (two bi-articular gastrocnemii and one mono-articular soleus) have aponeuroses in the posterior and anterior aspects of each muscle, where the anterior aponeuroses of the gastrocnemii adjoin the posterior aponeurosis of the soleus, possibly contributing to the intermuscular force transmission between gastrocnemii and soleus. Since the mechanical behavior of these aponeuroses at different knee- and ankle-joint positions remains unclear, the purpose of this study was to clarify this through observations of the localized changes in passive stiffness of the posterior aponeuroses, muscle belly and adjoining aponeuroses of the medial gastrocnemius (MG) induced by different knee and ankle angles. Eleven healthy young males (25 ± 2 yr, 176.7 ± 4.7 cm, 71.1 ± 11.1 kg) participated in this study. Each subject took either a prone position on an isokinetic dynamometer while the knee joint was fully extended (K180) or a kneeling position while the knee joint was 90° flexed (K90), in a randomized and counterbalanced order. The ankle joint was then passively moved through a 50° range of motion (ROM) by the dynamometer from 30° of plantar flexion (PF) to 20° of dorsiflexion (DF) at 2°/s and the ultrasound shear-wave velocity was measured to obtain shear moduli of the posterior aponeurosis, MG belly, and adjoining aponeuroses. The main findings were: 1) shear modulus in K180 was significantly higher (p < 0.05) than K90 for the posterior aponeurosis (across all ankle angles, 10.2 ± 5.7 kPa-59.4 ± 28.7 kPa vs. 5.4 ± 2.2 kPa-11.6 ± 4.1 kPa), MG belly (from PF10° to DF20°, 9.7 ± 2.2 kPa-53.6 ± 18.6 kPa vs. 8.0 ± 2.7 kPa-9.5 ± 3.7 kPa), and adjoining aponeuroses (across all ankle angles, 17.3 ± 7.8 kPa-80 ± 25.7 kPa vs. 12.2 ± 4.5 kPa-52.4 ± 23.0 kPa); 2) shear modulus of the posterior aponeuroses significantly increased (p < 0.05) from PF10° to PF20° in K180, while shear modulus of MG belly significantly increased (p < 0.05) from 0° to PF20° only in K180 and shear modulus of adjoining aponeuroses significantly increased (p < 0.05) across the whole ROM of ankle both in K180 and K90. These results suggest that different knee-joint positions can affect not only the bi-articular gastrocnemius but also influence the mechanical behavior of aponeuroses. In addition, compared to the gradual stiffening of the adjoining aponeuroses across the whole ROM of ankle, the posterior aponeurosis became slack in the plantar flexed positions and then was stiffened gradually as the knee was fully extended. This suggests distinct stiffening for the posterior and adjoining aponeuroses which is joint position-dependent.Keywords: aponeurosis, plantar flexion and dorsiflexion, shear modulus, shear wave elastography
Procedia PDF Downloads 1891992 The Low-Cost Design and 3D Printing of Structural Knee Orthotics for Athletic Knee Injury Patients
Authors: Alexander Hendricks, Sean Nevin, Clayton Wikoff, Melissa Dougherty, Jacob Orlita, Rafiqul Noorani
Abstract:
Knee orthotics play an important role in aiding in the recovery of those with knee injuries, especially athletes. However, structural knee orthotics is often very expensive, ranging between $300 and $800. The primary reason for this project was to answer the question: can 3D printed orthotics represent a viable and cost-effective alternative to present structural knee orthotics? The primary objective for this research project was to design a knee orthotic for athletes with knee injuries for a low-cost under $100 and evaluate its effectiveness. The initial design for the orthotic was done in SolidWorks, a computer-aided design (CAD) software available at Loyola Marymount University. After this design was completed, finite element analysis (FEA) was utilized to understand how normal stresses placed upon the knee affected the orthotic. The knee orthotic was then adjusted and redesigned to meet a specified factor-of-safety of 3.25 based on the data gathered during FEA and literature sources. Once the FEA was completed and the orthotic was redesigned based from the data gathered, the next step was to move on to 3D-printing the first design of the knee brace. Subsequently, physical therapy movement trials were used to evaluate physical performance. Using the data from these movement trials, the CAD design of the brace was refined to accommodate the design requirements. The final goal of this research means to explore the possibility of replacing high-cost, outsourced knee orthotics with a readily available low-cost alternative.Keywords: 3D printing, knee orthotics, finite element analysis, design for additive manufacturing
Procedia PDF Downloads 1801991 Comparison of Isokinetic Powers (Flexion and Knee Extension) of Basketball and Football Players (Age 17–20)
Authors: Ugur Senturk, Ibrahım Erdemır, Faruk Guven, Cuma Ece
Abstract:
The objective of this study is to compare flexion and extension movements in knee-joint group by measuring isokinetic knee power of amateur basketball and football players. For this purpose, total 21 players were included, which consist of football players (n=12) and basketball players (n=9), within the age range of 17–20. After receiving the age, length, body weight, vertical jump, and BMI measurements of all subjects, the measurement of lower extremity knee-joint movement (Flexion-Extension) was made with isokinetic dynamometer (isomed 2000) at 60 o/sec. and 240 o/sec. angular velocity. After arrangement and grouping of collected information forms and knee flexion and extension parameters, all data were analyzed with SPSS for Windows. Descriptive analyses of the parameters were made. Non-parametric t test and Mann-Whitney U test were used to compare the parameters of football players and basketball players and to find the inter-group differences. The comparisons and relations in the range p<0.05 and p<0.01 between the groups were surveyed. As a conclusion, no statistical differences were found between isokinetic knee flexion and extension parameters of football and basketball players. However, it was found that the football players were older than the basketball players. In addition to this, the average values of the basketball players in the highest torque and the highest torque average curve were found higher than football players in comparisons of left knee extension. However, it was found that fat levels of the basketball players were found to be higher than the football players.Keywords: isokinetic contraction, isokinetic dynamometer, peak torque, flexion, extension, football, basketball
Procedia PDF Downloads 5301990 Reliability of 2D Motion Analysis System for Sagittal Plane Lower Limb Kinematics during Running
Authors: Seyed Hamed Mousavi, Juha M. Hijmans, Reza Rajabi, Ron Diercks, Johannes Zwerver, Henk van der Worp
Abstract:
Introduction: Running is one of the most popular sports activity among people. Improper sagittal plane ankle, knee and hip kinematics are considered to be associated with the increase of injury risk in runners. Motion assessing smart-phone applications are increasingly used to measure kinematics both in the field and laboratory setting, as they are cheaper, more portable, accessible, and easier to use relative to 3D motion analysis system. The aims of this study are 1) to compare the results of 3D gait analysis system and CE; 2) to evaluate the test-retest and intra-rater reliability of coach’s eye (CE) app for the sagittal plane hip, knee, and ankle angles in the touchdown and toe-off while running. Method: Twenty subjects participated in this study. Sixteen reflective markers and cluster markers were attached to the subject’s body. Subjects were asked to run at a self-selected speed on a treadmill. Twenty-five seconds of running were collected for analyzing kinematics of interest. To measure sagittal plane hip, knee and ankle joint angles at touchdown (TD) and toe off (TO), the mean of first ten acceptable consecutive strides was calculated for each angle. A smartphone (Samsung Note5, android) was placed on the right side of the subject so that whole body was simultaneously filmed with 3D gait system during running. All subjects repeated the task with the same running speed after a short interval of 5 minutes in between. The CE app, installed on the smartphone, was used to measure the sagittal plane hip, knee and ankle joint angles at touchdown and toe off the stance phase. Results: Intraclass correlation coefficient (ICC) was used to assess test-retest and intra-rater reliability. To analyze the agreement between 3D and 2D outcomes, the Bland and Altman plot was used. The values of ICC were for Ankle at TD (TRR=0.8,IRR=0.94), ankle at TO (TRR=0.9,IRR=0.97), knee at TD (TRR=0.78,IRR=0.98), knee at TO (TRR=0.9,IRR=0.96), hip at TD (TRR=0.75,IRR=0.97), hip at TO (TRR=0.87,IRR=0.98). The Bland and Altman plots displaying a mean difference (MD) and ±2 standard deviation of MD (2SDMD) of 3D and 2D outcomes were for Ankle at TD (MD=3.71,+2SDMD=8.19, -2SDMD=-0.77), ankle at TO (MD=-1.27, +2SDMD=6.22, -2SDMD=-8.76), knee at TD (MD=1.48, +2SDMD=8.21, -2SDMD=-5.25), knee at TO (MD=-6.63, +2SDMD=3.94, -2SDMD=-17.19), hip at TD (MD=1.51, +2SDMD=9.05, -2SDMD=-6.03), hip at TO (MD=-0.18, +2SDMD=12.22, -2SDMD=-12.59). Discussion: The ability that the measurements are accurately reproduced is valuable in the performance and clinical assessment of outcomes of joint angles. The results of this study showed that the intra-rater and test-retest reliability of CE app for all kinematics measured are excellent (ICC ≥ 0.75). The Bland and Altman plots display that there are high differences of values for ankle at TD and knee at TO. Measuring ankle at TD by 2D gait analysis depends on the plane of movement. Since ankle at TD mostly occurs in the none-sagittal plane, the measurements can be different as foot progression angle at TD increases during running. The difference in values of the knee at TD can depend on how 3D and the rater detect the TO during the stance phase of running.Keywords: reliability, running, sagittal plane, two dimensional
Procedia PDF Downloads 2001989 Correlation between Dynamic Knee Valgus with Isometric Hip Abductors Strength during Single-Leg Landing
Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda
Abstract:
The knee joint complex is one of the most commonly injured areas of the body in athletes. Excessive frontal plane knee excursion is considered a risk factor for multiple knee pathologies such as anterior cruciate ligament and patellofemoral joint injuries, however, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip abductors isometric strength were assessed by portable hand-held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip abductors isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip abductors isometric strength and the value of FPPA during functional activities in normal male subjects.Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries
Procedia PDF Downloads 2471988 Advantages of Computer Navigation in Knee Arthroplasty
Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich
Abstract:
Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.Keywords: knee joint, arthroplasty, computer navigation, advantages
Procedia PDF Downloads 891987 Quadriceps Muscle Activity in Response to Slow and Fast Perturbations following Fatiguing Exercise
Authors: Nosratollah Hedayatpour, Hamid Reza Taheri, Mehrdad Fathi
Abstract:
Introduction: Quadriceps femoris muscle is frequently involved in various movements e.g., jumping, landing) during sport and/or daily activities. During ballistic movement when individuals are faced with unexpected knee perturbation, fast twitch muscle fibers contribute to force production to stabilize knee joint. Fast twitch muscle fiber is more susceptible to fatigue and therefor may reduce the ability of the quadriceps muscle to stabilize knee joint during fast perturbation. Aim: The aim of this study was to investigate the effect of fatigue on postural response of the knee extensor muscles to fast and slow perturbations. Methods: Fatigue was induced to the quadriceps muscle using a KinCom Isokinetic Dynamometer (Chattanooga, TN). Bipolar surface electromyography (EMG) signals were simultaneously recorded from quadriceps components (vastus medialis, rectus femoris, and vastus lateralis) during pre- and post-fatigue postural perturbation performed at two different velocities of 120 ms and 250 mes. Results: One-way ANOVA showed that maximal voluntary knee extension force and time to task failure, and associated EMG activities were significantly reduced after fatiguing knee exercise (P< 0.05). Two-ways ANOVA also showed that ARV of EMG during backward direction was significantly larger than forward direction (P< 0.05), and during fast-perturbation it was significantly higher than slow-perturbation (P< 0.05). Moreover, ARV of EMG was significantly reduced during post fatigue perturbation, with the largest reduction identified for fast-perturbation compared with slow perturbation (P< 0.05). Conclusion: A larger reduction in muscle activity of the quadriceps muscle was observed during post fatigue fast-perturbation to stabilize knee joint, most likely due to preferential recruitment of fast twitch muscle fiber which are more susceptible to fatigue. This may partly explain that why knee injuries is common after fast ballistic movement.Keywords: electromyography, fast-slow perturbations, fatigue, quadriceps femoris muscle
Procedia PDF Downloads 522