Search results for: iteration free method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21535

Search results for: iteration free method

21535 Numerical Iteration Method to Find New Formulas for Nonlinear Equations

Authors: Kholod Mohammad Abualnaja

Abstract:

A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.

Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms

Procedia PDF Downloads 541
21534 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration-free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results are in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes. Semi-Lagrangian method, iteration-free method, nonlinear advection-diffusion equation, second-order backward difference formula

Keywords: Semi-Lagrangian method, iteration free method, nonlinear advection-diffusion equation, second-order backward difference formula

Procedia PDF Downloads 320
21533 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method

Authors: M. O. Olayiwola

Abstract:

Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.

Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation

Procedia PDF Downloads 429
21532 On Algebraic Structure of Improved Gauss-Seide Iteration

Authors: O. M. Bamigbola, A. A. Ibrahim

Abstract:

Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined a priori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss-Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss-Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.

Keywords: linear algebraic system, Gauss-Seidel iteration, algebraic structure, convergence

Procedia PDF Downloads 464
21531 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger

Abstract:

Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.

Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model

Procedia PDF Downloads 191
21530 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media

Authors: Olayiwola Moruf Oyedunsi

Abstract:

This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.

Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation

Procedia PDF Downloads 320
21529 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations

Authors: O. Acan, Y. Keskin

Abstract:

In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.

Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method

Procedia PDF Downloads 432
21528 Further Results on Modified Variational Iteration Method for the Analytical Solution of Nonlinear Advection Equations

Authors: A. W. Gbolagade, M. O. Olayiwola, K. O. Kareem

Abstract:

In this paper, further to our result on recent paper on the solution of nonlinear advection equations, we present further results on the nonlinear nonhomogeneous advection equations using a modified variational iteration method.

Keywords: lagrange multiplier, non-homogeneous equations, advection equations, mathematics

Procedia PDF Downloads 300
21527 Solving Linear Systems Involved in Convex Programming Problems

Authors: Yixun Shi

Abstract:

Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed.

Keywords: convex programming, interior point method, linear systems, vector division

Procedia PDF Downloads 401
21526 Estimation and Validation of Free Lime Analysis of Clinker by Quantitative Phase Analysis Using X ray diffraction

Authors: Suresh Palla, Kalpna Sharma, Gaurav Bhatnagar, S. K. Chaturvedi, B. N. Mohapatra

Abstract:

Determining the content of free lime is especially important to judge reactivity of the raw materials and clinker quality. The free lime limit isn’t the same for all cements; it depends on several factors, especially the temperature reached during the cooking and the grain size distribution in cement after grinding. Estimation of free lime by conventional method is influenced by the presence of portlandite and misleads the actual free lime content in the clinker for quality check up conditions. To ensure the product quality according to the standard specifications in terms of within the quality limits or not, a reliable, precise, and very reproducible method to quantify the relative phase abundances in the Portland Cement clinker and Portland Cements is to use X-ray diffraction (XRD) in combination with the Rietveld method. In the present study, a methodology was proposed using XRD to validate the obtained results of free lime by conventional method. The XRD and TG/DTA results confirm the presence of portlandite in the clinker to take the decision on the obtained free lime results through conventional method.

Keywords: free lime, quantitative phase analysis, conventional method, x ray diffraction

Procedia PDF Downloads 135
21525 An Accelerated Stochastic Gradient Method with Momentum

Authors: Liang Liu, Xiaopeng Luo

Abstract:

In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM.

Keywords: exponential decay rate weight, gradient descent, inverse proportional decay rate weight, momentum

Procedia PDF Downloads 162
21524 Weak Convergence of Mann Iteration for a Hybrid Pair of Mappings in a Banach Space

Authors: Alemayehu Geremew Geremew

Abstract:

We prove the weak convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multivalued f nonexpansive mapping T in Banach space E.

Keywords: common fixed point, Mann iteration, multivalued mapping, weak convergence

Procedia PDF Downloads 334
21523 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method

Authors: S. Shahrooi, A. Talavari

Abstract:

Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.

Keywords: stress intensity factor, crack, torsional loading, meshless method

Procedia PDF Downloads 564
21522 Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature

Authors: Chin-Yun Chen

Abstract:

Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature.

Keywords: numerical quadrature, error estimation, derivative free method, interval computation

Procedia PDF Downloads 462
21521 The Improved Element Free Galerkin Method for 2D Heat Transfer Problems

Authors: Imen Debbabi, Hédi BelHadjSalah

Abstract:

The Improved Element Free Galerkin (IEFG) method is presented to treat the steady states and the transient heat transfer problems. As a result of a combination between the Improved Moving Least Square (IMLS) approximation and the Element Free Galerkin (EFG) method, the IEFG's shape functions don't have the Kronecker delta property and the penalty method is used to impose the Dirichlet boundary conditions. In this paper, two heat transfer problems, transient and steady states, are studied to improve the efficiency of this meshfree method for 2D heat transfer problems. The performance of the IEFG method is shown using the comparison between numerical and analytic results.

Keywords: meshfree methods, the Improved Moving Least Square approximation (IMLS), the Improved Element Free Galerkin method (IEFG), heat transfer problems

Procedia PDF Downloads 393
21520 Research on Straightening Process Model Based on Iteration and Self-Learning

Authors: Hong Lu, Xiong Xiao

Abstract:

Shaft parts are widely used in machinery industry, however, bending deformation often occurred when this kind of parts is being heat treated. This parts needs to be straightened to meet the requirement of straightness. As for the pressure straightening process, a good straightening stroke algorithm is related to the precision and efficiency of straightening process. In this paper, the relationship between straightening load and deflection during the straightening process is analyzed, and the mathematical model of the straightening process has been established. By the mathematical model, the iterative method is used to solve the straightening stroke. Compared to the traditional straightening stroke algorithm, straightening stroke calculated by this method is much more precise; because it can adapt to the change of material performance parameters. Considering that the straightening method is widely used in the mass production of the shaft parts, knowledge base is used to store the data of the straightening process, and a straightening stroke algorithm based on empirical data is set up. In this paper, the straightening process control model which combine the straightening stroke method based on iteration and straightening stroke algorithm based on empirical data has been set up. Finally, an experiment has been designed to verify the straightening process control model.

Keywords: straightness, straightening stroke, deflection, shaft parts

Procedia PDF Downloads 327
21519 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load

Procedia PDF Downloads 149
21518 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 188
21517 Taguchi Method for Analyzing a Flexible Integrated Logistics Network

Authors: E. Behmanesh, J. Pannek

Abstract:

Logistics network design is known as one of the strategic decision problems. As these kinds of problems belong to the category of NP-hard problems, traditional ways are failed to find an optimal solution in short time. In this study, we attempt to involve reverse flow through an integrated design of forward/reverse supply chain network that formulated into a mixed integer linear programming. This Integrated, multi-stages model is enriched by three different delivery path which makes the problem more complex. To tackle with such an NP-hard problem a revised random path direct encoding method based memetic algorithm is considered as the solution methodology. Each algorithm has some parameters that need to be investigate to reveal the best performance. In this regard, Taguchi method is adapted to identify the optimum operating condition of the proposed memetic algorithm to improve the results. In this study, four factors namely, population size, crossover rate, local search iteration and a number of iteration are considered. Analyzing the parameters and improvement in results are the outlook of this research.

Keywords: integrated logistics network, flexible path, memetic algorithm, Taguchi method

Procedia PDF Downloads 186
21516 Out-of-Plane Free Vibrations of Circular Rods

Authors: Faruk Firat Çalim, Nurullah Karaca, Hakan Tacettin Türker

Abstract:

In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.

Keywords: circular rod, out-of-plane free vibration analysis, transfer matrix method

Procedia PDF Downloads 307
21515 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method

Authors: M. K. Balyan

Abstract:

The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.

Keywords: dynamical diffraction, hologram, object image, X-ray holography

Procedia PDF Downloads 393
21514 Kalman Filter Gain Elimination in Linear Estimation

Authors: Nicholas D. Assimakis

Abstract:

In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.

Keywords: discrete time, estimation, Kalman filter, Kalman filter gain

Procedia PDF Downloads 194
21513 A Multistep Broyden’s-Type Method for Solving Systems of Nonlinear Equations

Authors: M. Y. Waziri, M. A. Aliyu

Abstract:

The paper proposes an approach to improve the performance of Broyden’s method for solving systems of nonlinear equations. In this work, we consider the information from two preceding iterates rather than a single preceding iterate to update the Broyden’s matrix that will produce a better approximation of the Jacobian matrix in each iteration. The numerical results verify that the proposed method has clearly enhanced the numerical performance of Broyden’s Method.

Keywords: mulit-step Broyden, nonlinear systems of equations, computational efficiency, iterate

Procedia PDF Downloads 637
21512 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton

Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani

Abstract:

Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.

Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton

Procedia PDF Downloads 323
21511 Lead Free BNT-BKT-BMgT-CoFe₂O₄ Magnetoelectric Nanoparticulate Composite Thin Films Prepared by Chemical Solution Deposition Method

Authors: A. K. Paul, Vinod Kumar

Abstract:

Lead free magnetoelectric (ME) nanoparticulate (1−x) BNT-BKT-BMgT−x CFO (x = 0, 0.1, 0.2, 0.3) composite films were synthesized using chemical solution deposition method. The X-ray diffraction and transmission electron microscope (TEM) reveal that CFO nanoparticles were well distributed in the matrix of BNT-BKT-BMgT. The nanocomposite films exhibit both good magnetic and ferroelectric properties at room temperature (R-T). It is concluded that the modulation in compositions of piezomagnetic/piezoelectric components plays a fundamental role in the magnetoelectric coupling in these nanoparticulate composite films. These ME composites provide a great opportunity as potential lead-free systems for ME devices.

Keywords: lead free multiferroic, nanocomposite, ferroelectric, ferromagnetic and magneto-electric properties

Procedia PDF Downloads 127
21510 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads

Authors: T. H. Young, Y. J. Tsai

Abstract:

A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work.  The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.

Keywords: stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear

Procedia PDF Downloads 154
21509 Modeling the Elastic Mean Free Path of Electron Collision with Pyrimidine: The Screen Corrected Additivity Rule Method

Authors: Aouina Nabila Yasmina, Chaoui Zine El Abiddine

Abstract:

This study presents a comprehensive investigation into the elastic mean free path (EMFP) of electrons colliding with pyrimidine, a precursor to the pyrimidine bases in DNA, employing the Screen Corrected Additivity Rule (SCAR) method. The SCAR method is introduced as a novel approach that combines classical and quantum mechanical principles to elucidate the interaction of electrons with pyrimidine. One of the most fundamental properties characterizing the propagation of a particle in the nuclear medium is its mean free path. Knowledge of the elastic mean free path is essential to accurately predict the effects of radiation on biological matter, as it contributes to the distances between collisions. Additionally, the mean free path plays a role in the interpretation of almost all experiments in which an excited electron moves through a solid. Pyrimidine, the precursor of the pyrimidine bases of DNA, has interesting physicochemical properties, which make it an interesting molecule to study from a fundamental point of view. These include a relatively large dipole polarizability and dipole moment and an electronic charge cloud with a significant spatial extension, which justifies its choice in this present study.

Keywords: elastic mean free path, elastic collision, pyrimidine, SCAR

Procedia PDF Downloads 63
21508 A New Family of Globally Convergent Conjugate Gradient Methods

Authors: B. Sellami, Y. Laskri, M. Belloufi

Abstract:

Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, a new family of conjugate gradient method is proposed for unconstrained optimization. This method includes the already existing two practical nonlinear conjugate gradient methods, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the efficiency of the new method, which implies the new method is promising. In addition the methods related to this family are uniformly discussed.

Keywords: conjugate gradient method, global convergence, line search, unconstrained optimization

Procedia PDF Downloads 409
21507 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia PDF Downloads 393
21506 A Deterministic Large Deviation Model Based on Complex N-Body Systems

Authors: David C. Ni

Abstract:

In the previous efforts, we constructed N-Body Systems by an extended Blaschke product (EBP), which represents a non-temporal and nonlinear extension of Lorentz transformation. In this construction, we rely only on two parameters, nonlinear degree, and relative momentum to characterize the systems. We further explored root computation via iteration with an algorithm extended from Jenkins-Traub method. The solution sets demonstrate a form of σ+ i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various canonical distributions. In this paper, we correlate the convergent sets in the original domain with solution sets, which demonstrating large-deviation distributions in the codomain. We proceed to compare our approach with the formula or principles, such as Donsker-Varadhan and Wentzell-Freidlin theories. The deterministic model based on this construction allows us to explore applications in the areas of finance and statistical mechanics.

Keywords: nonlinear Lorentz transformation, Blaschke equation, iteration solutions, root computation, large deviation distribution, deterministic model

Procedia PDF Downloads 392