Search results for: improving soft soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7054

Search results for: improving soft soil

6844 Peat Soil Stabilization Methods: A Review

Authors: Mohammad Saberian, Mohammad Ali Rahgozar, Reza Porhoseini

Abstract:

Peat soil is formed naturally through the accumulation of organic matter under water and it consists of more than 75% organic substances. Peat is considered to be in the category of problematic soil, which is not suitable for construction, due to its high compressibility, high moisture content, low shear strength, and low bearing capacity. Since this kind of soil is generally found in many countries and different regions, finding desirable techniques for stabilization of peat is absolutely essential. The purpose of this paper is to review the various techniques applied for stabilizing peat soil and discuss outcomes of its improved mechanical parameters and strength properties. Recognizing characterization of stabilized peat is one of the most significant factors for architectural structures; as a consequence, various strategies for stabilization of this susceptible soil have been examined based on the depth of peat deposit.

Keywords: peat soil, stabilization, depth, strength, unconfined compressive strength (USC)

Procedia PDF Downloads 530
6843 Effect of Open Burning on Soil Carbon Stock in Sugarcane Plantation in Thailand

Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait

Abstract:

Open burning of sugarcane fields is recognized to have a negative impact on soil by degrading its properties, especially soil organic carbon (SOC) content. Better understating the effect of open burning on soil carbon dynamics is crucial for documenting the carbon sequestration capacity of agricultural soils. In this study, experiments to investigate soil carbon stocks under burned and unburned sugarcane plantation systems in Thailand were conducted. The results showed that cultivation fields without open burning during 5 consecutive years enabled to increase the SOC content at a rate of 1.37 Mg ha-1y-1. Also it was found that sugarcane fields burning led to about 15% reduction of the total carbon stock in the 0-30 cm soil layer. The overall increase in SOC under unburned practice is mainly due to the large input of organic material through the use of sugarcane residues.

Keywords: soil organic carbon, soil inorganic carbon, carbon sequestration, open burning, sugarcane

Procedia PDF Downloads 273
6842 Influence of Nanozeolite Particles on Improvement of Clayey Soil

Authors: A. Goodarzian, A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil.

Keywords: nanoparticles, soil improvement, clayey soil, unconfined compression stress

Procedia PDF Downloads 95
6841 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India

Authors: Preethi Grace Theva Neethi Dhas

Abstract:

A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.

Keywords: fecal sludge management, nutrient cycle, soil health, composting

Procedia PDF Downloads 30
6840 Effect of Filter Paper Technique in Measuring Hydraulic Capacity of Unsaturated Expansive Soil

Authors: Kenechi Kurtis Onochie

Abstract:

This paper shows the use of filter paper technique in the measurement of matric suction of unsaturated expansive soil around the Haspolat region of Lefkosa, North Cyprus in other to establish the soil water characteristics curve (SWCC) or soil water retention curve (SWRC). The dry filter paper approach which is standardized by ASTM, 2003, D 5298-03 in which the filter paper is initially dry was adopted. The whatman No. 42 filter paper was used in the matric suction measurement. The maximum dry density of the soil was obtained as 2.66kg/cm³ and the optimum moisture content as 21%. The soil was discovered to have high air entry value of 1847.46KPa indicating finer particles and 25% hydraulic capacity using filter paper technique. The filter paper technique proved to be very useful for measuring the hydraulic capacity of unsaturated expansive soil.

Keywords: SWCC, matric suction, filter paper, expansive soil

Procedia PDF Downloads 138
6839 Evaluation of Bearing Capacity of Vertically Loaded Strip Piled-Raft Embedded in Soft Clay

Authors: Seyed Abolhasan Naeini, Mohammad Hosseinzade

Abstract:

Settlement and bearing capacity of a piled raft are the two important issues for the foundations of the structures built on coastal areas from the geotechnical engineering point of view. Strip piled raft as a load carrying system could be used to reduce the possible extensive consolidation settlements and improve bearing capacity of structures in soft ground. The aim of this research was to evaluate the efficiency of strip piled raft embedded in soft clay. The efficiency of bearing capacity of strip piled raft foundation is evaluated numerically in two cases: in first case, the cap is placed directly on the ground surface and in the second, the cap is placed above the ground. Regarding to the fact that the geotechnical parameters of the soft clay are considered at low level, low bearing capacity is expected. The length, diameter and axe-to-axe distance of piles are the parameters which varied in this research to find out how they affect the bearing capacity. Results indicate that increasing the length and the diameter of the piles increase the bearing capacity. The complementary results will be presented in the final version of the paper.

Keywords: soft clay, strip piled raft, bearing capacity, settlement

Procedia PDF Downloads 280
6838 The Using of Smart Power Concepts in Military Targeting Process

Authors: Serdal AKYUZ

Abstract:

The smart power is the use of soft and hard power together in consideration of existing circumstances. Soft power can be defined as the capability of changing perception of any target mass by employing policies based on legality. The hard power, generally, uses military and economic instruments which are the concrete indicator of general power comprehension. More than providing a balance between soft and hard power, smart power creates a proactive combination by assessing existing resources. Military targeting process (MTP), as stated in smart power methodology, benefits from a wide scope of lethal and non-lethal weapons to reach intended end state. The Smart powers components can be used in military targeting process similar to using of lethal or non-lethal weapons. This paper investigates the current use of Smart power concept, MTP and presents a new approach to MTP from smart power concept point of view.

Keywords: future security environment, hard power, military targeting process, soft power, smart power

Procedia PDF Downloads 443
6837 Spatiotemporal Variation Characteristics of Soil pH around the Balikesir City, Turkey

Authors: Çağan Alevkayali, Şermin Tağil

Abstract:

Determination of soil pH surface distribution in urban areas is substantial for sustainable development. Changes on soil properties occur due to functions on performed in agriculture, industry and other urban functions. Soil pH is important to effect on soil productivity which based on sensitive and complex relation between plant and soil. Furthermore, the spatial variability of soil reaction is necessary to measure the effects of urbanization. The objective of this study was to explore the spatial variation of soil pH quality and the influence factors of human land use on soil Ph around Balikesir City using data for 2015 and Geographic Information Systems (GIS). For this, soil samples were taken from 40 different locations, and collected with the method of "Systematic Random" from the pits at 0-20 cm depths, because anthropologic sourced pollutants accumulate on upper layers of soil. The study area was divided into a grid system with 750 x 750 m. GPS was used to determine sampling locations, and Inverse Distance Weighting (IDW) interpolation technique was used to analyze the spatial distribution of pH in the study area and to predict the variable values of un-exampled places with the help from the values of exampled places. Natural soil acidity and alkalinity depend on interaction between climate, vegetation, and soil geological properties. However, analyzing soil pH is important to indirectly evaluate soil pollution caused by urbanization and industrialization. The result of this study showed that soil pH around the Balikesir City was neutral, in generally, with values were between 6.5 and 7.0. On the other hand, some slight changes were demonstrated around open dump areas and the small industrial sites. The results obtained from this study can be indicator of important soil problems and this data can be used by ecologists, planners and managers to protect soil supplies around the Balikesir City.

Keywords: Balikesir, IDW, GIS, spatial variability, soil pH, urbanization

Procedia PDF Downloads 299
6836 Mechanical and Hydraulic Behavior of Arid Zone Soils Treated with Lime: Case of Abadla, Bechar Clays, South of Algeria

Authors: Sadek Younes, Fali Leyla, Rikioui Tayeb, Zizouni Khaled

Abstract:

Stabilization of clay with lime as bearing stratum is an alternative to replacement of original soil. By adding lime to clay soil, the soil workability is improved due to the combination of calcium ions to the clay minerals, which means, modified soil properties. The paper investigates the effect of hydrated lime on the behaviour of lime treated, arid zones clay (Abadla Clay). A number of mechanical and hydraulic tests were performed to identify the effect of lime dosage and compaction water content on the compressibility, permeability, and shear strength parameters of the soil. Test results show that the soil parameters can be improved through additives such as lime. Overall, the addition percentages of 6% and 9% lime give the best desired results. Also, results revealed that the compressibility behavior of lime-treated soil strongly affected by lime content. The results are presented in terms of modern interpretation of the behaviour of treated soils, in comparison with the parameters of the untreated soil.

Keywords: arid zones, compressibility, lime, soil behaviour, soil stabilization, unsaturated soil

Procedia PDF Downloads 148
6835 Experimental Investigation of the Failure Behavior of a Retaining Wall Constructed with Soil Bags

Authors: Kewei Fan, Sihong Liu, Yi Pik Cheng

Abstract:

This paper aims to analyse the failure behaviour of the retaining wall constructed with soil bags that are formed by filling river sand into woven bags (geosynthetics). Model tests were conducted to obtain the failure mode of the wall, and shear tests on two-layers and five-layers of soil bags were designed to investigate the mechanical characteristics of the interface of soil bags. The test results show that the slip surface in the soil bags-constructed retaining wall is ladder-like due to the inter-layer insertion of soil bags, and the wall above the ladder-like surface undergoes a rigid body translation. The insertion strengthens the shear strength of two-layer staggered-stacked soil bags. Meanwhile, it affects the shape of the slip surface of the five-layer staggered-stacked soil bags. Finally, the interlayer resisting friction of soil bags is found to be related to the shape of the slip surface.

Keywords: geosynthetics, retaining wall, soil bag, failure mode, interface, shear strength

Procedia PDF Downloads 96
6834 Undrained Shear Strength and Anisotropic Yield Surface of Diatomaceous Mudstone

Authors: Najibullah Arsalan, Masaru Akaishi, Motohiro Sugiyama

Abstract:

When constructing a structure on soft rock, adequate research and study are required concerning the shear behavior in the over-consolidation region because soft rock is considered to be in a heavily over-consolidated state. In many of the existing studies concerning the strength of soft rock, triaxial compression tests were conducted using isotropically consolidated samples. In this study, the strength of diatomaceous soft rock anisotropically consolidated under a designated consolidation pressure is examined in undrained triaxial compression tests, and studies are made of the peak and residual strengths of the sample in the over-consolidated state in the initial yield surface and the anisotropic yield surface.

Keywords: diatomaceouse mudstone, shear strength, yield surface, triaxial compression test

Procedia PDF Downloads 396
6833 Soil Stress State under Tractive Tire and Compaction Model

Authors: Prathuang Usaborisut, Dithaporn Thungsotanon

Abstract:

Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.

Keywords: draft force, soil compaction model, stress state, tractive tire

Procedia PDF Downloads 320
6832 Study of the Effect of Soil Compaction and Height on Pipe Ovality for Buried Steel Pipe

Authors: Ali Ghodsbin Jahromi, Ehsan Moradi

Abstract:

In this paper, the numerical study of buried steel pipe in soil is investigated. Buried pipeline under soil weight, after embankment on the pipe leads to ovality of pipe. In this paper also it is considered the percentage of soil compaction, the soil height on the steel pipe and the external load of a mechanical excavator on the steel pipe and finally, the effect of these on the rate of pipe ovality investigated. Furthermore, the effect of the pipes’ thickness on ovality has been investigated. The results show that increasing the percentage of soil compaction has more effect on reducing percentage of ovality, and if the percentage of soil compaction increases, we can use the pipe with less thickness. Finally, ovality rate of the pipe and acceptance criteria of pipe diameter up to yield stress is investigated.

Keywords: pipe ovality, soil compaction, finite element, pipe thickness

Procedia PDF Downloads 118
6831 Development IoT System for Smart Maize Production in Nigeria

Authors: Oyenike M. Olanrewaju, Faith O. Echobu, Aderemi G. Adesoji, Emmy Danny Ajik, Joseph Nda Ndabula, Stephen Luka

Abstract:

Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. In this research, an Internet of Things test kit was developed to fill in the gaps created by wet soil analysis. The kit comprises components that were used to measure Nitrogen, Phosphorous and potassium (N, P, K) soil content, soil temperature and soil moisture at a series of intervals. In this implementation, the fieldwork was carried out within 0.2 hectares of land divided into smaller plots. Nitrogen values from the three reps range from 14.8 – 15mg/kg, Phosphorous 20.2-21.4 mg/kg, and Potassium 50.2-53 mg/kg. This information with soil moisture information obtained enabled the farmers to make informed and precise decisions on fertilizer applications, and wastage was avoided.

Keywords: internet of things, soil Nutrients, test kit, soil temperature

Procedia PDF Downloads 20
6830 Analysis of Tilting Cause of a Residential Building in Durres by the Use of Cptu Test

Authors: Neritan Shkodrani

Abstract:

On November 26, 2019, an earthquake hit the central western part of Albania. It was assessed as Mw 6.4. Its epicenter was located offshore north western Durrës, about 7 km north of the city. In this paper, the consequences of settlements of very soft soils have been discussed for the case of a residential building, mentioned as “K Building”, which was suffering a significant tilting after the earthquake. “KBuilding” is an RC framed building having 12+1 (basement) storiesand a floor area of 21000 m2. The construction of the building was completed in 2012. “KBuilding”, located in Durres city, suffered severe non-structural damage during November 26, 2019, Durrës Earthquake sequences. During the in-site inspections immediately after the earthquake, the general condition of the buildings, the presence of observable settlements on the ground, and the crack situation in the structure were determined, and damage inspection were performed. It was significant to note that the “K Building” presented tilting that might be attributed, as it was believed at the beginning, partially to the failure of the columns of the ground floor and partially to liquefaction phenomena, but it did not collapse. At the first moment was not clear if the foundation had a bearing capacity failure or the foundation failed because of the soil liquefaction. Geotechnical soil investigations by using CPTU test were executed, and their data are usedto evaluatebearing capacity, consolidation settlement of the mat foundation, and soil liquefaction since they were believed to be the main reasons of this building tilting.Geotechnical soil investigation consist in 5 (five) Static Cone Penetration tests with pore pressure measurement (piezocone test). They reached a penetration depth of 20.0 m to 30.0 mand, clearly shown the presence of very soft and organic soils in the soil profile of the site. Geotechnical CPT based analysis of bearing capacity, consolidation, and secondary settlement are applied, and results are reported for each test. These results shown very small values of allowable bearing capacity and very high values of consolidation and secondary settlements. Liquefaction analysis based on the data of CPTU tests and the characteristics of ground shaking of the mentioned earthquake has shown the possibility of liquefaction for some layers of the considered soil profile, but the estimated vertical settlements are at a small range and clearly shown that the main reason of the building tilting was not related to the consequences of liquefaction, but was an existing settlement caused from the applied bearing pressure of this building. All the CPTU tests were carried out on August 2021, almost two years after the November 26, 2019, Durrës Earthquake and when the building itself was demolished. After removing the mat foundation on September 2021, it was possible to carry out CPTU tests even on the footprint of the existing building, which made possible to observe the effects of long time applied of foundation bearing pressure to the consolidation on the considered soil profile.

Keywords: bearing capacity, cone penetration test, consolidation settlement, secondary settlement, soil liquefaction, etc

Procedia PDF Downloads 72
6829 Numerical Investigations on Group Piles’ Lateral Bearing Capacity Considering Interaction of Soil and Structure

Authors: Mahdi Sadeghian, Mahmoud Hassanlourad, Alireza Ardakani, Reza Dinarvand

Abstract:

In this research, the behavior of monopiles, under lateral loads, was investigated with vertical and oblique piles by Finite Element Method. In engineering practice when soil-pile interaction comes to the picture some simplifications are applied to reduce the design time. As a simplified replacement of soil and pile interaction analysis, pile could be replaced by a column. The height of the column would be equal to the free length of the pile plus a portion of the embedded length of it. One of the important factors studied in this study was that columns with an equivalent length (free length plus a part of buried depth) could be used instead of soil and pile modeling. The results of the analysis show that the more internal friction angle of the soil increases, the more the bearing capacity of the soil is achieved. This additional length is 6 to 11 times of the pile diameter in dense soil although in loose sandy soil this range might increase.

Keywords: Depth of fixity, Lateral bearing capacity, Oblique pile, Pile group, Soil-structure interaction

Procedia PDF Downloads 194
6828 Physicochemistry of Pozzolanic Stabilization of a Class A-2-7 Lateritic Soil

Authors: Ahmed O. Apampa, Yinusa A. Jimoh

Abstract:

The paper examines the mechanism of pozzolan-soil reactions, using a recent study on the chemical stabilization of a Class A-2-7 (3) lateritic soil, with corn cob ash (CCA) as case study. The objectives are to establish a nexus between cation exchange capacity of the soil, the alkaline forming compounds in CCA and percentage CCA addition to soil beyond which no more improvement in strength properties can be achieved; and to propose feasible chemical reactions to explain the chemical stabilization of the lateritic soil with CCA alone. The lateritic soil, as well as CCA of pozzolanic quality Class C were separately analysed for their metallic oxide composition using the X-Ray Fluorescence technique. The cation exchange capacity (CEC) of the soil and the CCA were computed theoretically using the percentage composition of the base cations Ca2+, Mg2+ K+ and Na2+ as 1.48 meq/100 g and 61.67 meq/100 g respectively, thus indicating a ratio of 0.024 or 2.4%. This figure, taken as the theoretical amount required to just fill up the exchangeable sites of the clay molecules, compares well with the laboratory observation of 1.5% for the optimum level of CCA addition to lateritic soil. The paper went on to present chemical reaction equations between the alkaline earth metals in the CCA and the silica in the lateritic soil to form silicates, thereby proposing an extension of the theory of mechanism of soil stabilization to cover chemical stabilization with pozzolanic ash only. The paper concluded by recommending further research on the molecular structure of soils stabilized with pozzolanic waste ash alone, with a view to confirming the chemical equations advanced in the study.

Keywords: cation exchange capacity, corn cob ash, lateritic soil, soil stabilization

Procedia PDF Downloads 207
6827 Influence of Nano Copper Slag in Strength Behavior of Lime Stabilized Soil

Authors: V. K. Stalin, M. Kirithika, K. Shanmugam, K. Tharini

Abstract:

Nanotechnology has been widely used in many applications such as medical, electronics, robotics and also in geotechnical engineering area through stabilization of bore holes, grouting etc. In this paper, an attempt is made for understanding the influence of nano copper slag (1%, 2% & 3%) on the index, compaction and UCC strength properties of natural soil (CH type) with and without lime stabilization for immediate and 7 days curing period. Results indicated that upto 1% of Nano copper slag, there is an increment in UC strength of virgin soil and lime stabilised soil. Beyond 1% nano copper slag, there is a steep reduction in UC strength and increase of plasticity both in lime stabilised soil and virgin soil. The effect of lime is found to show more influence on large surface area of nano copper slag in natural soil. For both immediate and curing effect, with 1% of Nano copper slag, the maximum unconfined compressive strength was 38% and 106% higher than that of the virgin soil strength.

Keywords: lime, nano copper slag, SEM, XRD, stabilisation

Procedia PDF Downloads 381
6826 Comparison of the Seismic Response of Planar Regular and Irregular Steel Frames

Authors: Robespierre Chavez, Eden Bojorquez, Alfredo Reyes-Salazar

Abstract:

This study compares the seismic response of regular and vertically irregular steel frames determined by nonlinear time history analysis and by using several sets of earthquake records, which are divided in two categories: The first category having 20 stiff-soil ground motion records obtained from the NGA database, and the second category having 30 soft-soil ground motions recorded in the Lake Zone of Mexico City and exhibiting a dominant period (Ts) of two seconds. The steel frames in both format regular and irregular were designed according to the Mexico City Seismic Design Provisions (MCSDP). The effects of irregularity throught the height on the maximum interstory drifts are estimated.

Keywords: irregular steel frames, maximum interstory drifts, seismic response, seismic records

Procedia PDF Downloads 292
6825 Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management

Authors: Sefa Aksu, Ünal Kızıl

Abstract:

For this study, a town based soil database created in Gümüşçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study.

Keywords: geostatistics, GIS, nutrient management, soil mapping

Procedia PDF Downloads 344
6824 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement

Authors: M. Mlhem

Abstract:

Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.

Keywords: additives, clay, compression strength, epoxy, stabilization

Procedia PDF Downloads 98
6823 Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil

Authors: M. Imran Hamid, Muzammil Hussain, Yunpeng Wu, Meichun Xiang, Xingzhong Liu

Abstract:

The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils.

Keywords: disease suppressive soil, high-throughput sequencing, rhizosphere microbiome, soybean cyst nematode

Procedia PDF Downloads 125
6822 Delineation of Soil Physical Properties Using Electrical Conductivity, Case Study: Volcanic Soil Simulation Model

Authors: Twin Aji Kusumagiani, Eleonora Agustine, Dini Fitriani

Abstract:

The value changes of soil physical properties in the agricultural area are giving impacts on soil fertility. This can be caused by excessive usage of inorganic fertilizers and imbalances on organic fertilization. Soil physical parameters that can be measured include soil electrical conductivity, water content volume, soil porosity, dielectric permittivity, etc. This study used the electrical conductivity and volume water content as the measured physical parameters. The study was conducted on volcanic soil obtained from agricultural land conditioned with NPK fertilizer and salt in a certain amount. The dimension of the conditioned soil being used is 1 x 1 x 0.5 meters. By using this method, we can delineate the soil electrical conductivity value of land due to changes in the provision of inorganic NPK fertilizer and the salinity in the soil. Zone with the additional 1 kg of salt has the dimension of 60 cm in width, 20 cm in depth and 1 cm in thickness while zone with the additional of 10 kg NPK fertilizer has the dimensions of 70 cm in width, 20 cm in depth and 3 cm in thickness. This salt addition resulted in EC values changes from the original condition. Changes of the EC value tend to occur at a depth of 20 to 40 cm on the line 1B at 9:45 dS/cm and line 1C of 9.35 dS/cm and tend to have the direction to the Northeast.

Keywords: EC, electrical conductivity, VWC, volume water content, NPK fertilizer, salt, volcanic soil

Procedia PDF Downloads 285
6821 Development of Imprinting and Replica Molding of Soft Mold Curved Surface

Authors: Yung-Jin Weng, Chia-Chi Chang, Chun-Yu Tsai

Abstract:

This paper is focused on the research of imprinting and replica molding of quasi-grey scale soft mold curved surface microstructure mold. In this paper, a magnetic photocuring forming system is first developed and built independently, then the magnetic curved surface microstructure soft mode is created; moreover, the magnetic performance of the magnetic curved surface at different heights is tested and recorded, and through experimentation and simulation, the magnetic curved surface microstructure soft mold is used in the research of quasi-grey scale soft mold curved surface microstructure imprinting and replica molding. The experimental results show that, under different surface curvatures and voltage control conditions, different quasi-grey scale array microstructures take shape. In addition, this paper conducts research on the imprinting and replica molding of photoresist composite magnetic powder in order to discuss the forming performance of magnetic photoresist, and finally, the experimental result is compared with the simulation to obtain more accurate prediction and results. This research is predicted to provide microstructure component preparation technology with heterogeneity and controllability, and is a kind of valid shaping quasi-grey scale microstructure manufacturing technology method.

Keywords: soft mold, magnetic, microstructure, curved surface

Procedia PDF Downloads 297
6820 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting

Authors: Juang R. Matangaran, Qi Adlan

Abstract:

Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.

Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting

Procedia PDF Downloads 373
6819 Measurement of Greenhouse Gas Emissions from Sugarcane Plantation Soil in Thailand

Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait

Abstract:

Continuous measurements of greenhouse gases (GHGs) emitted from soils are required to understand diurnal and seasonal variations in soil emissions and related mechanism. This understanding plays an important role in appropriate quantification and assessment of the overall change in soil carbon flow and budget. This study proposes to monitor GHGs emissions from soil under sugarcane cultivation in Thailand. The measurements were conducted over 379 days. The results showed that the total net amount of GHGs emitted from sugarcane plantation soil amounts to 36 Mg CO2eq ha-1. Carbon dioxide (CO2) and nitrous oxide (N2O) were found to be the main contributors to the emissions. For methane (CH4), the net emission was found to be almost zero. The measurement results also confirmed that soil moisture content and GHGs emissions are positively correlated.

Keywords: soil, GHG emission, sugarcane, agriculture, Thailand

Procedia PDF Downloads 398
6818 New Insights for Soft Skills Development in Vietnamese Business Schools: Defining Essential Soft Skills for Maximizing Graduates’ Career Success

Authors: Hang T. T. Truong, Ronald S. Laura, Kylie Shaw

Abstract:

Within Vietnam's system of higher education, its schools of business play a vital role in supporting the country’s economic objectives. However, the crucial contribution of soft skills for maximal success within the business sector has to date not been adequately recognized by its business schools. This being so, the development of the business school curriculum in Vietnam has not been able to 'catch up', so to say, with the burgeoning need of students for a comprehensive soft skills program designed to meet the national and global business objectives of their potential employers. The burden of the present paper is first to reveal the results of our survey in Vietnam which make explicit the extent to which major Vietnamese industrial employers’ value the potential role that soft skill competencies can play in maximizing business success. Our final task will be to determine which soft skills employers discern as best serving to maximize the economic interests of Vietnam within the global marketplace. Semi-structured telephone interviews have been conducted with the 15 representative Head Employers of Vietnam's reputedly largest and most successful of the diverse business enterprises across Vietnam. The findings of the study indicate that all respondents highly value the increasing importance of soft skills in business success. Our critical analysis of respondent data reveals that 19 essential soft skills are deemed by employers as integral to business workplace efficacy and should thus be integrated into the formal business curriculum. We are confident that our study represents the first comprehensive and specific survey yet undertaken within the business sector in Vietnam which accesses and analyses the opinions of representative employers from major companies across the country in regard to the growing importance of 19 specific soft skills essential for maximizing overall business success. Our research findings also reveal that the integration into business school curriculums nationwide of the soft skills we have identified is of paramount importance to advance the national and global economic interests of Vietnam.

Keywords: business curriculum, business graduates, employers’ perception, soft skills

Procedia PDF Downloads 292
6817 Overview on Sustainable Coastal Protection Structures

Authors: Suresh Reddi, Mathew Leslie, Vishnu S. Das

Abstract:

Sustainable design is a prominent concept across all sectors of engineering and its importance is widely recognized within the Arabian Gulf region. Despite that sustainable or soft engineering options are not widely deployed in coastal engineering projects and a preference for utilizing ‘hard engineering’ solutions remain. The concept of soft engineering lies in “working together” with the nature to manage the coastline. This approach allows hard engineering options, such as breakwaters or sea walls, to be minimized or even eliminated altogether. Hard structures provide a firm barrier to wave energy or flooding, but in doing so they often have a significant impact on the natural processes of the coastline. This may affect the area locally or impact on neighboring zones. In addition, they often have a negative environmental impact and may create a sense of disconnect between the marine environment and local users. Soft engineering options, seek to protect the coastline by working in harmony with the natural process of sediment transport/budget. They often consider new habitat creation and creating usable spaces that will increase the sense of connection with nature. Often soft engineering options, where appropriately deployed can provide a low-maintenance, aesthetically valued, natural line of coastal protection. This paper deals with an overview of the following: The widely accepted soft engineering practices across the world; How this approach has been considered by Ramboll in some recent projects in Middle East and Asia; Challenges and barriers to use in using soft engineering options in the region; Way forward towards more widespread adoption.

Keywords: coastline, hard engineering, low maintenance, soft engineering options

Procedia PDF Downloads 110
6816 Characteristics of Clayey Subgrade Soil Mixed with Cement Stabilizer

Authors: Manju, Praveen Aggarwal

Abstract:

Clayey soil is considered weakest subgrade soil from civil engineering point of view under moist condition. These swelling soils attract and absorb water and losses their strength. Certain inherent properties of these clayey soils need modification for their bulk use in the construction of highways/runways pavements and embankments, etc. In this paper, results of clayey subgrade modified with cement stabilizer is presented. Investigation includes evaluation of specific gravity, Atterberg’s limits, grain size distribution, maximum dry density, optimum moisture content and CBR value of the clayey soil and cement treated clayey soil. A series of proctor compaction and CBR tests (un-soaked and soaked) are carried out on clayey soil and clayey soil mixed with cement stabilizer in 2%, 4% & 6% percentages to the dry weight of soil. In CBR test, under soaked condition best results are obtained with 6% of cement. However, the difference between the CBR value by addition of 4% and 6% cement is not much. Therefore from economical consideration addition of 4% cement gives the best result after soaking period of 90 days.

Keywords: clayey soil, cement, maximum dry density, optimum moisture content, California bearing ratio

Procedia PDF Downloads 310
6815 An Improved Visible Range Absorption Spectroscopy on Soil Macronutrient

Authors: Suhaila Isaak, Yusmeeraz Yusof, Khairunnisa Mohd Yusof, Ahmad Safuan Abdul Rashid

Abstract:

Soil fertility is commonly evaluated by soil macronutrients such as nitrate, potassium, and phosphorus contents. Optical spectroscopy is an emerging technology which is rapid and simple has been widely used in agriculture to measure soil fertility. For visible and near infrared absorption spectroscopy, the absorbed light level in is useful for soil macro-nutrient measurement. This is because the absorption of light in a soil sample influences sensitivity of the measurement. This paper reports the performance of visible and near infrared absorption spectroscopy in the 400–1400 nm wavelength range using light-emitting diode as the excitation light source to predict the soil macronutrient content of nitrate, potassium, and phosphorus. The experimental results show an improved linear regression analysis of various soil specimens based on the Beer–Lambert law to determine sensitivity of soil spectroscopy by evaluating the absorption of characteristic peaks emitted from a light-emitting diode and detected by high sensitivity optical spectrometer. This would denote in developing a simple and low-cost soil spectroscopy with light-emitting diode for future implementation.

Keywords: macronutrients absorption, optical spectroscopy, soil, absorption

Procedia PDF Downloads 255