Search results for: human genome sequencing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8700

Search results for: human genome sequencing

8640 Persistent Ribosomal In-Frame Mis-Translation of Stop Codons as Amino Acids in Multiple Open Reading Frames of a Human Long Non-Coding RNA

Authors: Leonard Lipovich, Pattaraporn Thepsuwan, Anton-Scott Goustin, Juan Cai, Donghong Ju, James B. Brown

Abstract:

Two-thirds of human genes do not encode any known proteins. Aside from long non-coding RNA (lncRNA) genes with recently-discovered functions, the ~40,000 non-protein-coding human genes remain poorly understood, and a role for their transcripts as de-facto unconventional messenger RNAs has not been formally excluded. Ribosome profiling (Riboseq) predicts translational potential, but without independent evidence of proteins from lncRNA open reading frames (ORFs), ribosome binding of lncRNAs does not prove translation. Previously, we mass-spectrometrically documented translation of specific lncRNAs in human K562 and GM12878 cells. We now examined lncRNA translation in human MCF7 cells, integrating strand-specific Illumina RNAseq, Riboseq, and deep mass spectrometry in biological quadruplicates performed at two core facilities (BGI, China; City of Hope, USA). We excluded known-protein matches. UCSC Genome Browser-assisted manual annotation of imperfect (tryptic-digest-peptides)-to-(lncRNA-three-frame-translations) alignments revealed three peptides hypothetically explicable by 'stop-to-nonstop' in-frame replacement of stop codons by amino acids in two ORFs of the lncRNA MMP24-AS1. To search for this phenomenon genomewide, we designed and implemented a novel pipeline, matching tryptic-digest spectra to wildcard-instead-of-stop versions of repeat-masked, six-frame, whole-genome translations. Along with singleton putative stop-to-nonstop events affecting four other lncRNAs, we identified 24 additional peptides with stop-to-nonstop in-frame substitutions from multiple positive-strand MMP24-AS1 ORFs. Only UAG and UGA, never UAA, stop codons were impacted. All MMP24-AS1-matching spectra met the same significance thresholds as high-confidence known-protein signatures. Targeted resequencing of MMP24-AS1 genomic DNA and cDNA from the same samples did not reveal any mutations, polymorphisms, or sequencing-detectable RNA editing. This unprecedented apparent gene-specific violation of the genetic code highlights the importance of matching peptides to whole-genome, not known-genes-only, ORFs in mass-spectrometry workflows, and suggests a new mechanism enhancing the combinatorial complexity of the proteome. Funding: NIH Director’s New Innovator Award 1DP2-CA196375 to LL.

Keywords: genetic code, lncRNA, long non-coding RNA, mass spectrometry, proteogenomics, ribo-seq, ribosome, RNAseq

Procedia PDF Downloads 203
8639 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses

Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts

Abstract:

Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.

Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV

Procedia PDF Downloads 383
8638 Biotechnological Interventions for Crop Improvement in Nutricereal Pearl Millet

Authors: Supriya Ambawat, Subaran Singh, C. Tara Satyavathi, B. S. Rajpurohit, Ummed Singh, Balraj Singh

Abstract:

Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important staple food of the arid and semiarid tropical regions of Asia, Africa, and Latin America. It is rightly termed as nutricereal as it has high nutrition value and a good source of carbohydrate, protein, fat, ash, dietary fiber, potassium, magnesium, iron, zinc, etc. Pearl millet has low prolamine fraction and is gluten free which is useful for people having a gluten allergy. It has several health benefits like reduction in blood pressure, thyroid, diabe¬tes, cardiovascular and celiac diseases but its direct consumption as food has significantly declined due to several reasons. Keeping this in view, it is important to reorient the ef¬forts to generate demand through value-addition and quality improvement and create awareness on the nutritional merits of pearl millet. In India, through Indian Council of Agricultural Research-All India Coordinated Research Project on Pearl millet, multilocational coordinated trials for developed hybrids were conducted at various centers. The gene banks of pearl millet contain varieties with high levels of iron and zinc which were used to produce new pearl millet varieties with elevated iron levels bred with the high‐yielding varieties. Thus, using breeding approaches and biochemical analysis, a total of 167 hybrids and 61 varieties were identified and released for cultivation in different agro-ecological zones of the country which also includes some biofortified hybrids rich in Fe and Zn. Further, using several biotechnological interventions such as molecular markers, next-generation sequencing (NGS), association mapping, nested association mapping (NAM), MAGIC populations, genome editing, genotyping by sequencing (GBS), genome wide association studies (GWAS) advancement in millet improvement has become possible by identifying and tagging of genes underlying a trait in the genome. Using DArT markers very high density linkage maps were constructed for pearl millet. Improved HHB67 has been released using marker assisted selection (MAS) strategies, and genomic tools were used to identify Fe-Zn Quantitative Trait Loci (QTL). The draft genome sequence of millet has also opened various ways to explore pearl millet. Further, genomic positions of significantly associated simple sequence repeat (SSR) markers with iron and zinc content in the consensus map is being identified and research is in progress towards mapping QTLs for flour rancidity. The sequence information is being used to explore genes and enzymatic pathways responsible for rancidity of flour. Thus, development and application of several biotechnological approaches along with biofortification can accelerate the genetic gain targets for pearl millet improvement and help improve its quality.

Keywords: Biotechnological approaches, genomic tools, malnutrition, MAS, nutricereal, pearl millet, sequencing.

Procedia PDF Downloads 139
8637 BingleSeq: A User-Friendly R Package for Single-Cell RNA-Seq Data Analysis

Authors: Quan Gu, Daniel Dimitrov

Abstract:

BingleSeq was developed as a shiny-based, intuitive, and comprehensive application that enables the analysis of single-Cell RNA-Sequencing count data. This was achieved via incorporating three state-of-the-art software packages for each type of RNA sequencing analysis, alongside functional annotation analysis and a way to assess the overlap of differential expression method results. At its current state, the functionality implemented within BingleSeq is comparable to that of other applications, also developed with the purpose of lowering the entry requirements to RNA Sequencing analyses. BingleSeq is available on GitHub and will be submitted to R/Bioconductor.

Keywords: bioinformatics, functional annotation analysis, single-cell RNA-sequencing, transcriptomics

Procedia PDF Downloads 163
8636 Exploring an Exome Target Capture Method for Cross-Species Population Genetic Studies

Authors: Benjamin A. Ha, Marco Morselli, Xinhui Paige Zhang, Elizabeth A. C. Heath-Heckman, Jonathan B. Puritz, David K. Jacobs

Abstract:

Next-generation sequencing has enhanced the ability to acquire massive amounts of sequence data to address classic population genetic questions for non-model organisms. Targeted approaches allow for cost effective or more precise analyses of relevant sequences; although, many such techniques require a known genome and it can be costly to purchase probes from a company. This is challenging for non-model organisms with no published genome and can be expensive for large population genetic studies. Expressed exome capture sequencing (EecSeq) synthesizes probes in the lab from expressed mRNA, which is used to capture and sequence the coding regions of genomic DNA from a pooled suite of samples. A normalization step produces probes to recover transcripts from a wide range of expression levels. This approach offers low cost recovery of a broad range of genes in the genome. This research project expands on EecSeq to investigate if mRNA from one taxon may be used to capture relevant sequences from a series of increasingly less closely related taxa. For this purpose, we propose to use the endangered Northern Tidewater goby, Eucyclogobius newberryi, a non-model organism that inhabits California coastal lagoons. mRNA will be extracted from E. newberryi to create probes and capture exomes from eight other taxa, including the more at-risk Southern Tidewater goby, E. kristinae, and more divergent species. Captured exomes will be sequenced, analyzed bioinformatically and phylogenetically, then compared to previously generated phylogenies across this group of gobies. This will provide an assessment of the utility of the technique in cross-species studies and for analyzing low genetic variation within species as is the case for E. kristinae. This method has potential applications to provide economical ways to expand population genetic and evolutionary biology studies for non-model organisms.

Keywords: coastal lagoons, endangered species, non-model organism, target capture method

Procedia PDF Downloads 161
8635 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs

Authors: Iman Farasat, Howard M. Salis

Abstract:

The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.

Keywords: biophysical model, CRISPR, Cas9, genome editing

Procedia PDF Downloads 377
8634 Clinical Impact of Ultra-Deep Versus Sanger Sequencing Detection of Minority Mutations on the HIV-1 Drug Resistance Genotype Interpretations after Virological Failure

Authors: S. Mohamed, D. Gonzalez, C. Sayada, P. Halfon

Abstract:

Drug resistance mutations are routinely detected using standard Sanger sequencing, which does not detect minor variants with a frequency below 20%. The impact of detecting minor variants generated by ultra-deep sequencing (UDS) on HIV drug-resistance (DR) interpretations has not yet been studied. Fifty HIV-1 patients who experienced virological failure were included in this retrospective study. The HIV-1 UDS protocol allowed the detection and quantification of HIV-1 protease and reverse transcriptase variants related to genotypes A, B, C, E, F, and G. DeepChek®-HIV simplified DR interpretation software was used to compare Sanger sequencing and UDS. The total time required for the UDS protocol was found to be approximately three times longer than Sanger sequencing with equivalent reagent costs. UDS detected all of the mutations found by population sequencing and identified additional resistance variants in all patients. An analysis of DR revealed a total of 643 and 224 clinically relevant mutations by UDS and Sanger sequencing, respectively. Three resistance mutations with > 20% prevalence were detected solely by UDS: A98S (23%), E138A (21%) and V179I (25%). A significant difference in the DR interpretations for 19 antiretroviral drugs was observed between the UDS and Sanger sequencing methods. Y181C and T215Y were the most frequent mutations associated with interpretation differences. A combination of UDS and DeepChek® software for the interpretation of DR results would help clinicians provide suitable treatments. A cut-off of 1% allowed a better characterisation of the viral population by identifying additional resistance mutations and improving the DR interpretation.

Keywords: HIV-1, ultra-deep sequencing, Sanger sequencing, drug resistance

Procedia PDF Downloads 304
8633 TAXAPRO, A Streamlined Pipeline to Analyze Shotgun Metagenomes

Authors: Sofia Sehli, Zainab El Ouafi, Casey Eddington, Soumaya Jbara, Kasambula Arthur Shem, Islam El Jaddaoui, Ayorinde Afolayan, Olaitan I. Awe, Allissa Dillman, Hassan Ghazal

Abstract:

The ability to promptly sequence whole genomes at a relatively low cost has revolutionized the way we study the microbiome. Microbiologists are no longer limited to studying what can be grown in a laboratory and instead are given the opportunity to rapidly identify the makeup of microbial communities in a wide variety of environments. Analyzing whole genome sequencing (WGS) data is a complex process that involves multiple moving parts and might be rather unintuitive for scientists that don’t typically work with this type of data. Thus, to help lower the barrier for less-computationally inclined individuals, TAXAPRO was developed at the first Omics Codeathon held virtually by the African Society for Bioinformatics and Computational Biology (ASBCB) in June 2021. TAXAPRO is an advanced metagenomics pipeline that accurately assembles organelle genomes from whole-genome sequencing data. TAXAPRO seamlessly combines WGS analysis tools to create a pipeline that automatically processes raw WGS data and presents organism abundance information in both a tabular and graphical format. TAXAPRO was evaluated using COVID-19 patient gut microbiome data. Analysis performed by TAXAPRO demonstrated a high abundance of Clostridia and Bacteroidia genera and a low abundance of Proteobacteria genera relative to others in the gut microbiome of patients hospitalized with COVID-19, consistent with the original findings derived using a different analysis methodology. This provides crucial evidence that the TAXAPRO workflow dispenses reliable organism abundance information overnight without the hassle of performing the analysis manually.

Keywords: metagenomics, shotgun metagenomic sequence analysis, COVID-19, pipeline, bioinformatics

Procedia PDF Downloads 174
8632 Systematic Identification of Noncoding Cancer Driver Somatic Mutations

Authors: Zohar Manber, Ran Elkon

Abstract:

Accumulation of somatic mutations (SMs) in the genome is a major driving force of cancer development. Most SMs in the tumor's genome are functionally neutral; however, some cause damage to critical processes and provide the tumor with a selective growth advantage (termed cancer driver mutations). Current research on functional significance of SMs is mainly focused on finding alterations in protein coding sequences. However, the exome comprises only 3% of the human genome, and thus, SMs in the noncoding genome significantly outnumber those that map to protein-coding regions. Although our understanding of noncoding driver SMs is very rudimentary, it is likely that disruption of regulatory elements in the genome is an important, yet largely underexplored mechanism by which somatic mutations contribute to cancer development. The expression of most human genes is controlled by multiple enhancers, and therefore, it is conceivable that regulatory SMs are distributed across different enhancers of the same target gene. Yet, to date, most statistical searches for regulatory SMs have considered each regulatory element individually, which may reduce statistical power. The first challenge in considering the cumulative activity of all the enhancers of a gene as a single unit is to map enhancers to their target promoters. Such mapping defines for each gene its set of regulating enhancers (termed "set of regulatory elements" (SRE)). Considering multiple enhancers of each gene as one unit holds great promise for enhancing the identification of driver regulatory SMs. However, the success of this approach is greatly dependent on the availability of comprehensive and accurate enhancer-promoter (E-P) maps. To date, the discovery of driver regulatory SMs has been hindered by insufficient sample sizes and statistical analyses that often considered each regulatory element separately. In this study, we analyzed more than 2,500 whole-genome sequence (WGS) samples provided by The Cancer Genome Atlas (TCGA) and The International Cancer Genome Consortium (ICGC) in order to identify such driver regulatory SMs. Our analyses took into account the combinatorial aspect of gene regulation by considering all the enhancers that control the same target gene as one unit, based on E-P maps from three genomics resources. The identification of candidate driver noncoding SMs is based on their recurrence. We searched for SREs of genes that are "hotspots" for SMs (that is, they accumulate SMs at a significantly elevated rate). To test the statistical significance of recurrence of SMs within a gene's SRE, we used both global and local background mutation rates. Using this approach, we detected - in seven different cancer types - numerous "hotspots" for SMs. To support the functional significance of these recurrent noncoding SMs, we further examined their association with the expression level of their target gene (using gene expression data provided by the ICGC and TCGA for samples that were also analyzed by WGS).

Keywords: cancer genomics, enhancers, noncoding genome, regulatory elements

Procedia PDF Downloads 81
8631 Societal Acceptability Conditions of Genome Editing for Upland Rice in Madagascar

Authors: Anny Lucrece Nlend Nkott, Ludovic Temple

Abstract:

The appearance in 2012 of the CRISPR-CaS9 genome editing technique marks a turning point in the field of genetics. This technique would make it possible to create new varieties quickly and cheaply. Although some consider CRISPR-CaS9 to be revolutionary, others consider it a potential societal threat. To document the controversy, we explain the socioeconomic conditions under which this technique could be accepted for the creation of a rainfed rice variety in Madagascar. The methodological framework is based on 38 individual and semistructured interviews, a multistakeholder forum with 27 participants, and a survey of 148 rice producers. Results reveal that the acceptability of genome editing requires (i) strengthening the seed system through the operationalization of regulatory structures and the upgrading of stakeholders' knowledge of genetically modified organisms, (ii) assessing the effects of the edited variety on biodiversity and soil nitrogen dynamics, and (iii) strengthening the technical and human capacities of the biosafety body. Structural mechanisms for regulating the seed system are necessary to ensure safe experimentation of genome editing techniques. Organizational innovation also appears to be necessary. The study documents how collective learning between communities of scientists and nonscientists is a component of systemic processes of varietal innovation. This study was carried out with the financial support of the GENERICE project (Generation and Deployment of Genome-Edited, Nitrogen-use-Efficient Rice Varieties), funded by the Agropolis Foundation.

Keywords: CRISPR-CaS9, varietal innovation, seed system, innovation system

Procedia PDF Downloads 117
8630 Mining the Proteome of Fusobacterium nucleatum for Potential Therapeutics Discovery

Authors: Abdul Musaweer Habib, Habibul Hasan Mazumder, Saiful Islam, Sohel Sikder, Omar Faruk Sikder

Abstract:

The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1499 proteins of Fusobacterium nucleatum, which has no homolog in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the KEGG Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the 3-D structure of these three proteins. Finally, determination of ligand binding sites of the key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against Fusobacterium nucleatum.

Keywords: colorectal cancer, drug target, Fusobacterium nucleatum, homology modeling, ligands

Procedia PDF Downloads 357
8629 First Attempts Using High-Throughput Sequencing in Senecio from the Andes

Authors: L. Salomon, P. Sklenar

Abstract:

The Andes hold the highest plant species diversity in the world. How this occurred is one of the most intriguing questions in studies addressing the origin and patterning of plant diversity worldwide. Recently, the explosive adaptive radiations found in high Andean groups have been pointed as triggers to this spectacular diversity. The Andes is the species-richest area for the biggest genus from the Asteraceae family: Senecio. There, the genus presents an incredible diversity of species, striking growth form variation, and large niche span. Even when some studies tried to disentangle the evolutionary story for some Andean species in Senecio, they obtained partially resolved and low supported phylogenies, as expected for recently radiated groups. The high-throughput sequencing (HTS) approaches have proved to be a powerful tool answering phylogenetic questions in those groups whose evolutionary stories are recent and traditional techniques like Sanger sequencing are not informative enough. Although these tools have been used to understand the evolution of an increasing number of Andean groups, nowadays, their scope has not been applied for Senecio. This project aims to contribute to a better knowledge of the mechanisms shaping the hyper diversity of Senecio in the Andean region, using HTS focusing on Senecio ser. Culcitium (Asteraceae), recently recircumscribed. Firstly, reconstructing a highly resolved and supported phylogeny, and after assessing the role of allopatric differentiation, hybridization, and genome duplication in the diversification of the group. Using the Hyb-Seq approach, combining target enrichment using Asteraceae COS loci baits and genome skimming, more than 100 new accessions were generated. HybPhyloMaker and HybPiper pipelines were used for the phylogenetic analyses, and another pipeline in development (Paralogue Wizard) was used to deal with paralogues. RAxML was used to generate gene trees and Astral for species tree reconstruction. Phyparts were used to explore as first step of gene tree discordance along the clades. Fully resolved with moderated supported trees were obtained, showing Senecio ser. Culcitium as monophyletic. Within the group, some species formed well-supported clades with morphologically related species, while some species would not have exclusive ancestry, in concordance with previous studies using amplified fragment length polymorphism (AFLP) showing geographical differentiation. Discordance between gene trees was detected. Paralogues were detected for many loci, indicating possible genome duplications; ploidy level estimation using flow cytometry will be carried out during the next months in order to identify the role of this process in the diversification of the group. Likewise, TreeSetViz package for Mesquite, hierarchical likelihood ratio congruence test using Concaterpillar, and Procrustean Approach to Cophylogeny (PACo), will be used to evaluate the congruence among different inheritance patterns. In order to evaluate the influence of hybridization and Incomplete Lineage Sorting (ILS) in each resultant clade from the phylogeny, Joly et al.'s 2009 method in a coalescent scenario and Paterson’s D-statistic will be performed. Even when the main discordance sources between gene trees were not explored in detail yet, the data show that at least to some degree, processes such as genome duplication, hybridization, and/or ILS could be involved in the evolution of the group.

Keywords: adaptive radiations, Andes, genome duplication, hybridization, Senecio

Procedia PDF Downloads 110
8628 Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1

Authors: Shagufta Jabeen, Faez J. Firdaus Abdullah, Zunita Zakaria, Nurulfiza M. Isa, Yung C. Tan, Wai Y. Yee, Abdul R. Omar

Abstract:

Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals.

Keywords: comparative genomics, DNA sequencing, phage, phylogenomics

Procedia PDF Downloads 154
8627 Genome Editing in Sorghum: Advancements and Future Possibilities: A Review

Authors: Micheale Yifter Weldemichael, Hailay Mehari Gebremedhn, Teklehaimanot Hailesslasie

Abstract:

The advancement of target-specific genome editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), mega-nucleases, base editing (BE), prime editing (PE), transcription activator-like endonucleases (TALENs), and zinc-finger nucleases (ZFNs), have paved the way for a modern era of gene editing. CRISPR/Cas9, as a versatile, simple, cost-effective and robust system for genome editing, has dominated the genome manipulation field over the last few years. The application of CRISPR/Cas9 in sorghum improvement is particularly vital in the context of ecological, environmental and agricultural challenges, as well as global climate change. In this context, gene editing using CRISPR/Cas9 can improve nutritional value, yield, resistance to pests and disease and tolerance to different abiotic stress. Moreover, CRISPR/Cas9 can potentially perform complex editing to reshape already available elite varieties and new genetic variations. However, existing research is targeted at improving even further the effectiveness of the CRISPR/Cas9 genome editing techniques to fruitfully edit endogenous sorghum genes. These findings suggest that genome editing is a feasible and successful venture in sorghum. Newer improvements and developments of CRISPR/Cas9 techniques have further qualified researchers to modify extra genes in sorghum with improved efficiency. The fruitful application and development of CRISPR techniques for genome editing in sorghum will not only help in gene discovery, creating new, improved traits in sorghum regulating gene expression sorghum functional genomics, but also in making site-specific integration events.

Keywords: CRISPR/Cas9, genome editing, quality, sorghum, stress, yield

Procedia PDF Downloads 34
8626 Methylation Profiling and Validation of Candidate Tissue-Specific Differentially Methylated Regions for Identification of Human Blood, Saliva, Semen and Vaginal Fluid and Its Application in Forensics

Authors: Meenu Joshi, Natalie Naidoo, Farzeen Kader

Abstract:

Identification of body fluids is an essential step in forensic investigation to aid in crime reconstruction. Tissue-specific differentially methylated regions (tDMRs) of the human genome can be targeted to be used as biomarkers to differentiate between body fluids. The present study was undertaken to establish the methylation status of potential tDMRs in blood, semen, saliva, and vaginal fluid by using methylation-specific PCR (MSP) and bisulfite sequencing (BS). The methylation statuses of 3 potential tDMRS in genes ZNF282, PTPRS, and HPCAL1 were analysed in 10 samples of each body fluid. With MSP analysis, the ZNF282, and PTPRS1 tDMR displayed semen-specific hypomethylation while HPCAL1 tDMR showed saliva-specific hypomethylation. With quantitative analysis by BS, the ZNF282 tDMR showed statistically significant difference in overall methylation between semen and all other body fluids as well as at individual CpG sites (p < 0.05). To evaluate the effect of environmental conditions on the stability of methylation profiles of the ZNF282 tDMR, five samples of each body fluid were subjected to five different forensic simulated conditions (dry at room temperature, wet in an exsiccator, outside on the ground, sprayed with alcohol, and sprayed with bleach) for 50 days. Vaginal fluid showed highest DNA recovery under all conditions while semen had least DNA quantity. Under outside on the ground condition, all body fluids except semen showed a decrease in methylation level; however, a significant decrease in methylation level was observed for saliva. A statistical significant difference was observed for saliva and semen (p < 0.05) for outside on the ground condition. No differences in methylation level were observed for the ZNF282 tDMR under all conditions for vaginal fluid samples. Thus, in the present study ZNF282 tDMR has been identified as a novel and stable semen-specific hypomethylation marker.

Keywords: body fluids, bisulphite sequencing, forensics, tDMRs, MSP

Procedia PDF Downloads 132
8625 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete

Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo

Abstract:

Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.

Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways

Procedia PDF Downloads 213
8624 PMEL Marker Identification of Dark and Light Feather Colours in Local Canary

Authors: Mudawamah Mudawamah, Muhammad Z. Fadli, Gatot Ciptadi, Aulanni’am

Abstract:

Canary breeders have spread throughout Indonesian regions for the low-middle society and become an income source for them. The interesting phenomenon of the canary market is the feather colours become one of determining factor for the price. The advantages of this research were contributed to the molecular database as a base of selection and mating for the Indonesia canary breeder. The research method was experiment with the genome obtained from canary blood isolation. The genome did the PCR amplification with PMEL marker followed by sequencing. Canaries were used 24 heads of light and dark colour feathers. Research data analyses used BioEdit and Network 4.6.0.0 software. The results showed that all samples were amplification with PMEL gene with 500 bp fragment length. In base sequence of 40 was found Cytosine(C) in the light colour canaries, while the dark colour canaries was obtained Thymine (T) in same base sequence. Sequence results had 286-415 bp fragment and 10 haplotypes. The conclusions were the PMEL gene (gene of white pigment) was likely to be used PMEL gene to detect molecular genetic variation of dark and light colour feather.

Keywords: canary, haplotype, PMEL, sequence

Procedia PDF Downloads 206
8623 Genomic Surveillance of Bacillus Anthracis in South Africa Revealed a Unique Genetic Cluster of B- Clade Strains

Authors: Kgaugelo Lekota, Ayesha Hassim, Henriette Van Heerden

Abstract:

Bacillus anthracis is the causative agent of anthrax that is composed of three genetic groups, namely A, B, and C. Clade-A is distributed world-wide, while sub-clades B has been identified in Kruger National Park (KNP), South Africa. KNP is one of the endemic anthrax regions in South Africa with distinctive genetic diversity. Genomic surveillance of KNP B. anthracis strains was employed on the historical culture collection isolates (n=67) dated from the 1990’s to 2015 using a whole genome sequencing approach. Whole genome single nucleotide polymorphism (SNPs) and pan-genomics analysis were used to define the B. anthracis genetic population structure. This study showed that KNP has heterologous B. anthracis strains grouping in the A-clade with more prominent ABr.005/006 (Ancient A) SNP lineage. The 2012 and 2015 anthrax isolates are dispersed amongst minor sub-clades that prevail in non-stabilized genetic evolution strains. This was augmented with non-parsimony informative SNPs of the B. anthracis strains across minor sub-clades of the Ancient A clade. Pan-genomics of B. anthracis showed a clear distinction between A and B-clade genomes with 11 374 predicted clusters of protein coding genes. Unique accessory genes of B-clade genomes that included biosynthetic cell wall genes and multidrug resistant of Fosfomycin. South Africa consists of diverse B. anthracis strains with unique defined SNPs. The sequenced B. anthracis strains in this study will serve as a means to further trace the dissemination of B. anthracis outbreaks globally and especially in South Africa.

Keywords: bacillus anthracis, whole genome single nucleotide polymorphisms, pangenomics, kruger national park

Procedia PDF Downloads 104
8622 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments

Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor

Abstract:

Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.

Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling

Procedia PDF Downloads 43
8621 Cassava Plant Architecture: Insights from Genome-Wide Association Studies

Authors: Abiodun Olayinka, Daniel Dzidzienyo, Pangirayi Tongoona, Samuel Offei, Edwige Gaby Nkouaya Mbanjo, Chiedozie Egesi, Ismail Yusuf Rabbi

Abstract:

Cassava (Manihot esculenta Crantz) is a major source of starch for various industrial applications. However, the traditional cultivation and harvesting methods of cassava are labour-intensive and inefficient, limiting the supply of fresh cassava roots for industrial starch production. To achieve improved productivity and quality of fresh cassava roots through mechanized cultivation, cassava cultivars with compact plant architecture and moderate plant height are needed. Plant architecture-related traits, such as plant height, harvest index, stem diameter, branching angle, and lodging tolerance, are critical for crop productivity and suitability for mechanized cultivation. However, the genetics of cassava plant architecture remain poorly understood. This study aimed to identify the genetic bases of the relationships between plant architecture traits and productivity-related traits, particularly starch content. A panel of 453 clones developed at the International Institute of Tropical Agriculture, Nigeria, was genotyped and phenotyped for 18 plant architecture and productivity-related traits at four locations in Nigeria. A genome-wide association study (GWAS) was conducted using the phenotypic data from a panel of 453 clones and 61,238 high-quality Diversity Arrays Technology sequencing (DArTseq) derived Single Nucleotide Polymorphism (SNP) markers that are evenly distributed across the cassava genome. Five significant associations between ten SNPs and three plant architecture component traits were identified through GWAS. We found five SNPs on chromosomes 6 and 16 that were significantly associated with shoot weight, harvest index, and total yield through genome-wide association mapping. We also discovered an essential candidate gene that is co-located with peak SNPs linked to these traits in M. esculenta. A review of the cassava reference genome v7.1 revealed that the SNP on chromosome 6 is in proximity to Manes.06G101600.1, a gene that regulates endodermal differentiation and root development in plants. The findings of this study provide insights into the genetic basis of plant architecture and yield in cassava. Cassava breeders could leverage this knowledge to optimize plant architecture and yield in cassava through marker-assisted selection and targeted manipulation of the candidate gene.

Keywords: Manihot esculenta Crantz, plant architecture, DArtseq, SNP markers, genome-wide association study

Procedia PDF Downloads 37
8620 Exploring Emerging Viruses From a Protected Reserve

Authors: Nemat Sokhandan Bashir

Abstract:

Threats from viruses to agricultural crops could be even larger than the losses caused by the other pathogens because, in many cases, the viral infection is latent but crucial from an epidemic point of view. Wild vegetation can be a source of many viruses that eventually find their destiny in crop plants. Although often asymptomatic in wild plants due to adaptation, they can potentially cause serious losses in crops. Therefore, exploring viruses in wild vegetation is very important. Recently, omics have been quite useful for exploring plant viruses from various plant sources, especially wild vegetation. For instance, we have discovered viruses such as Ambrossia asymptomatic virus I (AAV-1) through the application of metagenomics from Oklahoma Prairie Reserve. Accordingly, extracts from randomly-sampled plants are subjected to high speed and ultracentrifugation to separated virus-like particles (VLP), then nucleic acids in the form of DNA or RNA are extracted from such VLPs by treatment with phenol—chloroform and subsequent precipitation by ethanol. The nucleic acid preparations are separately treated with RNAse or DNAse in order to determine the genome component of VLPs. In the case of RNAs, the complementary cDNAs are synthesized before submitting to DNA sequencing. However, for VLPs with DNA contents, the procedure would be relatively straightforward without making cDNA. Because the length of the nucleic acid content of VPLs can be different, various strategies are employed to achieve sequencing. Techniques similar to so-called "chromosome walking" may be used to achieve sequences of long segments. When the nucleotide sequence data were obtained, they were subjected to BLAST analysis to determine the most related previously reported virus sequences. In one case, we determined that the novel virus was AAV-l because the sequence comparison and analysis revealed that the reads were the closest to the Indian citrus ringspot virus (ICRSV). AAV—l had an RNA genome with 7408 nucleotides in length and contained six open reading frames (ORFs). Based on phylogenies inferred from the replicase and coat protein ORFs of the virus, it was placed in the genus Mandarivirus.

Keywords: wild, plant, novel, metagenomics

Procedia PDF Downloads 43
8619 Transcriptome Analysis of Dry and Soaked Tomato (Solanum lycopersicum) Seeds in Response to Fast Neutron Irradiation

Authors: Yujie Zhou, Hee-Seong Byun, Sang-In Bak, Eui-Joon Kil, Kyung Joo Min, Vivek Chavan, Won Kyong Cho, Sukchan Lee, Seung-Woo Hong, Tae-Sun Park

Abstract:

Fast neutron irradiation (FNI) can cause mutations on plant genome but, in the most of cases, these irradiated plants have not shown significant characteristics phenotypically. In this study, we utilized RNA-Seq to generate a high-resolution transcriptome map of the tomato (Solanum lycopersicum) genome effected by FNI. To quantify the different transcription levels in tomato irradiated by FNI, tomato seeds were irradiated by using MC-50 cyclotron (KIRAMS, Korea) for 0, 30 and 90 minutes, respectively. To investigate the effects on the pre-soaking condition, experimental groups were divided into dry and soaked seeds, which were soaked for 8 hours before irradiation. There was no noticeable difference in the percentage germination (PG) among dry seeds, while irradiated soaked seeds have about 10 % lower PG compared to the unirradiated control group. Using whole transcriptome sequencing by HiSeq 2000, we analyzed the differential gene expression in response to different time of FNI in dry and soaked seeds. More than 1.4 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between irradiated and unirradiated seeds were assessed. In 0, 30 and 90 minutes irradiation, 12,135, 28,495 and 28,675 transcripts were generated, respectively. Gene ontology analysis suggested the different enrichment of transcripts involved in response to different FNI. The present study showed that FNI effects on plant gene expression, which can become a new parameters for evaluating the responses against FNI on plants. In addition, the comparative analysis of differentially expressed genes in D and S seeds by FNI will also give us a chance to deep explore novel candidate genes for FNI, which could be a good model system to understand the mechanisms behind the adaption of plant to space biology research.

Keywords: tomato (solanum lycopersicum), fast neutron irradiation, RNA-sequence, transcriptome expression

Procedia PDF Downloads 281
8618 A Deletion in Duchenne Muscular Dystrophy Gene Found Through Whole Exome Sequencing in Iran

Authors: Negin Parsamanesh, Saman Ameri-Mahabadi, Ali Nikfar, Mojdeh Mansouri, Hossein Chiti, Gita Fatemi Abhari

Abstract:

Duchenne muscular dystrophy (DMD) is a severe progressive X-linked neuromuscular illness that affects movement through mutations in dystrophin gene. The mutation leads to insufficient, lack of or dysfunction of dystrophin. The cause of DMD was determined in an Iranian family. Exome sequencing was carried out along with a complete physical examination of the family. In silico methods were applied to find the alteration in the protein structure. The homozygous variant in DMD gene (NM-004006.2) was defined as c.2732-2733delTT (p.Phe911CysfsX8) in exon 21. In addition, phylogenetic conservation study of the human dystrophin protein sequence revealed that phenylalanine 911 is one of the evolutionarily conserved amino acids. In conclusion, our study indicated a new deletion in the DMD gene in the affected family. This deletion with an X-linked inheritance pattern is new in Iran. These findings could facilitate genetic counseling for this family and other patients in the future.

Keywords: duchenne muscular dystrophy, whole exome sequencing, iran, metabolic syndrome

Procedia PDF Downloads 41
8617 Precise Identification of Clustered Regularly Interspaced Short Palindromic Repeats-Induced Mutations via Hidden Markov Model-Based Sequence Alignment

Authors: Jingyuan Hu, Zhandong Liu

Abstract:

CRISPR genome editing technology has transformed molecular biology by accurately targeting and altering an organism’s DNA. Despite the state-of-art precision of CRISPR genome editing, the imprecise mutation outcome and off-target effects present considerable risk, potentially leading to unintended genetic changes. Targeted deep sequencing, combined with bioinformatics sequence alignment, can detect such unwanted mutations. Nevertheless, the classical method, Needleman-Wunsch (NW) algorithm may produce false alignment outcomes, resulting in inaccurate mutation identification. The key to precisely identifying CRISPR-induced mutations lies in determining optimal parameters for the sequence alignment algorithm. Hidden Markov models (HMM) are ideally suited for this task, offering flexibility across CRISPR systems by leveraging forward-backward algorithms for parameter estimation. In this study, we introduce CRISPR-HMM, a statistical software to precisely call CRISPR-induced mutations. We demonstrate that the software significantly improves precision in identifying CRISPR-induced mutations compared to NW-based alignment, thereby enhancing the overall understanding of the CRISPR gene-editing process.

Keywords: CRISPR, HMM, sequence alignment, gene editing

Procedia PDF Downloads 17
8616 Deleterious SNP’s Detection Using Machine Learning

Authors: Hamza Zidoum

Abstract:

This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.

Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM

Procedia PDF Downloads 348
8615 Mycoplasmas and Pathogenesis in Preventive Medicine

Authors: Narin Salehiyan

Abstract:

The later sequencing of the complete genomes of Mycoplasma genitalium and M. pneumoniae has pulled in significant consideration to the atomic science of mycoplasmas, the littlest self-replicating living beings. It shows up that we are presently much closer to the objective of defining, in atomic terms, the complete apparatus of a self-replicating cell. Comparative genomics based on comparison of the genomic cosmetics of mycoplasmal genomes with those of other microbes, has opened better approaches of looking at the developmental history of the mycoplasmas. There's presently strong hereditary bolster for the speculation that mycoplasmas have advanced as a department of gram-positive microbes by a handle of reductive advancement. Amid this prepare, the mycoplasmas misplaced significant parcels of their ancestors’ chromosomes but held the qualities basic for life. In this way, the mycoplasmal genomes carry a tall rate of preserved qualities, incredibly encouraging quality comment. The critical genome compaction that happened in mycoplasmas was made conceivable by receiving a parasitic mode of life. The supply of supplements from their has clearly empowered mycoplasmas to lose, amid advancement, the qualities for numerous assimilative forms. Amid their advancement and adjustment to a parasitic mode of life, the mycoplasmas have created different hereditary frameworks giving a profoundly plastic set of variable surface proteins to avoid the have safe framework.

Keywords: mycoplasma, plasma, pathogen, genome

Procedia PDF Downloads 27
8614 A Preliminary Report of HBV Full Genome Sequencing Derived from Iranian Intravenous Drug Users

Authors: Maryam Vaezjalali, Koroush Rahimian, Maryam Asli, Tahmineh Kandelouei, Foad Davoodbeglou, Amir H. Kashi

Abstract:

Objectives: The present study was conducted to assess the HBV molecular profiles including genotypes, subgenotypes, subtypes & mutations in hepatitis B genes. Materials/Patients and Methods: This study was conducted on 229 intravenous drug users who referred to three Drop- in-Centers and a hospital in Tehran. HBV DNA was extracted from HBsAg positive serum samples and amplified by Nested PCR. HBV genotype, subgenotypes, subtype and genes mutation were determined by direct sequencing. Phylogenetic tree was constructed using neighbor- joining (NJ) method. Statistical analyses were carried out by SPSS 20. Results: HBV DNA was found in 3 HBsAg positive cases. Phylogenetic tree of derived HBV DNAs showed the existence of genotype D (subgenotype D1, subtype ayw2). Also immune escape mutations were determined in S gene. Conclusion: There were a few variations and genotypes and subtypes among infected intravenous drug users. This study showed the predominance of genotype D among intravenous drug users. Our study concurs with other reports from Iran, that all showing currently only genotype D is the only detectable genotype in Iran.

Keywords: drug users, genotype, HBV, phylogenetic tree

Procedia PDF Downloads 289
8613 Genome Characterization and Phylogeny Analysis of Viruses Infected Invertebrates, Parvoviridae Family

Authors: Niloofar Fariborzi, Hamzeh Alipour, Kourosh Azizi, Neda Eskandarzade, Abozar Ghorbani

Abstract:

The family Parvoviridae consists of a large diversity of single-stranded DNA viruses, which cause mild to severe diseases in both vertebrates and invertebrates. The Parvoviridae are classified into three subfamilies: Parvovirinae infect vertebrates, Densovirinae infects invertebrates, while Hamaparovirinae infects both vertebrates and invertebrates. Except for the NS1 region, which is the prime criterion for phylogeny analysis, other parts of the parvoviruses genome, such as UTRs, are diverse even among closely related viruses or within the same genus. It is believed that host switching in parvoviruses may be related to genetic changes in regions other than NS1; therefore, whole-genome screening is valuable for studying parvoviruses' host-virus interactions. The aim of this study was to analyze genome organization and phylogeny of the complete genome sequence of the 132 Paroviridae family members, focusing on viruses that infect invertebrates. The maximum and minimum divergence within each subfamily belonged to Densovirinae and Parvovirinae, respectively. The greatest evolutionary divergence was between Hamaparovirinae and Parvovirinae. Unclassified viruses were mostly from Parovirinae and had the highest divergence to densoviruses and the lowest divergence to Parovirinae viruses. In a phylogenetic tree, all hamparoviruses were found in the center of densoviruses, with the exception of Syngnathid Ichthamaparvovirus 1 (NC_055527), which was positioned between two Parvovirinae members (NC _022089 and NC_038544). The proximity of hamparoviruses members to some densoviruses strengthens the possibility that densoviruses may be the ancestors of hamaparoviruses or vice versa. Therefore, examination and phylogeny analysis of the whole genome is necessary to understand Parvoviridae family host selection.

Keywords: densoviruses, parvoviridae, bioinformatics, phylogeny

Procedia PDF Downloads 59
8612 Genome-Wide Analysis of Long Terminal Repeat (LTR) Retrotransposons in Rabbit (Oryctolagus cuniculus)

Authors: Zeeshan Khan, Faisal Nouroz, Shumaila Noureen

Abstract:

European or common rabbit (Oryctolagus cuniculus) belongs to class Mammalia, order Lagomorpha of family Leporidae. They are distributed worldwide and are native to Europe (France, Spain and Portugal) and Africa (Morocco and Algeria). LTR retrotransposons are major Class I mobile genetic elements of eukaryotic genomes and play a crucial role in genome expansion, evolution and diversification. They were mostly annotated in various genomes by conventional approaches of homology searches, which restricted the annotation of novel elements. Present work involved de novo identification of LTR retrotransposons by LTR_FINDER in haploid genome of rabbit (2247.74 Mb) distributed in 22 chromosomes, of which 7,933 putative full-length or partial copies were identified containing 69.38 Mb of elements, accounting 3.08% of the genome. Highest copy numbers (731) were found on chromosome 7, followed by chromosome 12 (705), while the lowest copy numbers (27) were detected in chromosome 19 with no elements identified from chromosome 21 due to partially sequenced chromosome, unidentified nucleotides (N) and repeated simple sequence repeats (SSRs). The identified elements ranged in sizes from 1.2 - 25.8 Kb with average sizes between 2-10 Kb. Highest percentage (4.77%) of elements was found in chromosome 15, while lowest (0.55%) in chromosome 19. The most frequent tRNA type was Arginine present in majority of the elements. Based on gained results, it was estimated that rabbit exhibits 15,866 copies having 137.73 Mb of elements accounting 6.16% of diploid genome (44 chromosomes). Further molecular analyses will be helpful in chromosomal localization and distribution of these elements on chromosomes.

Keywords: rabbit, LTR retrotransposons, genome, chromosome

Procedia PDF Downloads 120
8611 Binding of Avian Excreta-Derived Enteroccoci to a Streptococcocus mutans: Implications for Avian to Human Transmission

Authors: Richard K. Jolley, Jonathan A. Coffman

Abstract:

Since Enterococci has been implicated in oral disease, we hypothesized the transmission of avian Enterococci to humans via fecal-oral transmission facilitated by adherence to dental plaque. To demonstrate the capability of Enterococci to bind to a dental plaque we filtered avian excreta and incubated the filtrate on a sucrose-induced, Streptococcus mutans biofilm. The biofilm was washed several times with a detergent to remove bacteria binding non-specifically to the biofilm, DNA was isolated from the biofilm, 16S rDNA was amplified, sequenced by Ion Torrent DNA sequencing and analyzed with bioinformatics. Enterococci and other known bacterial pathogens were shown to adhere to the biofilm. Culturing the washed biofilm with Bile Esculin Azide (BEA) agar also confirmed the presence of Enterococci as verified with Sanger sequencing. The results suggest that Enteroccoci in avian excreta has the ability to adhere to human dental plaque and may be a mechanism of entry when humans encounter contaminated aerosols, water or food.

Keywords: Enterococci, avian excreta, dental plaque, NGS

Procedia PDF Downloads 127