Search results for: horizontal displacement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1653

Search results for: horizontal displacement

1383 A Preliminary Study of Economic Dimension of Underground Rock Caverns for Water Storage at Singapore

Authors: Junlong Shang, Zhengxian Chua, Hoongping Peh, Zhiye Zhao

Abstract:

Due to scarce land resources in Singapore, it is imperative to increase water storage capacities to meet the increasing demand of water to secure a sustainable development, which can be achieved in the underground by rock caverns. In this paper, a preliminary study on the effects of cavern span, height and radius on the cavern stability is presented to provide a guidance on the cavern construction in the context of Singapore. It is found that the radius of caverns should be around half of the span width (i.e., B/R=2) to reduce vertical displacement at the crown of cavern. The smaller the rock cover, the smaller displacement. The minimum rock thickness should be at least the same as the cavern span to eliminate excessive yielded element. Finally, rock support system is introduced to maintain the profile of caverns.

Keywords: cavern dimension, numerical modelling, sustainable development, underground rock cavern

Procedia PDF Downloads 292
1382 The Impact of Ultrasonicator on the Vertical and Horizontal Mixing Profile of Petrol-Bioethanol

Authors: D. Nkazi, S. E. Iyuke, J. Mulopo

Abstract:

Increasing global energy demand as well as air quality concerns have in recent years led to the search for alternative clean fuels to replace fossil fuels. One such alternative is the blending of petrol with ethanol, which has numerous advantages such ethanol’s ability to act as oxygenate thus reducing the carbon monoxide emissions from the exhaust of internal combustion engines of vehicles. However, the hygroscopic nature of ethanol is a major concern in obtaining a perfectly homogenized petrol-ethanol fuel. This problem has led to the study of ways of homogenizing the petrol-ethanol mixtures. During the blending process, volumes fraction of ethanol and petrol were studied with respect to the depth within the storage container to confirm homogenization of the blend and time of storage. The results reveal that the density of the mixture was constant. The binodal curve of the ternary diagram shows an increase of homogeneous region, indicating an improved of interaction between water and petrol. The concentration distribution in the reactor showed proof of cavitation formation since in both directions, the variation of concentration with both time and distance was found to be oscillatory. On comparing the profiles in both directions, the concentration gradient, diffusion flux, and energy and diffusion rates were found to be higher in the vertical direction compared to the horizontal direction. It was therefore concluded that ultrasonication creates cavitation in the mixture which enhances mass transfer and mixing of ethanol and petrol. The horizontal direction was found to be the diffusion rate limiting step which proposed that the blender should have a larger height to diameter ratio. It is, however, recommended that further studies be done on the rate-limiting step so as to have actual dimensions of the reactor.

Keywords: ultrasonication, petrol, ethanol, concentration

Procedia PDF Downloads 340
1381 Risk Assessment of Reinforcement System on Fractured Rock Mass, Gate Shaft Project, Jatigede Dam, Sumedang, West Java, Indonesia

Authors: A. Ardianto, M. A. Putera Agung, S. Pramusandi

Abstract:

Power waterway is one of dam structures and as an intake vertical tunnel or well function for hydroelectric power plants in Jatigede area, Sumedang, West Java. Gate shaft is also one of parts the power waterway system. The paper concerns some consideration in determining a critical state parameter on the back stability analysis of gate shaft or excavation wall stability during excavation. Study analysis was carried out using without and with reinforcement system. Results study showed that reinforcement shaft could reduce the total displacement and safety factor could increases significantly. Based on the back calculation results, it was recommended to install some reinforcement materials and drainage system to reduce pore water pressure.

Keywords: power waterway, reinforcement, displacement, safety

Procedia PDF Downloads 377
1380 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings

Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch

Abstract:

It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.

Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry

Procedia PDF Downloads 140
1379 Effects of a Head Mounted Display Adaptation on Reaching Behaviour: Implications for a Therapeutic Approach in Unilateral Neglect

Authors: Taku Numao, Kazu Amimoto, Tomoko Shimada, Kyohei Ichikawa

Abstract:

Background: Unilateral spatial neglect (USN) is a common syndrome following damage to one hemisphere of the brain (usually the right side), in which a patient fails to report or respond to stimulation from the contralesional side. These symptoms are not due to primary sensory or motor deficits, but instead, reflect an inability to process input from that side of their environment. Prism adaptation (PA) is a therapeutic treatment for USN, wherein a patient’s visual field is artificially shifted laterally, resulting in a sensory-motor adaptation. However, patients with USN also tend to perceive a left-leaning subjective vertical in the frontal plane. The traditional PA cannot be used to correct a tilt in the subjective vertical, because a prism can only polarize, not twist, the surroundings. However, this can be accomplished using a head mounted display (HMD) and a web-camera. Therefore, this study investigated whether an HMD system could be used to correct the spatial perception of USN patients in the frontal as well as the horizontal plane. We recruited healthy subjects in order to collect data for the refinement of USN patient therapy. Methods: Eight healthy subjects sat on a chair wearing a HMD (Oculus rift DK2), with a web-camera (Ovrvision) displaying a 10 degree leftward rotation and a 10 degree counter-clockwise rotation along the frontal plane. Subjects attempted to point a finger at one of four targets, assigned randomly, a total of 48 times. Before and after the intervention, each subject’s body-centre judgment (BCJ) was tested by asking them to point a finger at a touch panel straight in front of their xiphisternum, 10 times sight unseen. Results: Intervention caused the location pointed to during the BCJ to shift 35 ± 17 mm (Ave ± SD) leftward in the horizontal plane, and 46 ± 29 mm downward in the frontal plane. The results in both planes were significant by paired-t-test (p<.01). Conclusions: The results in the horizontal plane are consistent with those observed following PA. Furthermore, the HMD and web-camera were able to elicit 3D effects, including in both the horizontal and frontal planes. Future work will focus on applying this method to patients with and without USN, and investigating whether subject posture is also affected by the HMD system.

Keywords: head mounted display, posture, prism adaptation, unilateral spatial neglect

Procedia PDF Downloads 254
1378 Numerical Study of Mixed Convection Coupled to Radiation in a Square Cavity with a Lid-Driven

Authors: Belmiloud Mohamed Amine, Sad Chemloul Nord-Eddine

Abstract:

In this study we investigated numerically heat transfer by mixed convection coupled to radiation in a square cavity; the upper horizontal wall is movable. The purpose of this study is to see the influence of the emissivity and the varying of the Richardson number on the variation of the average Nusselt number. The vertical walls of the cavity are differentially heated, the left wall is maintained at a uniform temperature higher than the right wall, and the two horizontal walls are adiabatic. The finite volume method is used for solving the dimensionless governing equations. Emissivity values used in this study are ranged between 0 and 1, the Richardson number in the range 0.1 to10. The Rayleigh number is fixed to Ra = 10000 and the Prandtl number is maintained constant Pr = 0.71. Streamlines, isothermal lines and the average Nusselt number are presented according to the surface emissivity. The results of this study show that the Richardson number and emissivity affect the average Nusselt number.

Keywords: mixed convection, square cavity, wall emissivity, lid-driven, numerical study

Procedia PDF Downloads 299
1377 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 137
1376 Analyzing Time Lag in Seismic Waves and Its Effects on Isolated Structures

Authors: Faizan Ahmad, Jenna Wong

Abstract:

Time lag between peak values of horizontal and vertical seismic waves is a well-known phenomenon. Horizontal and vertical seismic waves, secondary and primary waves in nature respectively, travel through different layers of soil and the travel time is dependent upon the medium of wave transmission. In seismic analysis, many standardized codes do not require the actual vertical acceleration to be part of the analysis procedure. Instead, a factor load addition for a particular site is used to capture strength demands in case of vertical excitation. This study reviews the effects of vertical accelerations to analyze the behavior of a linearly rubber isolated structure in different time lag situations and frequency content by application of historical and simulated ground motions using SAP2000. The response of the structure is reviewed under multiple sets of ground motions and trends based on time lag and frequency variations are drawn. The accuracy of these results is discussed and evaluated to provide reasoning for use of real vertical excitations in seismic analysis procedures, especially for isolated structures.

Keywords: seismic analysis, vertical accelerations, time lag, isolated structures

Procedia PDF Downloads 303
1375 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 525
1374 Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load

Authors: Aref Aasi, Sadegh Mehdi Aghaei, Balaji Panchapakesan

Abstract:

This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations.

Keywords: Euler-Bernoulli beam, natural frequency, forced vibration, experimental setup

Procedia PDF Downloads 229
1373 Road Transition Design on Freeway Tunnel Entrance and Exit Based on Traffic Capacity

Authors: Han Bai, Tong Zhang, Lemei Yu, Doudou Xie, Liang Zhao

Abstract:

Road transition design on freeway tunnel entrance and exit is one vital factor in realizing smooth transition and improving traveling safety for vehicles. The goal of this research is to develop a horizontal road transition design tool that considers the transition technology of traffic capacity consistency to explore its accommodation mechanism. The influencing factors of capacity are synthesized and a modified capacity calculation model focusing on the influence of road width and lateral clearance is developed based on the VISSIM simulation to calculate the width of road transition sections. To keep the traffic capacity consistency, the right side of the transition section of the tunnel entrance and exit is divided into three parts: front arc, an intermediate transition section, and end arc; an optimization design on each transition part is conducted to improve the capacity stability and horizontal alignment transition. A case study on the Panlong Tunnel in Ji-Qing freeway illustrates the application of the tool.

Keywords: traffic safety, road transition, freeway tunnel, traffic capacity

Procedia PDF Downloads 296
1372 Generation of Research Ideas Through a Matrix in the Field of International Comparative Education

Authors: Saleh Alzahrani

Abstract:

The studies in the field of International Comparative Education in the Arabic world and the middle east are scarcity. However, some International Comparative Education Researchers and post graduates face a challenge concerning of a selection of a distinguished study to improve their national education system. It requires a considerable effort. According to that, the matrix of scientific research in comparative and international education is designed to help specialists, researchers and graduate students in generating a variety of research ideas in a short time in this field. The matrix is built by using content analysis method of comparative education research published in the Arab journals from 1980 to 2017. Then, qualitative input with the in-depth focus analysis tool is utilized according to the root theory. The matrix consists of two axes; vertical (X) and horizontal (Y). The number of fields in the vertical axis are 6 domains, including 105 variables. The horizontal axis is two fields which are pre-university education that incorporate educational stages and contemporary formulations including (23) variables. The second field is the university education in its public universities and contemporary formulas including (15) variables. The researcher can access topics, ideas and research points through the matrix of scientific research in comparative and international education by selecting of any subject on the vertical axis (X) from (1) to (105) and selecting of any subject on the horizontal axis (Y) from (B) to (U). The cell where the axes intersect with the chosen fields can generate an idea or a research point conveniently and easily through the words that have been monitored by the user. These steps can be repeated to generate new ideas and research points. Many graduate researchers have been trained on using of this matrix which gave them more potential to generate an appropriate study serving the national education.

Keywords: content analysis method, comparative education, international education, matrix, root theory

Procedia PDF Downloads 97
1371 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles

Authors: Emil F. Khisamutdinov

Abstract:

Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.

Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers

Procedia PDF Downloads 46
1370 3D Remote Sensing Images Parallax Refining Based On HTML5

Authors: Qian Pei, Hengjian Tong, Weitao Chen, Hai Wang, Yanrong Feng

Abstract:

Horizontal parallax is the foundation of stereoscopic viewing. However, the human eye will feel uncomfortable and it will occur diplopia if horizontal parallax is larger than eye separation. Therefore, we need to do parallax refining before conducting stereoscopic observation. Although some scholars have been devoted to online remote sensing refining, the main work of image refining is completed on the server side. There will be a significant delay when multiple users access the server at the same time. The emergence of HTML5 technology in recent years makes it possible to develop rich browser web application. Authors complete the image parallax refining on the browser side based on HTML5, while server side only need to transfer image data and parallax file to browser side according to the browser’s request. In this way, we can greatly reduce the server CPU load and allow a large number of users to access server in parallel and respond the user’s request quickly.

Keywords: 3D remote sensing images, parallax, online refining, rich browser web application, HTML5

Procedia PDF Downloads 434
1369 Unearthing Air Traffic Control Officers Decision Instructional Patterns From Simulator Data for Application in Human Machine Teams

Authors: Zainuddin Zakaria, Sun Woh Lye

Abstract:

Despite the continuous advancements in automated conflict resolution tools, there is still a low rate of adoption of automation from Air Traffic Control Officers (ATCOs). Trust or acceptance in these tools and conformance to the individual ATCO preferences in strategy execution for conflict resolution are two key factors that impact their use. This paper proposes a methodology to unearth and classify ATCO conflict resolution strategies from simulator data of trained and qualified ATCOs. The methodology involves the extraction of ATCO executive control actions and the establishment of a system of strategy resolution classification based on ATCO radar commands and prevailing flight parameters in deconflicting a pair of aircraft. Six main strategies used to handle various categories of conflict were identified and discussed. It was found that ATCOs were about twice more likely to choose only vertical maneuvers in conflict resolution compared to horizontal maneuvers or a combination of both vertical and horizontal maneuvers.

Keywords: air traffic control strategies, conflict resolution, simulator data, strategy classification system

Procedia PDF Downloads 115
1368 Simulation of Wave Propagation in Multiphase Medium

Authors: Edip Kemal, Sheshov Vlatko, Bojadjieva Julijana, Bogdanovic ALeksandra, Gjorgjeska Irena

Abstract:

The wave propagation phenomenon in porous domains is of great importance in the field of geotechnical earthquake engineering. In these kinds of problems, the elastic waves propagate from the interior to the exterior domain and require special treatment at the computational level since apart from displacement in the solid-state there is a p-wave that takes place in the pore water phase. In this paper, a study on the implementation of multiphase finite elements is presented. The proposed algorithm is implemented in the ANSYS finite element software and tested on one-dimensional wave propagation considering both pore pressure wave propagation and displacement fields. In the simulation of porous media such as soils, the behavior is governed largely by the interaction of the solid skeleton with water and/or air in the pores. Therefore, coupled problems of fluid flow and deformation of the solid skeleton are considered in a detailed way.

Keywords: wave propagation, multiphase model, numerical methods, finite element method

Procedia PDF Downloads 136
1367 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method

Authors: Masoud Mahdavi

Abstract:

During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.

Keywords: steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus software

Procedia PDF Downloads 97
1366 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.

Keywords: base station antenna, multi-beam antenna, smart antenna, vertical sectorization

Procedia PDF Downloads 231
1365 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: inelastic behavior, non-linear dynamic analysis, steel structure, vertical component

Procedia PDF Downloads 282
1364 Experimental Investigation of Flow Structure around a Rectangular Cylinder in Different Configurations

Authors: Cemre Polat, Dogan B. Saydam, Mustafa Soyler, Coskun Ozalp

Abstract:

In this study, the flow structure was investigated by particle imaging velocimetry (PIV) method at Re = 26000 for two different rectangular cylinders placed perpendicular and parallel to the flow direction. After obtaining streamwise and spanwise velocity data, average vorticity, streamlines, velocity magnitude, turbulence kinetic energy, root mean square of streamwise and spanwise velocity fluctuations are calculated, and critical points of flow structure are explained. As a result of the study, it was seen that the vertical configuration has less effect on the flow structure in the back region of the body compared to the horizontal configuration. When the streamwise velocity component is examined in both configurations, it is seen that the negative velocity component is stronger on the long sides compared to the short sides. It has been observed that the vertically positioned cylinder expands the flow separation point compared to the horizontally positioned cylinder; also the vertical cylinder creates an increase in turbulence kinetic energy compared to the horizontal cylinder.

Keywords: bluff body, flow characteristics, PIV, rectangular cylinder

Procedia PDF Downloads 121
1363 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures

Authors: Semra Sirin Kiris

Abstract:

Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.

Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 127
1362 Structural Health Monitoring Method Using Stresses Occurring on Bridge Bearings Under Temperature

Authors: T. Nishido, S. Fukumoto

Abstract:

The functions of movable bearings decline due to corrosion and sediments. As the result, they cannot move or rotate according to the behaviors of girders. Because of the constraints, the bending moments are generated by the horizontal reaction forces and the heights of girders. Under these conditions, the authors obtained the following results by analysis and experiment. Tensile stresses due to the moments occurred at temperature fluctuations. The large tensile stresses on concrete slabs around the bearings caused cracks. Even if concrete slabs are newly replaced, cracks will come out again with function declined bearings. The functional declines of bearings are generally found by using displacement gauges. However the method is not suitable for long-term measurements. We focused on the change in the strains at the bearings and the lower flanges near them at temperature fluctuations. It was found that their strains were particularly large when the movements of the bearings were constrained. Therefore, we developed a long-term health monitoring wireless system with FBG (Fiber Bragg Grating) sensors which were attached to bearings and lower flanges. The FBG sensors have the characteristics such as non-electrical influence, resistance to weather, and high strain sensitivity. Such characteristics are suitable for long-term measurements. The monitoring system was inexpensive because it was limited to the purpose of measuring strains and temperature. Engineers can monitor the behaviors of bearings in real time with the wireless system. If an office is away from bridge sites, the system will save traveling time and cost.

Keywords: bridge bearing, concrete slab,  FBG sensor, health monitoring

Procedia PDF Downloads 200
1361 Estimation of Hysteretic Damping in Steel Dual Systems with Buckling Restrained Brace and Moment Resisting Frame

Authors: Seyed Saeid Tabaee, Omid Bahar

Abstract:

Nowadays, using energy dissipation devices has been commonly used in structures. A high rate of energy absorption during earthquakes is the benefit of using such devices, which results in damage reduction of structural elements specifically columns. The hysteretic damping capacity of energy dissipation devices is the key point that it may adversely complicate analysis and design of such structures. This effect may be generally represented by equivalent viscous damping. The equivalent viscous damping may be obtained from the expected hysteretic behavior under the design or maximum considered displacement of a structure. In this paper, the hysteretic damping coefficient of a steel moment resisting frame (MRF), which its performance is enhanced by a buckling restrained brace (BRB) system has been evaluated. Having the foresight of damping fraction between BRB and MRF is inevitable for seismic design procedures like Direct Displacement-Based Design (DDBD) method. This paper presents an approach to calculate the damping fraction for such systems by carrying out the dynamic nonlinear time history analysis (NTHA) under harmonic loading, which is tuned to the natural frequency of the system. Two steel moment frame structures, one equipped with BRB, and the other without BRB are simultaneously studied. The extensive analysis shows that proportion of each system damping fraction may be calculated by its shear story portion. In this way, the contribution of each BRB in the floors and their general contribution in the structural performance may be clearly recognized, in advance.

Keywords: buckling restrained brace, direct displacement based design, dual systems, hysteretic damping, moment resisting frames

Procedia PDF Downloads 410
1360 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 170
1359 Optimal Analysis of Structures by Large Wing Panel Using FEM

Authors: Byeong-Sam Kim, Kyeongwoo Park

Abstract:

In this study, induced structural optimization is performed to compare the trade-off between wing weight and induced drag for wing panel extensions, construction of wing panel and winglets. The aerostructural optimization problem consists of parameters with strength condition, and two maneuver conditions using residual stresses in panel production. The results of kinematic motion analysis presented a homogenization based theory for 3D beams and 3D shells for wing panel. This theory uses a kinematic description of the beam based on normalized displacement moments. The displacement of the wing is a significant design consideration as large deflections lead to large stresses and increased fatigue of components cause residual stresses. The stresses in the wing panel are small compared to the yield stress of aluminum alloy. This study describes the implementation of a large wing panel, aerostructural analysis and structural parameters optimization framework that couples a three-dimensional panel method.

Keywords: wing panel, aerostructural optimization, FEM, structural analysis

Procedia PDF Downloads 556
1358 Magneto-Convective Instability in a Horizontal Power-Law Nanofluid Saturated Porous Layer

Authors: Norazuwin Najihah Mat Tahir, Fuziyah Ishak, Seripah Awang Kechil

Abstract:

The onset of the convective instability in the horizontal through flow of a power-law nanofluid saturated by porous layer heated from below under the influences of magnetic field are investigated in this study. The linear stability theory is used for the transformation of the partial differential equations to system of ordinary differential equations through infinitesimal perturbations, scaling, linearization and method of normal modes with two-dimensional periodic waves. The system is solved analytically for the closed form solution of the Rayleigh number by using the Galerkin-type weighted residuals method to investigate the onset of both traveling wave and oscillatory convection. The effects of the power-law index, Lewis number and Peclet number on the stability of the system were investigated. The Lewis number stabilizes while the power-law index and Peclet number destabilize the nanofluid system. The system in the presence of magnetic field is more stable than the system in the absence of magnetic field.

Keywords: convection, instability, magnetic field, nanofluid, power-law

Procedia PDF Downloads 235
1357 Improvement of Oran Sebkha Soil by Dredged Sediments from Chorfa Dam in Algeria

Authors: Z. Aloui-Labiod, H. Trouzine, M. S. Ghembaza

Abstract:

Geotechnical properties of dredged sediment from Chorfa dam in Algeria and their mixtures (5%, 10%, 15%, 20%, and 25%)with bentonite were investigated through with bentonite were investigated through a series of laboratory experimental tests in order to investigate possibilities of their usage as a barrier against the spread out of the Sebkha of Oran in the northwest of Algeria. Grain size and Atterberg limits tests, chemical and mineral analyses, and compaction, vertical swelling, and horizontal and vertical permeability tests were performed on the soils and their mixtures using tap water and the salty Sebkha water. The results indicate that the bentonite specimens remolded and inundated with Sebkha salty water have less swell potential than those prepared with tap water. The addition of bentonite to Chorfa sediment increases the density, limit liquid, specific surface, and swell potential of the mixtures. Compaction tests show a decrease in the optimum moisture and an increase in maximum dry densities as the bentonite content increases. The horizontal and vertical permeabilities decrease relatively with the addition of bentonite.

Keywords: dredged sediment, bentonite, salty water, barrier

Procedia PDF Downloads 387
1356 Three Dimensional Computational Fluid Dynamics Simulation of Wall Condensation inside Inclined Tubes

Authors: Amirhosein Moonesi Shabestary, Eckhard Krepper, Dirk Lucas

Abstract:

The current PhD project comprises CFD-modeling and simulation of condensation and heat transfer inside horizontal pipes. Condensation plays an important role in emergency cooling systems of reactors. The emergency cooling system consists of inclined horizontal pipes which are immersed in a tank of subcooled water. In the case of an accident the water level in the core is decreasing, steam comes in the emergency pipes, and due to the subcooled water around the pipe, this steam will start to condense. These horizontal pipes act as a strong heat sink which is responsible for a quick depressurization of the reactor core when any accident happens. This project is defined in order to model all these processes which happening in the emergency cooling systems. The most focus of the project is on detection of different morphologies such as annular flow, stratified flow, slug flow and plug flow. This project is an ongoing project which has been started 1 year ago in Helmholtz Zentrum Dresden Rossendorf (HZDR), Fluid Dynamics department. In HZDR most in cooperation with ANSYS different models are developed for modeling multiphase flows. Inhomogeneous MUSIG model considers the bubble size distribution and is used for modeling small-scaled dispersed gas phase. AIAD (Algebraic Interfacial Area Density Model) is developed for detection of the local morphology and corresponding switch between them. The recent model is GENTOP combines both concepts. GENTOP is able to simulate co-existing large-scaled (continuous) and small-scaled (polydispersed) structures. All these models are validated for adiabatic cases without any phase change. Therefore, the start point of the current PhD project is using the available models and trying to integrate phase transition and wall condensing models into them. In order to simplify the idea of condensation inside horizontal tubes, 3 steps have been defined. The first step is the investigation of condensation inside a horizontal tube by considering only direct contact condensation (DCC) and neglect wall condensation. Therefore, the inlet of the pipe is considered to be annular flow. In this step, AIAD model is used in order to detect the interface. The second step is the extension of the model to consider wall condensation as well which is closer to the reality. In this step, the inlet is pure steam, and due to the wall condensation, a liquid film occurs near the wall which leads to annular flow. The last step will be modeling of different morphologies which are occurring inside the tube during the condensation via using GENTOP model. By using GENTOP, the dispersed phase is able to be considered and simulated. Finally, the results of the simulations will be validated by experimental data which will be available also in HZDR.

Keywords: wall condensation, direct contact condensation, AIAD model, morphology detection

Procedia PDF Downloads 267
1355 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: unmanned aerial vehicles, morphing, autopilots, autonomous performance

Procedia PDF Downloads 639
1354 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Authors: T. Y. Liu, C. H. Lin, Y. M. Ferng

Abstract:

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyse the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyse the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Keywords: horizontal axis wind turbine, turbulence model, noise, fluid dynamics

Procedia PDF Downloads 236