Search results for: heavy vehicles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2649

Search results for: heavy vehicles

129 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses

Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig

Abstract:

Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.

Keywords: phosphate glass, erbium, luminescence, glass system

Procedia PDF Downloads 489
128 Gradient Length Anomaly Analysis for Landslide Vulnerability Analysis of Upper Alaknanda River Basin, Uttarakhand Himalayas, India

Authors: Hasmithaa Neha, Atul Kumar Patidar, Girish Ch Kothyari

Abstract:

The northward convergence of the Indian plate has a dominating influence over the structural and geomorphic development of the Himalayan region. The highly deformed and complex stratigraphy in the area arises from a confluence of exogenic and endogenetic geological processes. This region frequently experiences natural hazards such as debris flows, flash floods, avalanches, landslides, and earthquakes due to its harsh and steep topography and fragile rock formations. Therefore, remote sensing technique-based examination and real-time monitoring of tectonically sensitive regions may provide crucial early warnings and invaluable data for effective hazard mitigation strategies. In order to identify unusual changes in the river gradients, the current study demonstrates a spatial quantitative geomorphic analysis of the upper Alaknanda River basin, Uttarakhand Himalaya, India, using gradient length anomaly analysis (GLAA). This basin is highly vulnerable to ground creeping and landslides due to the presence of active faults/thrusts, toe-cutting of slopes for road widening, development of heavy engineering projects on the highly sheared bedrock, and periodic earthquakes. The intersecting joint sets developed in the bedrocks have formed wedges that have facilitated the recurrence of several landslides. The main objective of current research is to identify abnormal gradient lengths, indicating potential landslide-prone zones. High-resolution digital elevation data and geospatial techniques are used to perform this analysis. The results of GLAA are corroborated with the historical landslide events and ultimately used for the generation of landslide susceptibility maps of the current study area. The preliminary results indicate that approximately 3.97% of the basin is stable, while about 8.54% is classified as moderately stable and suitable for human habitation. However, roughly 19.89% fall within the zone of moderate vulnerability, 38.06% are classified as vulnerable, and 29% fall within the highly vulnerable zones, posing risks for geohazards, including landslides, glacial avalanches, and earthquakes. This research provides valuable insights into the spatial distribution of landslide-prone areas. It offers a basis for implementing proactive measures for landslide risk reduction, including land-use planning, early warning systems, and infrastructure development techniques.

Keywords: landslide vulnerability, geohazard, GLA, upper Alaknanda Basin, Uttarakhand Himalaya

Procedia PDF Downloads 43
127 Current Deflecting Wall: A Promising Structure for Minimising Siltation in Semi-Enclosed Docks

Authors: A. A. Purohit, A. Basu, K. A. Chavan, M. D. Kudale

Abstract:

Many estuarine harbours in the world are facing the problem of siltation in docks, channel entrances, etc. The harbours in India are not an exception and require maintenance dredging to achieve navigable depths for keeping them operable. Hence, dredging is inevitable and is a costly affair. The heavy siltation in docks in well mixed tide dominated estuaries is mainly due to settlement of cohesive sediments in suspension. As such there is a need to have a permanent solution for minimising the siltation in such docks to alter the hydrodynamic flow field responsible for siltation by constructing structures outside the dock. One of such docks on the west coast of India, wherein siltation of about 2.5-3 m/annum prevails, was considered to understand the hydrodynamic flow field responsible for siltation. The dock is situated in such a region where macro type of semi-diurnal tide (range of about 5m) prevails. In order to change the flow field responsible for siltation inside the dock, suitability of Current Deflecting Wall (CDW) outside the dock was studied, which will minimise the sediment exchange rate and siltation in the dock. The well calibrated physical tidal model was used to understand the flow field during various phases of tide for the existing dock in Mumbai harbour. At the harbour entrance where the tidal flux exchanges in/out of the dock, measurements on water level and current were made to estimate the sediment transport capacity. The distorted scaled model (1:400 (H) & 1:80 (V)) of Mumbai area was used to study the tidal flow phenomenon, wherein tides are generated by automatic tide generator. Hydraulic model studies carried out under the existing condition (without CDW) reveal that, during initial hours of flood tide, flow hugs the docks breakwater and part of flow which enters the dock forms number of eddies of varying sizes inside the basin, while remaining part of flow bypasses the entrance of dock. During ebb, flow direction reverses, and part of the flow re-enters the dock from outside and creates eddies at its entrance. These eddies do not allow water/sediment-mass to come out and result in settlement of sediments in dock both due to eddies and more retention of sediment. At latter hours, current strength outside the dock entrance reduces and allows the water-mass of dock to come out. In order to improve flow field inside the dockyard, two CDWs of length 300 m and 40 m were proposed outside the dock breakwater and inline to Pier-wall at dock entrance. Model studies reveal that, during flood, major flow gets deflected away from the entrance and no eddies are formed inside the dock, while during ebb flow does not re-enter the dock, and sediment flux immediately starts emptying it during initial hours of ebb. This reduces not only the entry of sediment in dock by about 40% but also the deposition by about 42% due to less retention. Thus, CDW is a promising solution to significantly reduce siltation in dock.

Keywords: current deflecting wall, eddies, hydraulic model, macro tide, siltation

Procedia PDF Downloads 273
126 Accessible Facilities in Home Environment for Elderly Family Members in Sri Lanka

Authors: M. A. N. Rasanjalee Perera

Abstract:

The world is facing several problems due to increasing elderly population. In Sri Lanka, along with the complexity of the modern society and structural and functional changes of the family, “caring for elders” seems as an emerging social problem. This situation may intensify as the county is moving into a middle income society. Seeking higher education and related career opportunities, and urban living in modern housing are new trends, through which several problems are generated. Among many issues related with elders, “lack of accessible and appropriate facilities in their houses as well as public buildings” can be identified as a major problem. This study argues that welfare facilities provided for the elderly people, particularly in the home environment, in the country are not adequate. Modern housing features such as bathrooms, pantries, lobbies, and leisure areas etc. are questionable as to whether they match with elders’ physical and mental needs. Consequently, elders have to face domestic accidents and many other difficulties within their living environments. Records of hospitals in the country also proved this fact. Therefore, this study tries to identify how far modern houses are suited with elders’ needs. The study further questioned whether “aging” is a considerable matter when people are buying, planning and renovating houses. A randomly selected sample of 50 houses were observed and 50 persons were interviewed around the Maharagama urban area in Colombo district to obtain primary data, while relevant secondary data and information were used to have a depth analysis. The study clearly found that none of the houses included to the sample are considering elders’ needs in planning, renovating, or arranging the home. Instead, most of the families were giving priority to the rich and elegant appearance and modern facilities of the houses. Particularly, to the bathrooms, pantry, large setting areas, balcony, parking slots for two vehicles, ad parapet walls with roller-gates are the main concerns. A significant factor found here is that even though, many children of the aged are in middle age and reaching their older years at present, they do not plan their future living within a safe and comfortable home, despite that they are hoping to spent the latter part of their lives in the their current homes. This fact highlights that not only the other responsible parts of the society, but also those who are reaching their older ages are ignoring the problems of the aged. At the same time, it was found that more than 80% of old parents do not like to stay at their children’s homes as the living environments in such modern homes are not familiar or convenient for them. Due to this context, the aged in Sri Lanka may have to be alone in their own homes due to current trend of society of migrating to urban living in modern houses. At the same time, current urban families who live in modern houses may have to face adding accessible facilities in their home environment, as current modern housing facilities may not be appropriate them for a better life in their latter part of life.

Keywords: aging population, elderly care, home environment, housing facilities

Procedia PDF Downloads 105
125 Geomorphology and Flood Analysis Using Light Detection and Ranging

Authors: George R. Puno, Eric N. Bruno

Abstract:

The natural landscape of the Philippine archipelago plus the current realities of climate change make the country vulnerable to flood hazards. Flooding becomes the recurring natural disaster in the country resulting to lose of lives and properties. Musimusi is among the rivers which exhibited inundation particularly at the inhabited floodplain portion of its watershed. During the event, rescue operations and distribution of relief goods become a problem due to lack of high resolution flood maps to aid local government unit identify the most affected areas. In the attempt of minimizing impact of flooding, hydrologic modelling with high resolution mapping is becoming more challenging and important. This study focused on the analysis of flood extent as a function of different geomorphologic characteristics of Musimusi watershed. The methods include the delineation of morphometric parameters in the Musimusi watershed using Geographic Information System (GIS) and geometric calculations tools. Digital Terrain Model (DTM) as one of the derivatives of Light Detection and Ranging (LiDAR) technology was used to determine the extent of river inundation involving the application of Hydrologic Engineering Center-River Analysis System (HEC-RAS) and Hydrology Modelling System (HEC-HMS) models. The digital elevation model (DEM) from synthetic Aperture Radar (SAR) was used to delineate watershed boundary and river network. Datasets like mean sea level, river cross section, river stage, discharge and rainfall were also used as input parameters. Curve number (CN), vegetation, and soil properties were calibrated based on the existing condition of the site. Results showed that the drainage density value of the watershed is low which indicates that the basin is highly permeable subsoil and thick vegetative cover. The watershed’s elongation ratio value of 0.9 implies that the floodplain portion of the watershed is susceptible to flooding. The bifurcation ratio value of 2.1 indicates higher risk of flooding in localized areas of the watershed. The circularity ratio value (1.20) indicates that the basin is circular in shape, high discharge of runoff and low permeability of the subsoil condition. The heavy rainfall of 167 mm brought by Typhoon Seniang last December 29, 2014 was characterized as high intensity and long duration, with a return period of 100 years produced 316 m3s-1 outflows. Portion of the floodplain zone (1.52%) suffered inundation with 2.76 m depth at the maximum. The information generated in this study is helpful to the local disaster risk reduction management council in monitoring the affected sites for more appropriate decisions so that cost of rescue operations and relief goods distribution is minimized.

Keywords: flooding, geomorphology, mapping, watershed

Procedia PDF Downloads 207
124 Belarus Rivers Runoff: Current State, Prospects

Authors: Aliaksandr Volchak, Мaryna Barushka

Abstract:

The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly.

Keywords: assessment, climate fluctuation, forecast, river runoff

Procedia PDF Downloads 104
123 Standardization of the Roots of Gnidia stenophylla Gilg: A Potential Medicinal Plant of South Eastern Ethiopia Traditionally Used as an Antimalarial

Authors: Mebruka Mohammed, Daniel Bisrat, Asfaw Debella, Tarekegn Birhanu

Abstract:

Lack of quality control standards for medicinal plants and their preparations is considered major barrier to their integration in to effective primary health care in Ethiopia. Poor quality herbal preparations led to countless adverse reactions extending to death. Denial of penetration for the Ethiopian medicinal plants in to the world’s booming herbal market is also another significant loss resulting from absence of herbal quality control system. Thus, in the present study, Gnidia stenophylla Gilg (popular antimalarial plant of south eastern Ethiopia), is standardized and a full monograph is produced that can serve as a guideline in quality control of the crude drug. Morphologically, the roots are found to be cylindrical and tapering towards the end. It has a hard, corky and friable touch with saddle brown color externally and it is relatively smooth and pale brown internally. It has got characteristic pungent odor and very bitter taste. Microscopically it has showed lignified xylem vessels, wider medullary rays with some calcium oxalate crystals, reddish brown secondary metabolite contents and slender shaped long fibres. Physicochemical standards quantified and resulted: foreign matter (5.25%), moisture content (6.69%), total ash (40.80%), acid insoluble ash (8.00%), water soluble ash (2.30%), alcohol soluble extractive (15.27%), water soluble extractive (10.98%), foaming index (100.01 ml/g), swelling index (7.60 ml/g). Phytochemically: Phenols, flavonoids, steroids, tannins and saponins were detected in the root extract; TLC and HPLC fingerprints were produced and an analytical marker was also tentatively characterized as 3-(3,4-dihydro-3,5-dihydroxy-2-(4-hydroxy-5-methylhex-1-en-2-yl)-7-methoxy-4-oxo-2H-chromen-8-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one. Residue wise pesticides (i.e. DDT, DDE, g-BHC) and radiochemical levels fall below the WHO limit while Heavy metals (i.e. Co, Ni, Cr, Pb, and Cu), total aerobic count and fungal load lie way above the WHO limit. In conclusion, the result can be taken as signal that employing non standardized medicinal plants could cause many health risks of the Ethiopian people and Africans’ at large (as 80% of inhabitants in the continent depends on it for primary health care). Therefore, following a more universal approach to herbal quality by adopting the WHO guidelines and developing monographs using the various quality parameters is inevitable to minimize quality breach and promote effective herbal drug usage.

Keywords: Gnidia stenophylla Gilg, standardization/monograph, pharmacognostic, residue/impurity, quality

Procedia PDF Downloads 256
122 Influence of Kneading Conditions on the Textural Properties of Alumina Catalysts Supports for Hydrotreating

Authors: Lucie Speyer, Vincent Lecocq, Séverine Humbert, Antoine Hugon

Abstract:

Mesoporous alumina is commonly used as a catalyst support for the hydrotreating of heavy petroleum cuts. The process of fabrication usually involves: the synthesis of the boehmite AlOOH precursor, a kneading-extrusion step, and a calcination in order to obtain the final alumina extrudates. Alumina is described as a complex porous medium, generally agglomerates constituted of aggregated nanocrystallites. Its porous texture directly influences the active phase deposition and mass transfer, and the catalytic properties. Then, it is easy to figure out that each step of the fabrication of the supports has a role on the building of their porous network, and has to be well understood to optimize the process. The synthesis of boehmite by precipitation of aluminum salts was extensively studied in the literature and the effect of various parameters, such as temperature or pH, are known to influence the size and shape of the crystallites and the specific surface area of the support. The calcination step, through the topotactic transition from boehmite to alumina, determines the final properties of the support and can tune the surface area, pore volume and pore diameters from those of boehmite. However, the kneading extrusion step has been subject to a very few studies. It generally consists in two steps: an acid, then a basic kneading, where the boehmite powder is introduced in a mixer and successively added with an acid and a base solution to form an extrudable paste. During the acid kneading, the induced positive charges on the hydroxyl surface groups of boehmite create an electrostatic repulsion which tends to separate the aggregates and even, following the conditions, the crystallites. The basic kneading, by reducing the surface charges, leads to a flocculation phenomenon and can control the reforming of the overall structure. The separation and reassembling of the particles constituting the boehmite paste have a quite obvious influence on the textural properties of the material. In this work, we are focused on the influence of the kneading step on the alumina catalysts supports. Starting from an industrial boehmite, extrudates are prepared using various kneading conditions. The samples are studied by nitrogen physisorption in order to analyze the evolution of the textural properties, and by synchrotron small-angle X-ray scattering (SAXS), a more original method which brings information about agglomeration and aggregation of the samples. The coupling of physisorption and SAXS enables a precise description of the samples, as same as an accurate monitoring of their evolution as a function of the kneading conditions. These ones are found to have a strong influence of the pore volume and pore size distribution of the supports. A mechanism of evolution of the texture during the kneading step is proposed and could be attractive in order to optimize the texture of the supports and then, their catalytic performances.

Keywords: alumina catalyst support, kneading, nitrogen physisorption, small-angle X-ray scattering

Procedia PDF Downloads 233
121 A Comparison of Biosorption of Radionuclides Tl-201 on Different Biosorbents and Their Empirical Modelling

Authors: Sinan Yapici, Hayrettin Eroglu

Abstract:

The discharge of the aqueous radionuclides wastes used for the diagnoses of diseases and treatments of patients in nuclear medicine can cause fatal health problems when the radionuclides and its stable daughter component mix with underground water. Tl-201, which is one of the radionuclides commonly used in the nuclear medicine, is a toxic substance and is converted to its stable daughter component Hg-201, which is also a poisonous heavy metal: Tl201 → Hg201 + Gamma Ray [135-167 Kev (12%)] + X Ray [69-83 Kev (88%)]; t1/2 = 73,1 h. The purpose of the present work was to remove Tl-201 radionuclides from aqueous solution by biosorption on the solid bio wastes of food and cosmetic industry as bio sorbents of prina from an olive oil plant, rose residue from a rose oil plant and tea residue from a tea plant, and to make a comparison of the biosorption efficiencies. The effects of the biosorption temperature, initial pH of the aqueous solution, bio sorbent dose, particle size and stirring speed on the biosorption yield were investigated in a batch process. It was observed that the biosorption is a rapid process with an equilibrium time less than 10 minutes for all the bio sorbents. The efficiencies were found to be close to each other and measured maximum efficiencies were 93,30 percent for rose residue, 94,1 for prina and 98,4 for tea residue. In a temperature range of 283 and 313 K, the adsorption decreased with increasing temperature almost in a similar way. In a pH range of 2-10, increasing pH enhanced biosorption efficiency up to pH=7 and then the efficiency remained constant in a similar path for all the biosorbents. Increasing stirring speed from 360 to 720 rpm enhanced slightly the biosorption efficiency almost at the same ratio for all bio sorbents. Increasing particle size decreased the efficiency for all biosorbent; however the most negatively effected biosorbent was prina with a decrease in biosorption efficiency from about 84 percent to 40 with an increase in the nominal particle size 0,181 mm to 1,05 while the least effected one, tea residue, went down from about 97 percent to 87,5. The biosorption efficiencies of all the bio sorbents increased with increasing biosorbent dose in the range of 1,5 to 15,0 g/L in a similar manner. The fit of the experimental results to the adsorption isotherms proved that the biosorption process for all the bio sorbents can be represented best by Freundlich model. The kinetic analysis showed that all the processes fit very well to pseudo second order rate model. The thermodynamics calculations gave ∆G values between -8636 J mol-1 and -5378 for tea residue, -5313 and -3343 for rose residue, and -5701 and -3642 for prina with a ∆H values of -39516 J mol-1, -23660 and -26190, and ∆S values of -108.8 J mol-1 K-1, -64,0, -72,0 respectively, showing spontaneous and exothermic character of the processes. An empirical biosorption model in the following form was derived for each biosorbent as function of the parameters and time, taking into account the form of kinetic model, with regression coefficients over 0.9990 where At is biosorbtion efficiency at any time and Ae is the equilibrium efficiency, t is adsorption period as s, ko a constant, pH the initial acidity of biosorption medium, w the stirring speed as s-1, S the biosorbent dose as g L-1, D the particle size as m, and a, b, c, and e are the powers of the parameters, respectively, E a constant containing activation energy and T the temperature as K.

Keywords: radiation, diosorption, thallium, empirical modelling

Procedia PDF Downloads 239
120 Internet Memes as Meaning-Making Tools within Subcultures: A Case Study of Lolita Fashion

Authors: Victoria Esteves

Abstract:

Online memes have not only impacted different aspects of culture, but they have also left their mark on particular subcultures, where memes have reflected issues and debates surrounding specific spheres of interest. This is the first study that outlines how memes can address cultural intersections within the Lolita fashion community, which are much more specific and which fall outside of the broad focus of politics and/or social commentary. This is done by looking at the way online memes are used in this particular subculture as a form of meaning-making and group identity reinforcement, demonstrating not only the adaptability of online memes to specific cultural groups but also how subcultures tailor these digital objects to discuss both community-centered topics and more broad societal aspects. As part of an online ethnography, this study focuses on qualitative content analysis by taking a look at some of the meme communication that has permeated Lolita fashion communities. Examples of memes used in this context are picked apart in order to understand this specific layered phenomenon of communication, as well as to gain insights into how memes can operate as visual shorthand for the remix of meaning-making. There are existing parallels between internet culture and cultural behaviors surrounding Lolita fashion: not only is the latter strongly influenced by the former (due to its highly globalized dispersion and lack of physical shops, Lolita fashion is almost entirely reliant on the internet for its existence), both also emphasize curatorial roles through a careful collaborative process of documenting significant aspects of their culture (e.g., Know Your Meme and Lolibrary). Further similarities appear when looking at ideas of inclusion and exclusion that permeate both cultures, where memes and language are used in order to both solidify group identity and to police those who do not ascribe to these cultural tropes correctly, creating a feedback loop that reinforces subcultural ideals. Memes function as excellent forms of communication within the Lolita community because they reinforce its coded ideas and allows a kind of participation that echoes other cultural groups that are online-heavy such as fandoms. Furthermore, whilst the international Lolita community was mostly self-contained within its LiveJournal birthplace, it has become increasingly dispersed through an array of different social media groups that have fragmented this subculture significantly. The use of memes is key in maintaining a sense of connection throughout this now fragmentary experience of fashion. Memes are also used in the Lolita fashion community to bridge the gap between Lolita fashion related community issues and wider global topics; these reflect not only an ability to make use of a broader online language to address specific issues of the community (which in turn provide a very community-specific engagement with remix practices) but also memes’ ability to be tailored to accommodate overlapping cultural and political concerns and discussions between subcultures and broader societal groups. Ultimately, online memes provide the necessary elasticity to allow their adaption and adoption by subcultural groups, who in turn use memes to extend their meaning-making processes.

Keywords: internet culture, Lolita fashion, memes, online community, remix

Procedia PDF Downloads 145
119 Technology Optimization of Compressed Natural Gas Home Fast Refueling Units

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Robert Strods, Adam Szurlej

Abstract:

Despіte all glоbal ecоnоmіc shіfts and the fact that Natural Gas іs recоgnіzed wоrldwіde as the maіn and the leadіng alternatіve tо оіl prоducts іn transpоrtatіоn sectоr, there іs a huge barrіer tо swіtch passenger vehіcle segment tо Natural gas - the lack оf refuelіng іnfrastructure fоr Natural Gas Vehіcles. Whіle іnvestments іn publіc gas statіоns requіre establіshed NGV market іn оrder tо be cоst effectіve, the market іs nоt there due tо lack оf refuelіng statіоns. The key tо sоlvіng that prоblem and prоvіdіng barrіer breakіng refuelіng іnfrastructure sоlutіоn fоr Natural Gas Vehіcles (NGV) іs Hоme Fast Refuelіng Unіts. Іt оperates usіng Natural Gas (Methane), whіch іs beіng prоvіded thrоugh gas pіpelіnes at clіents hоme, and electrіcіty cоnnectіоn pоіnt. Іt enables an envіrоnmentally frіendly NGV’s hоme refuelіng just іn mіnutes. The underlyіng technоlоgy іs a patented technоlоgy оf оne stage hydraulіc cоmpressоr (іnstead оf multіstage mechanіcal cоmpressоr technоlоgy avaіlable оn the market nоw) whіch prоvіdes the pоssіbіlіty tо cоmpress lоw pressure gas frоm resіdentіal gas grіd tо 200 bar fоr іts further usage as a fuel fоr NGVs іn the mоst ecоnоmіcally effіcіent and cоnvenіent fоr custоmer way. Descrіptіоn оf wоrkіng algоrіthm: Twо hіgh pressure cylіnders wіth upper necks cоnnected tо lоw pressure gas sоurce are placed vertіcally. Іnіtіally оne оf them іs fіlled wіth lіquіd and anоther оne – wіth lоw pressure gas. Durіng the wоrkіng prоcess lіquіd іs transferred by means оf hydraulіc pump frоm оne cylіnder tо anоther and back. Wоrkіng lіquіd plays a rоle оf pіstоns іnsіde cylіnders. Mоvement оf wоrkіng lіquіd іnsіde cylіnders prоvіdes sіmultaneоus suctіоn оf a pоrtіоn оf lоw pressure gas іntо оne оf the cylіnder (where lіquіd mоves dоwn) and fоrcіng оut gas оf hіgher pressure frоm anоther cylіnder (where lіquіd mоves up) tо the fuel tank оf the vehіcle / stоrage tank. Each cycle оf fоrcіng the gas оut оf the cylіnder rіses up the pressure оf gas іn the fuel tank оf a vehіcle wіth 2 cylіnders. The prоcess іs repeated untіl the pressure оf gas іn the fuel tank reaches 200 bar. Mоbіlіty has becоme a necessіty іn peоple’s everyday lіfe, whіch led tо оіl dependence. CNG Hоme Fast Refuelіng Unіts can become a part fоr exіstіng natural gas pіpelіne іnfrastructure and becоme the largest vehіcle refuelіng іnfrastructure. Hоme Fast Refuelіng Unіts оwners wіll enjоy day-tо-day tіme savіngs and cоnvenіence - Hоme Car refuelіng іn mіnutes, mоnth-tо-mоnth fuel cоst ecоnоmy, year-tо-year іncentіves and tax deductіbles оn NG refuelіng systems as per cоuntry, reduce CО2 lоcal emіssіоns, savіng cоsts and mоney.

Keywords: CNG (compressed natural gas), CNG stations, NGVs (natural gas vehicles), natural gas

Procedia PDF Downloads 181
118 Study of a Decentralized Electricity Market on Awaji Island

Authors: Arkadiusz P. Wójcik, Tetsuya Sato, Shin-Ichiro Shima, Mateusz Malanowski

Abstract:

Over the last decades, new technologies have significantly changed the way information is transmitted and stored. Renewable energy sources have become prevalent and affordable. Cooperation of the Information and Communication Technology industry and Renewable Energy industry makes it possible to create a next generation, decentralized power grid. In this context, the study seeks to identify the wider benefits to the local Japanese economy as a result of the development of a decentralised electricity market. Our general approach aims to integrate an economic analysis (monetary appraisal of costs and benefits to society) with externalities that are not quantifiable in monetary terms (e.g. social impact, environmental impact). The study also highlights opportunities and sets out recommendations for the citizens of the island and the local government. The simulation is the scientific basis for economic impact analysis. Various types of sources of energy have been taken into account: residential wind farm, residential wind turbine, solar farm, residential solar panels and private solar farms. Analysis of local geographic and economic conditions allowed creating a customized business model. Very often farmers on Awaji Island are using crop cycle. During each cycle, one part of the field is resting and replenishing nutrients. In the next year another part of the field is resting. Portable solar panels could be freely set up in this part of the field. At the end of the crop cycle, portable solar panels would be moved to the next resting part. Because of spacious area, for a single household 500 square meters of portable solar panels has been proposed and simulated. The devised simulation shows that the Rate of Return on Investment for solar panels, which are on the island, could reach up to 37.21%. Supposing that about 20% of households install solar panels they could produce 49.11% of the electric energy consumed by households on the island. The analysis shows that rest of the energy supply can be produced by currently existing one huge solar farm and two wind farms to meet 97.59% of demand on electricity for households on the island. Although there are more than 7,000 agricultural fields on the island, young people tend to avoid agricultural work and prefer to move from the island to big cities, live there in little mansions and work until late night. The business model proposed in this study could increase farmer’s monthly income by ¥200,000 - ¥300,000 (1,600 euro – 2,400 euro). Young people could work less and have a higher standard of living than in a city. Creation of a decentralized electricity market can unlock significant benefits in other industries (e.g. electric vehicles), providing a welcome boost to economic growth, jobs and quality of life.

Keywords: digital twin, Matlab, model-based systems engineering, simulink, smart grid, systems engineering

Procedia PDF Downloads 71
117 Coordinative Remote Sensing Observation Technology for a High Altitude Barrier Lake

Authors: Zhang Xin

Abstract:

Barrier lakes are lakes formed by storing water in valleys, river valleys or riverbeds after being blocked by landslide, earthquake, debris flow, and other factors. They have great potential safety hazards. When the water is stored to a certain extent, it may burst in case of strong earthquake or rainstorm, and the lake water overflows, resulting in large-scale flood disasters. In order to ensure the safety of people's lives and property in the downstream, it is very necessary to monitor the barrier lake. However, it is very difficult and time-consuming to manually monitor the barrier lake in high altitude areas due to the harsh climate and steep terrain. With the development of earth observation technology, remote sensing monitoring has become one of the main ways to obtain observation data. Compared with a single satellite, multi-satellite remote sensing cooperative observation has more advantages; its spatial coverage is extensive, observation time is continuous, imaging types and bands are abundant, it can monitor and respond quickly to emergencies, and complete complex monitoring tasks. Monitoring with multi-temporal and multi-platform remote sensing satellites can obtain a variety of observation data in time, acquire key information such as water level and water storage capacity of the barrier lake, scientifically judge the situation of the barrier lake and reasonably predict its future development trend. In this study, The Sarez Lake, which formed on February 18, 1911, in the central part of the Pamir as a result of blockage of the Murgab River valley by a landslide triggered by a strong earthquake with magnitude of 7.4 and intensity of 9, is selected as the research area. Since the formation of Lake Sarez, it has aroused widespread international concern about its safety. At present, the use of mechanical methods in the international analysis of the safety of Lake Sarez is more common, and remote sensing methods are seldom used. This study combines remote sensing data with field observation data, and uses the 'space-air-ground' joint observation technology to study the changes in water level and water storage capacity of Lake Sarez in recent decades, and evaluate its safety. The situation of the collapse is simulated, and the future development trend of Lake Sarez is predicted. The results show that: 1) in recent decades, the water level of Lake Sarez has not changed much and remained at a stable level; 2) unless there is a strong earthquake or heavy rain, it is less likely that the Lake Sarez will be broken under normal conditions, 3) lake Sarez will remain stable in the future, but it is necessary to establish an early warning system in the Lake Sarez area for remote sensing of the area, 4) the coordinative remote sensing observation technology is feasible for the high altitude barrier lake of Sarez.

Keywords: coordinative observation, disaster, remote sensing, geographic information system, GIS

Procedia PDF Downloads 96
116 Climate Change Impact on Whitefly (Bemisia tabaci) Population Infesting Tomato (Lycopersicon esculentus) in Sub-Himalayan India and Their Sustainable Management Using Biopesticides

Authors: Sunil Kumar Ghosh

Abstract:

Tomato (Lycopersicon esculentus L.) is an annual vegetable crop grown in the sub-Himalayan region of north east India throughout the year except rainy season in normal field cultivation. The crop is susceptible to various insect pests of which whitefly (Bemesia tabaci Genn.) causes heavy damage. Thus, a study on its occurrence and sustainable management is needed for successful cultivation. The pest was active throughout the growing period. During 38th standard week to 41st standard week that is during 3rd week of September to 2nd week of October minimum population was observed. The maximum population level was maintained during 11th standard week to 18th standard week that is during 2nd week of March to 3rd week of March with peak population (0.47/leaf) was recorded. Weekly population counts on white fly showed non-significant negative correlation (p=0.05) with temperature and weekly total rainfall where as significant negative correlation with relative humidity. Eight treatments were taken to study the management of the white fly pest such as botanical insecticide azadirachtin botanical extracts, Spilanthes paniculata flower, Polygonum hydropiper L. flower, tobacco leaf and garlic and mixed formulation like neem and floral extract of Spilanthes were evaluated and compared with the ability of acetamiprid. The insectide acetamiprid was found most lethal against whitefly providing 76.59% suppression, closely followed by extracts of neem + Spilanthes providing 62.39% suppression. Spectophotometric scanning of crude methanolic extract of Polygonum flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals like Spirilloxanthin, Quercentin diglycoside, Quercentin 3-O-rutinoside, Procyanidin B1 and Isorhamnetin 3-O-rutinoside. These chemicals are responsible for pest control. Spectophotometric scanning of crude methanolic extract of Spilanthes flower showed strong absorbance wave length between 645-675 nm. Considering the level of peaks of wave length the flower extract contain some important chemicals of which polysulphide compounds are important and responsible of pest control. Neem and Spilanthes individually did not produce good results but when used as a mixture they recorded better results. Highest yield (30.15 t/ha) were recorded from acetamiprid treated plots followed by neem + Spilanthes (27.55 t/ha). Azadirachtin and Plant extracts are biopesticides having less or no hazardous effects on human health and environment. Thus they can be incorporated in IPM programmes and organic farming in vegetable cultivation.

Keywords: biopesticides, organic farming, seasonal fluctuation, vegetable IPM

Procedia PDF Downloads 288
115 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission

Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan

Abstract:

As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.

Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster

Procedia PDF Downloads 173
114 Investigation of Ground Disturbance Caused by Pile Driving: Case Study

Authors: Thayalan Nall, Harry Poulos

Abstract:

Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.

Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening

Procedia PDF Downloads 208
113 Assessing the High Rate of Deforestation Caused by the Operations of Timber Industries in Ghana

Authors: Obed Asamoah

Abstract:

Forests are very vital for human survival and our well-being. During the past years, the world has taken an increasingly significant role in the modification of the global environment. The high rate of deforestation in Ghana is of primary national concern as the forests provide many ecosystem services and functions that support the country’s predominantly agrarian economy and foreign earnings. Ghana forest is currently major source of carbon sink that helps to mitigate climate change. Ghana forests, both the reserves and off-reserves, are under pressure of deforestation. The causes of deforestation are varied but can broadly be categorized into anthropogenic and natural factors. For the anthropogenic factors, increased wood fuel collection, clearing of forests for agriculture, illegal and poorly regulated timber extraction, social and environmental conflicts, increasing urbanization and industrialization are the primary known causes for the loss of forests and woodlands. Mineral exploitation in the forest areas is considered as one of the major causes of deforestation in Ghana. Mining activities especially mining of gold by both the licensed mining companies and illegal mining groups who are locally known as "gallantly mining" also cause damage to the nation's forest reserves. Several works have been conducted regarding the causes of the high rate of deforestation in Ghana, major attention has been placed on illegal logging and using forest lands for illegal farming and mining activities. Less emphasis has been placed on the timber production companies on their harvesting methods in the forests in Ghana and other activities that are carried out in the forest. The main objective of the work is to find out the harvesting methods and the activities of the timber production companies and their effects on the forests in Ghana. Both qualitative and quantitative research methods were engaged in the research work. The study population comprised of 20 Timber industries (Sawmills) forest areas of Ghana. These companies were selected randomly. The cluster sampling technique was engaged in selecting the respondents. Both primary and secondary data were employed. In the study, it was observed that most of the timber production companies do not know the age, the weight, the distance covered from the harvesting to the loading site in the forest. It was also observed that old and heavy machines are used by timber production companies in their operations in the forest, which makes the soil compact prevents regeneration and enhances soil erosion. It was observed that timber production companies do not abide by the rules and regulations governing their operations in the forest. The high rate of corruption on the side of the officials of the Ghana forestry commission makes the officials relax and do not embark on proper monitoring on the operations of the timber production companies which makes the timber companies to cause more harm to the forest. In other to curb this situation the Ghana forestry commission with the ministry of lands and natural resources should monitor the activities of the timber production companies and sanction all the companies that make foul play in their activities in the forest. The commission should also pay more attention to the policy “fell one plant 10” to enhance regeneration in both reserves and off-reserves forest.

Keywords: companies, deforestation, forest, Ghana, timber

Procedia PDF Downloads 163
112 Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress

Authors: Sibgha Noreen, Muhammad Salim Akhter, Seema Mahmood

Abstract:

Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress.

Keywords: salt stress, silicon nutrition, chlorophyll constituents, antioxidant enzymes, barley crop

Procedia PDF Downloads 14
111 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 353
110 Theoretical Study on the Visible-Light-Induced Radical Coupling Reactions Mediated by Charge Transfer Complex

Authors: Lishuang Ma

Abstract:

Charge transfer (CT) complex, also known as Electron donor-acceptor (EDA) complex, has received attentions increasingly in the field of synthetic chemistry community, due to the CT complex can absorb the visible light through the intermolecular charge transfer excited states, various of catalyst-free photochemical transformations under mild visible-light conditions. However, a number of fundamental questions are still ambiguous, such as the origin of visible light absorption, the photochemical and photophysical properties of the CT complex, as well as the detailed mechanism of the radical coupling pathways mediated by CT complex. Since these are critical factors for target-specific design and synthesis of more new-type CT complexes. To this end, theoretical investigations were performed in our group to answer these questions based on multiconfigurational perturbation theory. The photo-induced fluoroalkylation reactions are mediated by CT complexes, which are formed by the association of an acceptor of perfluoroalkyl halides RF−X (X = Br, I) and a suitable donor molecule such as β-naphtholate anion, were chosen as a paradigm example in this work. First, spectrum simulations were carried out by both CASPT2//CASSCF/PCM and TD-DFT/PCM methods. The computational results showed that the broadening spectra in visible light range (360-550nm) of the CT complexes originate from the 1(σπ*) excitation, accompanied by an intermolecular electron transfer, which was also found closely related to the aggregate states of the donor and acceptor. Moreover, from charge translocation analysis, the CT complex that showed larger charge transfer in the round state would exhibit smaller charge transfer in excited stated of 1(σπ*), causing blue shift relatively. Then, the excited-state potential energy surface (PES) was calculated at CASPT2//CASSCF(12,10)/ PCM level of theory to explore the photophysical properties of the CT complexes. The photo-induced C-X (X=I, Br) bond cleavage was found to occur in the triplet state, which is accessible through a fast intersystem crossing (ISC) process that is controlled by the strong spin-orbit coupling resulting from the heavy iodine and bromine atoms. Importantly, this rapid fragmentation process can compete and suppress the backward electron transfer (BET) event, facilitating the subsequent effective photochemical transformations. Finally, the reaction pathways of the radical coupling were also inspected, which showed that the radical chain propagation pathway could easy to accomplish with a small energy barrier no more than 3.0 kcal/mol, which is the key factor that promote the efficiency of the photochemical reactions induced by CT complexes. In conclusion, theoretical investigations were performed to explore the photophysical and photochemical properties of the CT complexes, as well as the mechanism of radical coupling reactions mediated by CT complex. The computational results and findings in this work can provide some critical insights into mechanism-based design for more new-type EDA complexes

Keywords: charge transfer complex, electron transfer, multiconfigurational perturbation theory, radical coupling

Procedia PDF Downloads 116
109 Toy Engagement Patterns in Infants with a Familial History of Autism Spectrum Disorder

Authors: Vanessa Do, Lauren Smith, Leslie Carver

Abstract:

It is widely known that individuals with autism spectrum disorder (ASD) may exhibit sensitivity to stimuli. Even at a young age, they tend to display stimuli-related discomfort in their behavior during play. Play serves a crucial role in a child’s early years as it helps support healthy brain development, socio-emotional skills, and adaptation to their environment There is research dedicated to studying infant preferences for toys, especially in regard to: gender preferences, the advantages of promoting play, and the caregiver’s role in their child’s play routines. However, there is a disproportionate amount of literature examining how play patterns may differ in children with sensory sensitivity, such as children diagnosed with ASD. Prior literature has studied and found supporting evidence that individuals with ASD have deficits in social communication and have increased presence of repetitive behaviors and/or restricted interests, which also display in early childhood play patterns. This study aims to examine potential differences in toy preference between infants with (FH+) and without (FH-) a familial history of ASD ages 6. 9, and 12 months old. More specifically, this study will address the question, “do FH+ infants tend to play more with toys that require less social engagement compared to FH- infants?” Infants and their caregivers were recruited and asked to engage in a free-play session in their homes that lasted approximately 5 minutes. The sessions were recorded and later coded offline for engagement behaviors categorized by toy; each toy that the infants interacted with was coded as belonging to one of 6 categories: sensory (designed to stimulate one or more senses such as light-up toys or musical toys) , construction (e.g., building blocks, rubber suction cups), vehicles (e.g., toy cars), instructional (require steps to accomplish a goal such as flip phones or books), imaginative (e.g., dolls, stuffed animals), and miscellaneous (toys that do not fit into these categories). Toy engagement was defined as the infant looking and touching the toy (ILT) or looking at the toy while their caregiver was holding it (IL-CT). Results reported include/will include the proportion of time the infant was actively engaged with the toy out of the total usable video time per subject — distractions observed during the session were excluded from analysis. Data collection is still ongoing; however, the prediction is that FH+ infants will have higher engagement with sensory and construction toys as they require the least amount of social effort. Furthermore, FH+ infants will have the least engagement with the imaginative toys as prior literature has supported the claim that individuals with ASD have a decreased likelihood to engage in play that requires pretend play and other social skills. Looking at what toys are more or less engaging to FH+ infants is important as it provides significant contributions to their healthy cognitive, social, and emotional development. As play is one of the first ways for a child to understand the complexities of the larger world, the findings of this study may help guide further research into encouraging play with toys that are more engaging and sensory-sensitive for children with ASD.

Keywords: autism engagement, children’s play, early development, free-play, infants, toy

Procedia PDF Downloads 195
108 Geotechnical Evaluation and Sizing of the Reinforcement Layer on Soft Soil in the Construction of the North Triage Road Clover, in Brasilia Federal District, Brazil

Authors: Rideci Farias, Haroldo Paranhos, Joyce Silva, Elson Almeida, Hellen Silva, Lucas Silva

Abstract:

The constant growth of the fleet of vehicles in the big cities, makes that the Engineering is dynamic, with respect to the new solutions for traffic flow in general. In the Federal District (DF), Brazil, it is no different. The city of Brasilia, Capital of Brazil, and Cultural Heritage of Humanity by UNESCO, is projected to 500 thousand inhabitants, and today circulates more than 3 million people in the city, and with a fleet of more than one vehicle for every two inhabitants. The growth of the city to the North region, made that the urban planning presented solutions for the fleet in constant growth. In this context, a complex of viaducts, road accesses, creation of new rolling roads and duplication of the Bragueto bridge over Paranoa lake in the northern part of the city was designed, giving access to the BR-020 highway, denominated Clover of North Triage (TTN). In the geopedological context, the region is composed of hydromorphic soils, with the presence of the water level at some times of the year. From the geotechnical point of view, are soils with SPT < 4 and Resistance not drained, Su < 50 kPa. According to urban planning in Brasília, special art works can not rise in the urban landscape, contrasting with the urban characteristics of the architects Lúcio Costa and Oscar Niemeyer. Architects hired to design the new Capital of Brazil. The urban criterion then created the technical impasse, resulting in the technical need to ‘bury’ the works of art and in turn the access greenhouses at different levels, in regions of low support soil and water level Outcrossing, generally inducing the need for this study and design. For the adoption of the appropriate solution, Standard Penetration Test (SPT), Vane Test, Diagnostic peritoneal lavage (DPL) and auger boring campaigns were carried out. With the comparison of the results of these tests, the profiles of resistance of the soils and water levels were created in the studied sections. Geometric factors such as existing sidewalks and lack of elevation for the discharge of deep drainage water have inhibited traditional techniques for total removal of soft soils, thus avoiding the use of temporary drawdown and shoring of excavations. Thus, a structural layer was designed to reinforce the subgrade by means of the ‘needling’ of the soft soil, without the need for longitudinal drains. In this context, the article presents the geological and geotechnical studies carried out, but also the dimensioning of the reinforcement layer on the soft soil with a view to the main objective of this solution that is to allow the execution of the civil works without the interference in the roads in use, Execution of services in rainy periods, presentation of solution compatible with drainage characteristics and soft soil reinforcement.

Keywords: layer, reinforcement, soft soil, clover of north triage

Procedia PDF Downloads 202
107 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 49
106 Impact of Lined and Unlined Water Bodies on the Distribution and Abundance of Fresh Water Snails in Certain Governorates in Egypt

Authors: Nahed Mohamed Ismail, Bayomy Mostafa, Ahmed Abdel Kader, Ahmed Mohamed Azzam

Abstract:

Effect of lining watercourses on the distribution and abundance of fresh water snails at two Egyptian governorates, Baheria (new reclaimed area) and Giza was studied. Seasonal survey in lined and unlined sites during two successive years was carried out. Samples of snails and water were collected from each examined site and the ecological conditions were recorded. The collected snails from each site were placed in plastic aquaria and transferred to the laboratory, where they were sorted out, identified, counted and examined for natural infection. The size frequency distribution was calculated for each snail species. Results revealed that snails were represented in all examined watercourses (lined and unlined) at the two tested habitats by 14 species. (Biomphalaria alexandrina, B. glabrata, Bulinus truncatus, Physa acuta. Helisoma duryi, Lymnaea natalensis, Planorbis planorbis, Cleopatra bulimoids, Lanistes carinatus, Bellamya unicolor, Melanoides tuberculata, Theodoxus nilotica, Succinia cleopatra and Gabbiella senaarensis). During spring, the percentage of live (45%) and dead (55%) snail species was extremely highly significant lower (p>0.001) in lined water bodies compared to the unlined ones (93.5% and 6.5%, respectively) in the examined sites at Baheria. At Giza, the percentage values of live snail species from all lined watercourses (82.6% and 60.2%, during winter and spring, respectively) was significantly lower (p>0.05 & p>0.01) than those in unlined ones (91.1% and 79%, respectively). Size frequency distribution of snails collected from the lined and unlined water bodies at Baheria and Giza governorates during all seasons revealed that during survey, snail populations were stable and the recruitment of young to adult was continuing for some species, where the recruits were observed with adults. However, there was no sign of small snails occurrence in case of B. glabrata and B. alexandrina during autumn, winter and spring and disappear during summer at Giza. Meanwhile they completely absent during all seasons at Baheria Governorate. Chemical analysis of some heavy metals of water samples collected from lined and unlined sites from Baheria and Giza governorates during autumn, winter and spring were approximately as the same in both lined and unlined water bodies. However, Zn and Fe were higher in lined sites (0.78±0.37and 17.4 ± 4.3, respectively) than that of unlined ones (0.4±0.1 and 10.95 ± 1.93, respectively) and Cu was absent in both lined and unlined sites during summer at Baheria governorate. At Giza, Cu and Pb were absent and Fe were higher in lined sites (4.7± 4.2) than that of unlined ones (2.5 ± 1.4) during summer. Statistical analysis showed that no significant difference in all physico-chemical parameters of water in lined and unlined water bodies at the two tested habitats during all seasons. However, it was found that the water conductivity and TDS showed a lower mean values in lined sites than those of unlined ones. Thus, the present obtained data support the concept of utilizing environmental modification such as lining of water courses to help in minimizing the population density of certain vector snails and consequently reduce the transmission of snails born diseases.

Keywords: lining, fresh water, snails, watercourses

Procedia PDF Downloads 230
105 Road Map to Health: Palestinian Workers in Israel's Construction Sector

Authors: Maya de Vries Kedem, Abir Jubran, Diana Baron

Abstract:

Employment in Israel offers Palestinian workers an income double what they can earn in the West Bank. The need to support their families leads many educated Palestinians to forgo finding work in their profession in the Palestinian Authority and instead look for employment in those sectors open to them in Israel, particularly the construction, agriculture, and industry sectors. The International Labor Organization estimated that about 1,200 workers in Israel die every year because of occupational diseases (diseases caused by working conditions). Construction workers in Israel are constantly exposed to dust, noise, chemical materials, and work in awkward postures, which require prolonged bending, repetitive motion, and other risk factors that can lead to illnesses and death. Occupational health is vastly neglected in Israel and construction workers are particularly at risk . As of June 2022, the Israeli quota in the construction sector for Palestinian workers stood at 80,000. Kav LaOved released a new study on the state of occupational health among Palestinian workers employed in construction in Israel. The study Roadmap to Health: Palestinian Workers in Israel's Construction Sector reviews the extent to which the health of Palestinian workers is protected at work in Israel. The report includes analysis of a survey administered to 256 workers as well as interviews with 10 workers and with 5 Israeli occupational health experts. Report highlights: • Among survey respondents, 63.9% stated that safety procedures to protect their health are rarely followed in their workplace (e.g., taking breaks, using protective gear, following restrictions on lifting heavy items, and having inspectors regularly on site to monitor safety). • All 256 Palestinian workers who participated to the survey said that their health has been directly or indirectly harmed by working in Israel and reported suffering from the following problems: orthopedic problems such as joint, hand, leg or knee problems (100%); headaches (75%); back problems (36.3%); eye problems (23.8%); breathing problems (17.6%); chronic pain (14.8%); heart problems (7.8%); and skin problems (3.5%). • Workers who are injured or do not feel well often continue working for fear of losing their payment for that day. About half of the 256 survey respondents reported that they pay brokerage fees to find an employer with a work permit, often paying between 2,000 and 3,000 NIS per month. “I have an obligation—I pay about NIS 120 a day for my permit, [and] I have to pay for it whether I work or not" a worker said. • Most Palestinian construction workers suffer from stress and mental health problems. Workers pointed to several issues that greatly affect their mood and mental state: daily crossings at crowded checkpoints where workers stand for hours; lack of sleep due to leaving home daily at 3:00-3:30 am; commuting two to four hours to work in each direction; and abusive work environments. A worker told KLO that the sight of thousands of workers standing together at the checkpoint causes “high blood pressure and the feeling that you are going to be squeezed.” Another said, “I felt that my bones would break.” In the survey workers reported suffering from insomnia (70.1%), breathing difficulties (35.8%), chest pressure (27.6%), or rapid pulse rate (12.2%).

Keywords: construction sector, palestinian workers, occupational health, Israel, occupation

Procedia PDF Downloads 62
104 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System

Authors: Masoud Mirzaee, Ghobad Behzadi Pour

Abstract:

An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.

Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure

Procedia PDF Downloads 215
103 Bioleaching of Precious Metals from an Oil-fired Ash Using Organic Acids Produced by Aspergillus niger in Shake Flasks and a Bioreactor

Authors: Payam Rasoulnia, Seyyed Mohammad Mousavi

Abstract:

Heavy fuel oil firing power plants produce huge amounts of ashes as solid wastes, which seriously need to be managed and processed. Recycling precious metals of V and Ni from these oil-fired ashes which are considered as secondary sources of metals recovery, not only has a great economic importance for use in industry, but also it is noteworthy from the environmental point of view. Vanadium is an important metal that is mainly used in the steel industry because of its physical properties of hardness, tensile strength, and fatigue resistance. It is also utilized in oxidation catalysts, titanium–aluminum alloys and vanadium redox batteries. In the present study bioleaching of vanadium and nickel from an oil-fired ash sample was conducted using Aspergillus niger fungus. The experiments were carried out using spent-medium bioleaching method in both Erlenmeyer flasks and also bubble column bioreactor, in order to compare them together. In spent-medium bioleaching the solid waste is not in direct contact with the fungus and consequently the fungal growth is not retarded and maximum organic acids are produced. In this method the metals are leached through biogenic produced organic acids present in the medium. In shake flask experiments the fungus was cultured for 15 days, where the maximum production of organic acids was observed, while in bubble column bioreactor experiments a 7 days fermentation period was applied. The amount of produced organic acids were measured using high performance liquid chromatography (HPLC) and the results showed that depending on the fermentation period and the scale of experiments, the fungus has different major lixiviants. In flask tests, citric acid was the main produced organic acid by the fungus and the other organic acids including gluconic, oxalic, and malic were excreted in much lower concentrations, while in the bioreactor oxalic acid was the main lixiviant and it was produced considerably. In Erlenmeyer flasks during 15 days fermentation of Aspergillus niger, 8080 ppm citric acid and 1170 ppm oxalic acid was produced, while in bubble column bioreactor over 7 days of fungal growth, 17185 ppm oxalic acid and 1040 ppm citric acid was secreted. The leaching tests using the spent-media obtained from both of fermentation experiments, were performed at the same conditions of leaching duration of 7 days, leaching temperature of 60 °C and pulp density up to 3% (w/v). The results revealed that in Erlenmeyer flask experiments 97% of V and 50% of Ni were extracted while using spent medium produced in bubble column bioreactor, V and Ni recoveries were achieved to 100% and 33%, respectively. These recovery yields indicate that in both scales almost total vanadium can be recovered, while nickel recovery was lower. With help of the bioreactor spent-medium nickel recovery yield was lower than that of obtained from the flask experiments, which it could be due to precipitation of some values of Ni in presence of high levels of oxalic acid existing in its spent medium.

Keywords: Aspergillus niger, bubble column bioreactor, oil-fired ash, spent-medium bioleaching

Procedia PDF Downloads 210
102 Technology Assessment of the Collection of Cast Seaweed and Use as Feedstock for Biogas Production- The Case of SolrøD, Denmark

Authors: Rikke Lybæk, Tyge Kjær

Abstract:

The Baltic Sea is suffering from nitrogen and phosphorus pollution, which causes eutrophication of the maritime environment and hence threatens the biodiversity of the Baltic Sea area. The intensified quantity of nutrients in the water has created challenges with the growth of seaweed being discarded on beaches around the sea. The cast seaweed has led to odor problems hampering the use of beach areas around the Bay of Køge in Denmark. This is the case in, e.g., Solrød Municipality, where recreational activities have been disrupted when cast seaweed pile up on the beach. Initiatives have, however, been introduced within the municipality to remove the cast seaweed from the beach and utilize it for renewable energy production at the nearby Solrød Biogas Plant, thus being co-digested with animal manure for power and heat production. This paper investigates which type of technology application’s have been applied in the effort to optimize the collection of cast seaweed, and will further reveal, how the seaweed has been pre-treated at the biogas plant to be utilized for energy production the most efficient, hereunder the challenges connected with the content of sand. Heavy metal contents in the seaweed and how it is managed will also be addressed, which is vital as the digestate is utilized as soil fertilizer on nearby farms. Finally, the paper will outline the energy production scheme connected to the use of seaweed as feedstock for biogas production, as well as the amount of nitrogen-rich fertilizer produced. The theoretical approach adopted in the paper relies on the thinking of Circular Bio-Economy, where biological materials are cascaded and re-circulated etc., to increase and extend their value and usability. The data for this research is collected as part of the EU Interreg project “Cluster On Anaerobic digestion, environmental Services, and nuTrients removAL” (COASTAL Biogas), 2014-2020. Data gathering consists of, e.g., interviews with relevant stakeholders connected to seaweed collection and operation of the biogas plant in Solrød Municipality. It further entails studies of progress and evaluation reports from the municipality, analysis of seaweed digestion results from scholars connected to the research, as well as studies of scientific literature to supplement the above. Besides this, observations and photo documentation have been applied in the field. This paper concludes, among others, that the seaweed harvester technology currently adopted is functional in the maritime environment close to the beachfront but inadequate in collecting seaweed directly on the beach. New technology hence needs to be developed to increase the efficiency of seaweed collection. It is further concluded that the amount of sand transported to Solrød Biogas Plant with the seaweed continues to pose challenges. The seaweed is pre-treated for sand in a receiving tank with a strong stirrer, washing off the sand, which ends at the bottom of the tank where collected. The seaweed is then chopped by a macerator and mixed with the other feedstock. The wear down of the receiving tank stirrer and the chopper are, however, significant, and new methods should be adopted.

Keywords: biogas, circular bio-economy, Denmark, maritime technology, cast seaweed, solrød municipality

Procedia PDF Downloads 254
101 Forced Migrants in Israel and Their Impact on the Urban Structure of Southern Neighborhoods of Tel Aviv

Authors: Arnon Medzini, Lilach Lev Ari

Abstract:

Migration, the driving force behind increased urbanization, has made cities much more diverse places to live in. Nearly one-fifth of all migrants live in the world’s 20 largest cities. In many of these global cities, migrants constitute over a third of the population. Many of contemporary migrants are in fact ‘forced migrants,’ pushed from their countries of origin due to political or ethnic violence and persecution or natural disasters. During the past decade, massive numbers of labor migrants and asylum seekers have migrated from African countries to Israel via Egypt. Their motives for leaving their countries of origin include ongoing and bloody wars in the African continent as well as corruption, severe conditions of poverty and hunger, and economic and political disintegration. Most of the African migrants came to Israel from Eritrea and Sudan as they saw Israel the closest natural geographic asylum to Africa; soon they found their way to the metropolitan Tel-Aviv area. There they concentrated in poor neighborhoods located in the southern part of the city, where they live under conditions of crowding, poverty, and poor sanitation. Today around 45,000 African migrants reside in these neighborhoods, and yet there is no legal option for expelling them due to dangers they might face upon returning to their native lands. Migration of such magnitude to the weakened neighborhoods of south Tel-Aviv can lead to the destruction of physical, social and human infrastructures. The character of the neighborhoods is changing, and the local population is the main victim. These local residents must bear the brunt of the failure of both authorities and the government to handle the illegal inhabitants. The extremely crowded living conditions place a heavy burden on the dilapidated infrastructures in the weakened areas where the refugees live and increase the distress of the veteran residents of the neighborhoods. Some problems are economic and some stem from damage to the services the residents are entitled to, others from a drastic decline in their standard of living. Even the public parks no longer serve the purpose for which they were originally established—the well-being of the public and the neighborhood residents; they have become the main gathering place for the infiltrators and a center of crime and violence. Based on secondary data analysis (for example: The Israel’s Population, Immigration and Border Authority, the hotline for refugees and migrants), the objective of this presentation is to discuss the effects of forced migration to Tel Aviv on the following tensions: between the local population and the immigrants; between the local population and the state authorities, and between human rights groups vis-a-vis nationalist local organizations. We will also describe the changes which have taken place in the urban infrastructure of the city of Tel Aviv, and discuss the efficacy of various Israeli strategic trajectories when handling human problems arising in the marginal urban regions where the forced migrant population is concentrated.

Keywords: African asylum seekers, forced migrants, marginal urban regions, urban infrastructure

Procedia PDF Downloads 226
100 Adaptive Power Control of the City Bus Integrated Photovoltaic System

Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker

Abstract:

This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.

Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter

Procedia PDF Downloads 188