Search results for: heat and mass transfer analogy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7671

Search results for: heat and mass transfer analogy

1101 Effects of Additional Pelvic Floor Exercise on Sexual Function, Quality of Life and Pain Intensity in Subjects with Chronic Low Back Pain

Authors: Emel Sonmezer, Hayri Baran Yosmaoglu

Abstract:

The negative impact of chronic pain syndromes on sexual function has been reported in several studies; however, the influences of treatment strategies on sexual dysfunction have not been evaluated widely. The aim of this study was to determine the effects of pelvic floor exercise on sexual dysfunction in female patients with chronic low back pain. Forty-two patient with chronic low back pain were enrolled this study. Subjects were divided into two groups. Group 1 received conventional physiotherapy consist of heat therapy, ergonomic education, William flexion exercise during 6 weeks. Group 2 received pelvic floor exercises in addition to conventional physiotherapy. Female Sexual Function Index (FSFI) was used for the assessment of sexual function. Pain intensity was assessed with Visual Analogue Scale. Quality of life was assessed with World Health Organization Quality of Life Scale. All measurements were taken before and after treatment. In conventional physiotherapy group; there were significant improvement in pain intensity (p= 0,003), physical health (p=0,011), psychological health (p=0,042) subscales of quality of life scale, arousal (p=0,042), lubrication (p=0,028) and pain (p= 0,034) subscales of FSFI. In additional pelvic floor exercise group; there were significant improvement in pain intensity (p= 0,005), physical health (p=0,012) psychological health (p=0,039) subscales of quality of life scale, arousal (p=0,024), lubrication (p=0,011), orgasm (p=0,035) and pain (p= 0,015) subscales and total score (p=0,016) of FSFI. Total FSFI score (p=0,025) and orgasm (p=0,017) subscale of FSFI were significantly higher for the additional pelvic floor exercise group than the conventional physiotherapy group.The outcome of this study suggested that conventional physiotherapy may contribute to improve pain, quality of life and some parameters of the sexual function in patients with low back pain. Although additional pelvic floor exercise did not reveal more treatment effect in terms of quality of life and pain intensity, it caused significant improvement in sexual function. It is recommended that pelvic floor exercise should be added to treatment programs in order to manage sexual dysfunction more effectively in patients with chronic low back pain.

Keywords: physiotherapy, chronic pain, sexual dysfunction, pelvic floor

Procedia PDF Downloads 241
1100 Enzymatic Degradation of Poly (Butylene Adipate Terephthalate) Copolymer Using Lipase B From Candida Antarctica and Effect of Poly (Butylene Adipate Terephthalate) on Plant Growth

Authors: Aqsa Kanwal, Min Zhang, Faisal Sharaf, Li Chengtao

Abstract:

The globe is facing increasing challenges of plastic pollution due to single-use of plastic-based packaging material. The plastic material is continuously being dumped into the natural environment, which causes serious harm to the entire ecosystem. Polymer degradation in nature is very difficult, so the use of biodegradable polymers instead of conventional polymers can mitigate this issue. Due to the good mechanical properties and biodegradability, aliphatic-aromatic polymers are being widely commercialized. Due to the advancement in molecular biology, many studies have reported specific microbes that can effectively degrade PBAT. Aliphatic polyesters undergo hydrolytic cleavage of ester groups, so they can be easily degraded by microorganisms. In this study, we investigated the enzymatic degradation of poly (butylene adipate terephthalate) (PBAT) copolymer using lipase B from Candida Antarctica (CALB). Results of the study displayed approximately 5.16 % loss in PBAT mass after 2 days which significantly increased to approximately 15.7 % at the end of the experiment (12 days) as compared to blank. The pH of the degradation solution also displayed significant reduction and reached the minimum value of 6.85 at the end of the experiment. The structure and morphology of PBAT after degradation were characterized by FTIR, XRD, SEM, and TGA. FTIR analysis showed that after degradation many peaks become weaker and the peak at 2950 cm-1 almost disappeared after 12 days. The XRD results indicated that as the degradation time increases the intensity of diffraction peaks slightly increases as compared to the blank PBAT. TGA analysis also confirmed the successful degradation of PBAT with time. SEM micrographs further confirmed that degradation has occurred. Hence, biodegradable polymers can widely be used. The effect of PBAT biodegradation on plant growth was also studied and it was found that PBAT has no toxic effect on the growth of plants. Hence PBAT can be employed in a wide range of applications.

Keywords: aliphatic-aromatic co-polyesters, polybutylene adipate terephthalate, lipase (CALB), biodegradation, plant growth

Procedia PDF Downloads 53
1099 Designing Financing Schemes to Make Forest Management Units Work in Aceh Province, Indonesia

Authors: Riko Wahyudi, Rezky Lasekti Wicaksono, Ayu Satya Damayanti, Ridhasepta Multi Kenrosa

Abstract:

Implementing Forest Management Unit (FMU) is considered as the best solution for forest management in developing countries. However, when FMU has been formed, many parties then blame the FMU and assume it is not working on. Currently, there are two main issues that make FMU not be functional i.e. institutional and financial issues. This paper is addressing financial issues to make FMUs in Aceh Province can be functional. A mixed financing scheme is proposed here, both direct and indirect financing. The direct financing scheme derived from two components i.e. public funds and businesses. Non-tax instruments of intergovernmental fiscal transfer (IFT) system and FMU’s businesses are assessed. Meanwhile, indirect financing scheme is conducted by assessing public funds within villages around forest estate as about 50% of total villages in Aceh Province are located surrounding forest estate. Potential instruments under IFT system are forest and mining utilization royalties. In order to make these instruments become direct financing for FMU, interventions on allocation and distribution aspects of them are conducted. In the allocation aspect, alteration in proportion of allocation is required as the authority to manage forest has shifted from district to province. In the distribution aspect, Government of Aceh can earmark usage of the funds for FMUs. International funds for climate change also encouraged to be domesticated and then channeled through these instruments or new instrument under public finance system in Indonesia. Based on FMU’s businesses both from forest products and forest services, FMU can impose non-tax fees for each forest product and service utilization. However, for doing business, the FMU need to be a Public Service Agency (PSA). With this status, FMU can directly utilize the non-tax fees without transferring them to the state treasury. FMU only need to report the fees to Ministry of Finance. Meanwhile, indirect financing scheme is conducted by empowering villages around forest estate as villages in Aceh Province is receiving average village fund of IDR 800 million per village in 2017 and the funds will continue to increase in subsequent years. These schemes should be encouraged in parallel to establish a mixed financing scheme in order to ensure sustainable financing for FMU in Aceh Province, Indonesia.

Keywords: forest management, public funds, mixed financing, village

Procedia PDF Downloads 162
1098 Seismic Isolation of Existing Masonry Buildings: Recent Case Studies in Italy

Authors: Stefano Barone

Abstract:

Seismic retrofit of buildings through base isolation represents a consolidated protection strategy against earthquakes. It consists in decoupling the ground motion from that of the structure and introducing anti-seismic devices at the base of the building, characterized by high horizontal flexibility and medium/high dissipative capacity. This allows to protect structural elements and to limit damages to non-structural ones. For these reasons, full functionality is guaranteed after an earthquake event. Base isolation is applied extensively to both new and existing buildings. For the latter, it usually does not require any interruption of the structure use and occupants evacuation, a special advantage for strategic buildings such as schools, hospitals, and military buildings. This paper describes the application of seismic isolation to three existing masonry buildings in Italy: Villa “La Maddalena” in Macerata (Marche region), “Giacomo Matteotti” and “Plinio Il Giovane” school buildings in Perugia (Umbria region). The seismic hazard of the sites is characterized by a Peak Ground Acceleration (PGA) of 0.213g-0.287g for the Life Safety Limit State and between 0.271g-0.359g for the Collapse Limit State. All the buildings are isolated with a combination of free sliders type TETRON® CD with confined elastomeric disk and anti-seismic rubber isolators type ISOSISM® HDRB to reduce the eccentricity between the center of mass and stiffness, thus limiting torsional effects during a seismic event. The isolation systems are designed to lengthen the original period of vibration (i.e., without isolators) by at least three times and to guarantee medium/high levels of energy dissipation capacity (equivalent viscous damping between 12.5% and 16%). This allows the structures to resist 100% of the seismic design action. This article shows the performances of the supplied anti-seismic devices with particular attention to the experimental dynamic response. Finally, a special focus is given to the main site activities required to isolate a masonry building.

Keywords: retrofit, masonry buildings, seismic isolation, energy dissipation, anti-seismic devices

Procedia PDF Downloads 42
1097 Autophagy Defects That Modify Human Immune Cell Metabolism and Promote Aging-Associated Inflammation

Authors: Grace McCambridge, Alanna Keady, Madhur Agrawal, Dequina Nicholas Alvarado, Barbara Nikolajczyk, Leena Panneerseelan-Bharath

Abstract:

Age is a non-modifiable risk factor for the inflammation that underlies pathologies such as type 2 diabetes mellitus (T2DM). Inflammation, as indicated by circulating cytokines, rises in aging, but mechanisms that promote this ‘inflammaging’ remain poorly defined. Furthermore, downstream consequences of inflammaging, including the development of an inflammatory profile that predicts comorbidities like T2DM, remain speculative. We tested the possibility that natural aging-associated changes in autophagy, a process that is compromised in both aging and T2DM, regulates inflammatory profiles in older subjects. Our data showed that circulating CD4⁺ T cells from older compared to younger subjects have (i) defects in autophagy; (ii) higher mitochondria accumulation; (iii) a failure to metabolically shift from oxidative phosphorylation to anaerobic glycolysis upon αCD3/CD28 activation; (iv) more reactive oxygen species (ROS) accumulation; and (v) a cytokine profile that recapitulates the Th17 profile that predicts T2DM. ROS scavenging in cells from older subjects restored mitochondrial mass and membrane potential (indicators of improved autophagy) and reduced Th17 cytokines to amounts made by T cells from younger subjects. Knock-down of the autophagy protein Atg3 in T cells from younger subjects increased mitochondrial accumulation and Th17 cytokines. To begin translating these findings to clinical practice, we showed that physiological concentrations of the diabetes drug metformin (100 µM) added in vitro enhanced autophagy, prevented mitochondria and ROS accumulation, increased anaerobic glycolysis, and decreased Th17 cytokines in activated CD4⁺ T cells from older subjects. Metformin therefore improves autophagy and multiple downstream pro-inflammatory mechanisms CD4⁺ T cells from older subjects. We conclude that autophagy improvement ameliorates the development of a T2DM-predictive Th17 profile in aging, and thus holds promise for delay or prevention of aging-associated metabolic decline.

Keywords: autophagy, mitochondrial turnover, ROS, glycolysis

Procedia PDF Downloads 129
1096 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 36
1095 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 72
1094 Women and Terrorism in Nigeria: Policy Templates for Addressing Complex Challenges in a Changing Democratic State

Authors: Godiya Pius Atsiya

Abstract:

One of the most devastating impacts of terrorism on the Nigerian state is the danger it has posed on women, children and other vulnerable groups. The complexity of terrorism in Nigeria, especially in most parts of Northern Nigeria has entrenched unprecedented security challenges such as refugee crisis, kidnapping, food shortages, increase in death tolls, malnutrition, fear, rape and several other psychological factors. Of particular interest in this paper as it relates to terrorism is the high rate of Internally Displaced Persons(IDPs), with women, children and the aged being the most affected. Empirical evidence arising from recent development in Nigeria’s North-East geo-political zone shows that large numbers of refugees fleeing the Boko Haram attacks have doubled. The attendant consequences of this mass exodus of people in the affected areas are that the victims now suffer untold and unwarranted economic hardship. In another dimension, recent findings have it that most powerless women and young teenage girls have been forcefully conscripted into the Islamic extremist groups and used as shields. In some respect, these groups of people have been used as available tools for suicide bombing and other criminal tendencies, the result of which can be detrimental to social cohesion and integration. This work is a theoretical insight into terrorism discourses; hence, the paper relies on existing works of scholars in carrying out the research. The paper argues that the implications of terrorism on women gender have grounding effects on the moral psyche of women who are supposed to be home managers and custodians of morality in society. The burden of terrorism and all it tends to propagate has literally upturned social lives and hence, Nigeria is gradually being plunged into the Hobesian state of nature. As a panacea to resolving this social malaise, the paper submits that government and indeed, all stakeholders in the nation’s democratic project must expedite action to nip this trend in the bud. The paper sums up with conclusion and other alternative policy measures to mitigate the challenges of terrorism in Nigeria.

Keywords: changing democratic state, policy measures, terrorism, women

Procedia PDF Downloads 200
1093 Development of a Computer Based, Nutrition and Fitness Programme and Its Effect on Nutritional Status and Fitness of Obese Adults

Authors: Richa Soni, Vibha Bhatnagar, N. K. Jain

Abstract:

This study was conducted to develop a computer mediated programme for weight management and physical fitness and examining its efficacy in reducing weight and improving physical fitness in obese adults. A user friendly, computer based programme was developed to provide a simple, quick, easy and user-friendly method of assessing energy balance at individual level. The programme had four main sections viz. personal Profile, know about your weight, fitness and food exchange list. The computer programme was developed to provide facilities of creating individual profile, tracking meal and physical activities, suggesting nutritional and exercise requirements, planning calorie specific menus, keeping food diaries and revising the diet and exercise plans if needed. The programme was also providing information on obesity, underweight, physical fitness. An exhaustive food exchange list was also given in the programme to assist user to make right food choice decisions. The developed programme was evaluated by a panel of 15 experts comprising endocrinologists, nutritionists and diet counselors. Suggestions given by the experts were paned down and the entire programme was modified in light of suggestions given by the panel members and was reevaluated by the same panel of experts. For assessing the impact of the programme 22 obese subjects were selected purposively and randomly assigned to intervention group (n=12) and no information control group. (n=10). The programme group was asked to strictly follow the programme for one month. Significant reduction in the intake of energy, fat and carbohydrates was observed while intake of fruits, green leafy vegetables was increased. The programme was also found to be effective in reducing body weight, body fat percent and body fat mass whereas total body water and physical fitness scores improved significantly. There was no significant alteration observed in any parameters in the control group.

Keywords: body composition, body weight, computer programme, physical fitness

Procedia PDF Downloads 260
1092 Macroeconomic Policies Followed in Turkey after the Crisis 2001 and the Effect of These Policies on Foreign Trade: Sample of the Province Konya

Authors: Bilge Afşar, Zeynep Karaçor, Burcu Guvenek

Abstract:

The aim of this study is to examine and analyze the effect of macroeconomic policies on foreign trade. In the study, the effect of the macroeconomic policies applied in Turkey after 2001 on foreign trade was scrutinized carrying out a survey study in the sample of the province Konya. In the survey study, the survey was administered to a total of 209 exporter firms, which are the members of Konya Chamber of Commerce. While 51 of the firms, to which the survey was administered, exported below $ 100,000, 158 of them are the firms exporting above $ 100,000. Survey was realized in the way of face to face interview with the firms in the rate of 79%. 47% of the institutions forming the mass were reached. In forming survey questionnaire, in general, 5-point Likert scale was used. In order to assess the study results, SPSS 15 package program was utilized. In the survey, foreign trade activities of the firms in Konya were analyzed; and the problems they face, while performing foreign trade, and those needing to be carried out for increasing foreign trade volume of Konya were revealed by determining how and at what degree they were affected from the macroeconomic policies applied. Thus, foreign trade structure and state of the province Konya were attempted to be analyzed. In the survey study, it emerges that although the problems Konya faces in foreign trade overlap with the problems across Turkey, the province Konya seems to be affected relatively less from the last crisis with its equity capital in either trade or other areas. Until the year 2008, while Konya is in a position of the province continuously increasing its export, also with the effect of global crisis, in 2009, a fall was seen in the amount of export. The results emerging in the survey study also confirm this case. In parallel with demand inadequacy and recession all over the world, firms experience trouble. However, again according to our survey result, foreign market weight of firms shifted from EU countries to Russia, East Bloc, and Middle East countries. This prevented Konya from negative affecting from EU crisis at maximum level. That is, Russian and Middle East market express significance for Konya. That market is diversified, and being relatively rid of dependence to EU is extremely important in terms of Konya export.

Keywords: economy, foreign trade, economic crise, macro economic politicies

Procedia PDF Downloads 269
1091 Expanding Learning Reach: Innovative VR-Enabled Retention Strategies

Authors: Bilal Ahmed, Muhammad Rafiq, Choongjae Im

Abstract:

The tech-savvy Gen Z's transfer towards interactive concept learning is hammering the demand for online collaborative learning environments, renovating conventional education approaches. The authors propose a novel approach to enhance learning outcomes to improve retention in 3D interactive education by connecting virtual reality (VR) and non-VR devices in the classroom and distance learning. The study evaluates students' experiences with VR interconnectivity devices in human anatomy lectures using real-time 3D interactive data visualization. Utilizing the renowned "Guo & Pooles Inventory" and the "Flow for Presence Questionnaires," it used an experimental research design with a control and experimental group to assess this novel connecting strategy's effectiveness and significant potential for in-person and online educational settings during the sessions. The experimental group's interactions, engagement levels, and usability experiences were assessed using the "Guo & Pooles Inventory" and "Flow for Presence Questionnaires," which measure their sense of presence, engagement, and immersion throughout the learning process using a 5-point Likert scale. At the end of the sessions, we used the "Perceived Usability Scale" to find our proposed system's overall efficiency, effectiveness, and satisfaction. By comparing both groups, the students in the experimental group used the integrated VR environment and VR to non-VR devices, and their sense of presence and attentiveness was significantly improved, allowing for increased engagement by giving students diverse technological access. Furthermore, learners' flow states demonstrated increased absorption and focus levels, improving information retention and Perceived Usability. The findings of this study can help educational institutions optimize their technology-enhanced teaching methods for traditional classroom settings as well as distance-based learning, where building a sense of connection among remote learners is critical. This study will give significant insights into educational technology and its ongoing progress by analyzing engagement, interactivity, usability, satisfaction, and presence.

Keywords: interactive learning environments, human-computer interaction, virtual reality, computer- supported collaborative learning

Procedia PDF Downloads 33
1090 The Effect of Two Methods of Upper and Lower Resistance Exercise Training on C-Reactive Protein, Interleukin-6 and Intracellular Adhesion Molecule-1 in Healthy Untrained Women

Authors: Leyla Sattarzadeh, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee

Abstract:

Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6) and adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of resistance exercise training on these inflammatory markers, the present study aimed to examine the effect of eight week different patterns of resistance exercise training on CRP, IL-6 and ICAM-1 levels in healthy untrained women. 40 volunteered and healthy untrained female university students (aged: 21+ 3 yr., Body Mass Index: 21.5+ 3.5 kg/m2) were selected purposefully and divided into three groups. At the end of training protocol and after subjects drop during the protocol in upper body exercise training (n=11), lower body (n=12) completed the eight week of training period although the control group (n=7) did anything. Blood samples gathered pre and post experimental period and CRP, IL-6 and ICAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one way Analysis of Variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP and ICAM-1 showed no significant changes due to the exercise training. But there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper and lower body exercise training by involving the different amount of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP and ICAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.

Keywords: C-reactive protein, interleukin-6, intracellular adhesion molecule-1, resistance training

Procedia PDF Downloads 224
1089 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence

Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur

Abstract:

To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.

Keywords: cognition, deep learning, drawing behavior, interpretability

Procedia PDF Downloads 127
1088 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances

Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm

Abstract:

ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.

Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances

Procedia PDF Downloads 348
1087 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 49
1086 Engineering C₃ Plants with SbtA, a Cyanobacterial Transporter, for Enhancing CO₂ Fixation

Authors: Vandana Deopanée Tomar, Gurpreet Kaur Sidhu, Panchsheela Nogia, Rajesh Mehrotra, Sandhya Mehrotra

Abstract:

The cyanobacterial CO₂ concentrating mechanism (CCM) operates to raise the levels of CO₂ in the vicinity of the main carboxylation enzyme Rubisco which is encapsulated in protein micro compartments called carboxysomes. Thus, due to the presence of CCM, cyanobacterial cells are able to work with high photosynthetic efficiency even at low Ci conditions and can accumulate 1000 folds high internal concentrations of Ci than external environment. Engineering of some useful CCM components into higher plants is one of the plausible approaches to improve their photosynthetic performance. The first step and the simplest approach for attaining this objective would be the transfer of cyanobacterial bicarbonate transporter such as SbtA to inner chloroplast envelope of C₃ plants. For this, SbtA transporter gene from Synechococcus elongatus PCC 7942 was fused to a transit peptide element to generate chimeric constructs in order to direct it to chloroplast inner envelope. Two transit peptides namely, TnaXTP (transit peptide from AT3G56160) and TMDTP (transit peptide from AT2G02590) were shortlisted from Arabidopsis thaliana genome and cloned in plant expression vector pCAMBIA1302 having mgfp5 as a reporter gene. Plant transformation was done by agro infiltration and Agrobacterium mediated co-culture. DNA, RNA, and protein were isolated from the leaves four days post infiltration, and the presence of transgene was confirmed by gene specific PCR (Polymerase Chain Reaction) analysis and by RT-PCR (Reverse Transcription Polymerase Chain Reaction). The expression was confirmed at the protein level by western blotting using anti-GFP primary antibody and horseradish peroxidase (HRP) conjugated secondary antibody. The localization of the protein was detected by confocal microscopy of isolated protoplasts. We observed chloroplastic expression for both the fusion constructs which suggest that the transit peptide sequences are capable of taking the cargo protein to the chloroplasts. These constructs are now being used to generate stable transgenic plants by Agrobacterium mediated transformation. The stability of transgene expression will be analyzed from T₀ to T₂ generation.

Keywords: agro infiltration, bicarbonate transporter, carbon concentrating mechanisms, cyanobacteria, SbtA

Procedia PDF Downloads 189
1085 Therapeutic Role of T Subpopulations Cells (CD4, CD8 and Treg (CD25 and FOXP3+ Cells) of UC MSC Isolated from Three Different Methods in Various Disease

Authors: Kumari Rekha, Mathur K Dhananjay, Maheshwari Deepanshu, Nautiyal Nidhi, Shubham Smriti, Laal Deepika, Sinha Swati, Kumar Anupam, Biswas Subhrajit, Shiv Kumar Sarin

Abstract:

Background: Mesenchymal stem cells are multipotent stem cells derived from mesoderm and are used for therapeutic purposes because of their self-renewal, homing capacity, Immunomodulatory capability, low immunogenicity and mitochondrial transfer signaling. MSCs have the ability to regulate the mechanism of both innate as well as adaptive immune responses through the modulation of cellular response and the secretion of inflammatory mediators. Different sources of MSC are UC MSC, BM MSC, Dental Pulp, and Adipose MSC. The most frequent source used is umbilical cord tissue due to its being easily available and free of limitations of collection procedures from respective hospitals. The immunosuppressive role of MSCs is particularly interesting for clinical use since it confers resistance to rejection by the host immune response. Methodology: In this study, T helper cells (TH4), Cytotoxic T cells (CD-8), immunoregulatory cells (CD25 +FOXP3+) are compared from isolated MSC from three different methods, UC Dissociation Kit (Miltenyi), Explant Culture and Collagenase Type-IV. To check the immunomodulatory property, these MSCs were seeded with PBMC(Coculture) in CD3 coated 24 well plates. Cd28 antibody was added in coculture for six days. The coculture was analyzed in FACS Verse flow cytometry. Results: From flow cytometry analysis of coculture, it found that All over T helper cells (CD4+) number p<0.0264 increases in (All Enzymes) MSC rather than explant MSC(p>0.0895) as compared to Collagenase(p>0.7889) in a coculture of Activated T cell and Mesenchymal Stem Cell. Similar T reg cells (CD25+, FOXP3+) expression p<0.0234increases in All Enzymes), decreases in Explant and Collagenase. Experiments have shown that MSCs can also directly prevent the cytotoxic activity of CD8 lymphocytes mainly by blocking their proliferation rather than by inhibiting the cytotoxic effect. And promoting the t-reg cells, which helps in the mediation of immune response in various diseases. Conclusion: MSC suppress Cytotoxic CD8 T cell and Enhance immunoregulatory T reg (CD4+, CD25+, FOXP3+) Cell expression. Thus, MSC maintains a proper balance(ratio) between CD4 T cells and Cytotoxic CD8 T cells.

Keywords: MSC, disease, T cell, T regulatory

Procedia PDF Downloads 78
1084 Toward a Coalitional Subject in Contemporary American Feminist Literature

Authors: Su-Lin Yu

Abstract:

Coalition politics has been one of feminists’ persistent concerns. Following recent feminist discussion on new modes of affiliation across difference, she will explore how the process of female subject formation depends on alliances across different cultural locations. First, she will examine how coalition politics is reformulated across difference in contemporary feminist literature. In particular, the paper will identify the particular contexts and locations in which coalition building both enables and constrains the female subject. She will attempt to explore how contemporary feminist literature highlights the possibilities and limitations for solidarity and affiliations. To understand coalition politics in contemporary feminist works, she will engage in close readings of two texts: Rebecca Walker’s Black, White and Jewish: Memoir of a Shifting Self and Danzy Senna’s Caucasia. Both Walker and Senna have articulated the complex nodes of identity that are staged by a politics of location as they refuse to be boxed into simplistic essentialist positions. Their texts are characterized by the characters’ racial ambiguity and their social and geographical mobility of life in the contemporary United States. Their experiences of living through conflictual and contradictory relationships never fully fit the boundaries of racial categorization. Each of these texts demonstrates the limits as well as the possibilities of working with diversity among and within persons and groups, thus, laying the ground for complex alliance formation. Because each of the protagonists must negotiate a set of contradictions, they will have to constantly shift their affiliations. Rather than construct a static alliance, they describe a process of moving ‘beyond boundaries,’ an embracing of multiple locations. As self-identified third wavers, Rebecca Walker and Danzy Senna have been identified and marked with the status of ‘leader’ by the feminist establishment and by mainstream U.S. media. Their texts have captured both mass popularity and critical attention in the feminist and, often, the non-feminist literary community. By analyzing these texts, she will show how contemporary American feminist literature reveals coalition politics which is fraught with complications and unintended consequences. Taken as a whole, then, these works provide an important examination not only of coalition politics of American feminism, but also a snapshot of a central debate among feminist critique of coalition politics as a whole.

Keywords: coalition politics, contemporary women’s literature, identity, female subject

Procedia PDF Downloads 264
1083 Naked Machismo: Uncovered Masculinity in an Israeli Home Design Campaign

Authors: Gilad Padva, Sigal Barak Brandes

Abstract:

This research centers on an unexpected Israeli advertising campaign for Elemento, a local furniture company, which eroticizes male nudity. The discussed campaign includes a series of printed ads that depict naked male models in effeminate positions. This campaign included a series of ads published in Haaretz, a small-scaled yet highly prestigious daily newspaper which is typically read by urban middle-upper-class left-winged Israelis. Apparently, this campaign embodies an alternative masculinity that challenges the prevalent machismo in Israeli society and advertising. Although some of the ads focus on young men in effeminate positions, they never expose their genitals and anuses, and their bodies are never permeable. The 2010s Elemento male models are seemingly contrasted to conventional representation of manhood in contemporary mainstream advertising. They display a somewhat inactive, passive and self-indulgent masculinity which involves 'conspicuous leisure'. In the process of commodity fetishism, the advertised furniture are emptied of the original meaning of their production, and then filled with new meanings in ways that both mystify the product and turn it into a fetish object. Yet, our research critically reconsiders this sensational campaign as sophisticated patriarchal parody that does not subvert but rather reconfirms and even fetishizes patriarchal premises; it parodizes effeminacy rather than the prevalent (Israeli) machismo. Following Pierre Bourdieu's politics of cultural taste, our research reconsiders and criticizes the male models' domesticated masculinity in a fantasized and cosmopolitan hedonistic habitus. Notwithstanding, we suggest that the Elemento campaign, despite its conformity, does question some Israeli and global axioms about gender roles, corporeal ideologies, idealized bodies, and domesticated phalluses and anuses. Although the naked truth is uncovered by this campaign, it does erect a vibrant discussion of contemporary masculinities and their exploitation in current mass consumption.

Keywords: male body, campaign, advertising, gender studies, men's studies, Israeli culture, masculinity, parody, effeminacy

Procedia PDF Downloads 183
1082 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney

Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone

Abstract:

Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.

Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit

Procedia PDF Downloads 243
1081 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control

Authors: N. Smaoui, B. Chentouf

Abstract:

The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.

Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability

Procedia PDF Downloads 45
1080 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor

Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon

Abstract:

Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.

Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles

Procedia PDF Downloads 97
1079 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques

Authors: Zakaria Baka, Halima Alem

Abstract:

Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.

Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques

Procedia PDF Downloads 168
1078 Supercritical Hydrothermal and Subcritical Glycolysis Conversion of Biomass Waste to Produce Biofuel and High-Value Products

Authors: Chiu-Hsuan Lee, Min-Hao Yuan, Kun-Cheng Lin, Qiao-Yin Tsai, Yun-Jie Lu, Yi-Jhen Wang, Hsin-Yi Lin, Chih-Hua Hsu, Jia-Rong Jhou, Si-Ying Li, Yi-Hung Chen, Je-Lueng Shie

Abstract:

Raw food waste has a high-water content. If it is incinerated, it will increase the cost of treatment. Therefore, composting or energy is usually used. There are mature technologies for composting food waste. Odor, wastewater, and other problems are serious, but the output of compost products is limited. And bakelite is mainly used in the manufacturing of integrated circuit boards. It is hard to directly recycle and reuse due to its hard structure and also difficult to incinerate and produce air pollutants due to incomplete incineration. In this study, supercritical hydrothermal and subcritical glycolysis thermal conversion technology is used to convert biomass wastes of bakelite and raw kitchen wastes to carbon materials and biofuels. Batch carbonization tests are performed under high temperature and pressure conditions of solvents and different operating conditions, including wet and dry base mixed biomass. This study can be divided into two parts. In the first part, bakelite waste is performed as dry-based industrial waste. And in the second part, raw kitchen wastes (lemon, banana, watermelon, and pineapple peel) are used as wet-based biomass ones. The parameters include reaction temperature, reaction time, mass-to-solvent ratio, and volume filling rates. The yield, conversion, and recovery rates of products (solid, gas, and liquid) are evaluated and discussed. The results explore the benefits of synergistic effects in thermal glycolysis dehydration and carbonization on the yield and recovery rate of solid products. The purpose is to obtain the optimum operating conditions. This technology is a biomass-negative carbon technology (BNCT); if it is combined with carbon capture and storage (BECCS), it can provide a new direction for 2050 net zero carbon dioxide emissions (NZCDE).

Keywords: biochar, raw food waste, bakelite, supercritical hydrothermal, subcritical glycolysis, biofuels

Procedia PDF Downloads 149
1077 The First Transcriptome Assembly of Marama Bean: An African Orphan Crop

Authors: Ethel E. Phiri, Lionel Hartzenberg, Percy Chimwamuromba, Emmanuel Nepolo, Jens Kossmann, James R. Lloyd

Abstract:

Orphan crops are underresearched and underutilized food plant species that have not been categorized as major food crops, but have the potential to be economically and agronomically significant. They have been documented to have the ability to tolerate extreme environmental conditions. However, limited research has been conducted to uncover their potential as food crop species. The New Partnership for Africa’s Development (NEPAD) has classified Marama bean, Tylosema esculentum, as an orphan crop. The plant is one of the 101 African orphan crops that must have their genomes sequenced, assembled, and annotated in the foreseeable future. Marama bean is a perennial leguminous plant that primarily grows in poor, arid soils in southern Africa. The plants produce large tubers that can weigh as much as 200kg. While the foliage provides fodder, the tuber is carbohydrate rich and is a staple food source for rural communities in Namibia. Also, the edible seeds are protein- and oil-rich. Marama Bean plants respond rapidly to increased temperatures and severe water scarcity without extreme consequences. Advances in molecular biology and biotechnology have made it possible to effectively transfer technologies between model- and major crops to orphan crops. In this research, the aim was to assemble the first transcriptomic analysis of Marama Bean RNA-sequence data. Many model plant species have had their genomes sequenced and their transcriptomes assembled. Therefore the availability of transcriptome data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this research will eventually evaluate the potential use of Marama Bean as a crop species to improve its value in agronomy. data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this researc will eventually evaluate the potential use of Marama bean as a crop species to improve its value in agronomy.

Keywords: 101 African orphan crops, RNA-Seq, Tylosema esculentum, underutilised crop plants

Procedia PDF Downloads 337
1076 Design and Modeling of Human Middle Ear for Harmonic Response Analysis

Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey

Abstract:

The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.

Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)

Procedia PDF Downloads 137
1075 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles

Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas

Abstract:

The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.

Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden

Procedia PDF Downloads 333
1074 Introduction to Two Artificial Boundary Conditions for Transient Seepage Problems and Their Application in Geotechnical Engineering

Authors: Shuang Luo, Er-Xiang Song

Abstract:

Many problems in geotechnical engineering, such as foundation deformation, groundwater seepage, seismic wave propagation and geothermal transfer problems, may involve analysis in the ground which can be seen as extending to infinity. To that end, consideration has to be given regarding how to deal with the unbounded domain to be analyzed by using numerical methods, such as finite element method (FEM), finite difference method (FDM) or finite volume method (FVM). A simple artificial boundary approach derived from the analytical solutions for transient radial seepage problems, is introduced. It should be noted, however, that the analytical solutions used to derive the artificial boundary are particular solutions under certain boundary conditions, such as constant hydraulic head at the origin or constant pumping rate of the well. When dealing with unbounded domains with unsteady boundary conditions, a more sophisticated artificial boundary approach to deal with the infinity of the domain is presented. By applying Laplace transforms and introducing some specially defined auxiliary variables, the global artificial boundary conditions (ABCs) are simplified to local ones so that the computational efficiency is enhanced significantly. The introduced two local ABCs are implemented in a finite element computer program so that various seepage problems can be calculated. The two approaches are first verified by the computation of a one-dimensional radial flow problem, and then tentatively applied to more general two-dimensional cylindrical problems and plane problems. Numerical calculations show that the local ABCs can not only give good results for one-dimensional axisymmetric transient flow, but also applicable for more general problems, such as axisymmetric two-dimensional cylindrical problems, and even more general planar two-dimensional flow problems for well doublet and well groups. An important advantage of the latter local boundary is its applicability for seepage under rapidly changing unsteady boundary conditions, and even the computational results on the truncated boundary are usually quite satisfactory. In this aspect, it is superior over the former local boundary. Simulation of relatively long operational time demonstrates to certain extents the numerical stability of the local boundary. The solutions of the two local ABCs are compared with each other and with those obtained by using large element mesh, which proves the satisfactory performance and obvious superiority over the large mesh model.

Keywords: transient seepage, unbounded domain, artificial boundary condition, numerical simulation

Procedia PDF Downloads 273
1073 Increased Energy Efficiency and Improved Product Quality in Processing of Lithium Bearing Ores by Applying Fluidized-Bed Calcination Systems

Authors: Edgar Gasafi, Robert Pardemann, Linus Perander

Abstract:

For the production of lithium carbonate or hydroxide out of lithium bearing ores, a thermal activation (calcination/decrepitation) is required for the phase transition in the mineral to enable an acid respectively soda leaching in the downstream hydrometallurgical section. In this paper, traditional processing in Lithium industry is reviewed, and opportunities to reduce energy consumption and improve product quality and recovery rate will be discussed. The conventional process approach is still based on rotary kiln calcination, a technology in use since the early days of lithium ore processing, albeit not significantly further developed since. A new technology, at least for the Lithium industry, is fluidized bed calcination. Decrepitation of lithium ore was investigated at Outotec’s Frankfurt Research Centre. Focusing on fluidized bed technology, a study of major process parameters (temperature and residence time) was performed at laboratory and larger bench scale aiming for optimal product quality for subsequent processing. The technical feasibility was confirmed for optimal process conditions on pilot scale (400 kg/h feed input) providing the basis for industrial process design. Based on experimental results, a comprehensive Aspen Plus flow sheet simulation was developed to quantify mass and energy flow for the rotary kiln and fluidized bed system. Results show a significant reduction in energy consumption and improved process performance in terms of temperature profile, product quality and plant footprint. The major conclusion is that a substantial reduction of energy consumption can be achieved in processing Lithium bearing ores by using fluidized bed based systems. At the same time and different from rotary kiln process, an accurate temperature and residence time control is ensured in fluidized-bed systems leading to a homogenous temperature profile in the reactor which prevents overheating and sintering of the solids and results in uniform product quality.

Keywords: calcination, decrepitation, fluidized bed, lithium, spodumene

Procedia PDF Downloads 204
1072 Low Energy Technology for Leachate Valorisation

Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo

Abstract:

Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.

Keywords: forward osmosis, landfills, leachate valorization, solar evaporation

Procedia PDF Downloads 176