Search results for: green transport
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3801

Search results for: green transport

3591 A Novel Multi-Attribute Green Decision Making Model for Environmental Supply Chain Sustainability

Authors: Amirhossein Mahlouji

Abstract:

In current business market, the concept of integrating environmental sustainability into long-term as well as routine operations is becoming a prevailing trend. Therefore, several stimuli are helping organization to move toward environmental sustainability. The concept of green supply chain management can help provide a strategic framework to develop a customized sustainability roadmap for each organization. In this regard, this paper is mainly focused on presenting a strategic decision making framework that will assist top level decision-making issues. This decision-making tool is based on literature and practice in the area of environmentally conscious business practices. The goal of this paper will be on the components and parameters of green supply chain management and how they serve as a baseline for the decision framework. Later, the applicability of a multi-input multi-output decision model (MIMO), will be analyzed as the analytical network process, within the green supply chain.

Keywords: Multi-attribute, Green Supply Chain, Environmental, Sustainability

Procedia PDF Downloads 122
3590 Systems Integrated Approach to Improve the Design and Construction of Green Buildings

Authors: Saleh Hayat

Abstract:

Efficiency, productivity and sustainability are important factors for structure and the application of processes in green building. Various previous studies have addressed efficiency, productivity and sustainability separately. This research study aims to investigate the implications of these three factors taking together. Frequency analysis and the ranking techniques are carried out to explore the connection between these factors. The interconnection matrix has been developed and functional grouping is made based upon data from expert opinion and field professionals. The existence of a relationship, the type of relationship and the scaled impact have been drawn. Additionally, a system diagram has been developed to show the variable correlation. The results of expert opinion show that efficiency, productivity and sustainability have a stronger impact on green buildings.

Keywords: efficiency, green building, productivity, sustainability

Procedia PDF Downloads 112
3589 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach

Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi

Abstract:

In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.

Keywords: green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting

Procedia PDF Downloads 302
3588 A New Paradigm to Make Cloud Computing Greener

Authors: Apurva Saxena, Sunita Gond

Abstract:

Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.

Keywords: virtualization, cloud computing, green computing, data center

Procedia PDF Downloads 527
3587 Identifying the Influence of Vegetation Type on Multiple Green Roof Functions with a Field Experiment in Zurich

Authors: Lauren M. Cook, Tove A. Larsen

Abstract:

Due to their potential to provide numerous ecosystem services, green roofs have been proposed as a solution to mitigate a growing list of environmental challenges, like urban flooding and urban heat island effect. Because of their cooling effect, green roofs placed below rooftop photovoltaic (PV) panels also have the potential to increase PV panel efficiency. Sedums, a type of succulent plant, are commonly used on green roofs because they are drought and heat tolerant. However, other plant species, such as grasses or plants with reflective properties, have been shown to reduce more runoff and cool the rooftop more than succulent species due to high evapotranspiration (ET) and reflectivity, respectively. The goal of this study is to evaluate whether vegetation with high ET or reflectivity can influence multiple co-benefits of the green roof. Four small scale green roofs in Zurich are used as an experiment to evaluate differences in (1) the timing and amount of runoff discharged from the roof, (2) the air temperature above the green roof, and (3) the temperature and efficiency of solar panels placed above the green roof. One grass species, Silene vulgaris, and one silvery species, Stachys byzantia, are compared to a baseline of Sedum album and black roof. Initial results from August to November 2019 show that the grass species has retained more cumulative runoff and led to a lower canopy temperature than the other species. Although the results are not yet statistically significant, they may suggest that plants with higher ET will have a greater effect on canopy temperature than plants with high reflectivity. Future work will confirm this hypothesis and evaluate whether it holds true for solar panel temperature and efficiency.

Keywords: co-benefit estimation, green cities, green roofs, solar panels

Procedia PDF Downloads 81
3586 Worth of Sick Building Syndrome and Enhance the Quality of Life in Green Building

Authors: Kamyar Kabirifar, Majid Azarniush, Behbood Maashkar

Abstract:

A proper house is a suitable residential area which provides comfort, proper accessibility, security, stability and permanence of structure, enough lighting, Proper initial infrastructures and ventilation for its inhabitants and the most important of all, it should be proportional to the family’s financial power. Saving energy and making optimal usage of it and also taking advantage of stable energies are the bases of green buildings. Making green building will help the health of a person living in it and in its surrounding. It will support the people and provoke their satisfaction. Not only it will bring about the raise of level of the quality of life for building inhabitants, but also it will cause the promotion of quality level of life of the people living in the surrounding area and the society.

Keywords: quality of life, green building, environment pollution, sick building

Procedia PDF Downloads 490
3585 The Effect of Green Power Trading Mechanism on Interregional Power Generation and Transmission in China

Authors: Yan-Shen Yang, Bai-Chen Xie

Abstract:

Background and significance of the study: Both green power trading schemes and interregional power transmission are effective ways to increase green power absorption and achieve renewable power development goals. China accelerates the construction of interregional power transmission lines and the green power market. A critical issue focusing on the close interaction between these two approaches arises, which can heavily affect the green power quota allocation and renewable power development. Existing studies have not discussed this issue adequately, so it is urgent to figure out their relationship to achieve a suitable power market design and a more reasonable power grid construction.Basic methodologies: We develop an equilibrium model of the power market in China to analyze the coupling effect of these two approaches as well as their influence on power generation and interregional transmission in China. Our model considers both the Tradable green certificate (TGC) and green power market, which consists of producers, consumers in the market, and an independent system operator (ISO) minimizing the total system cost. Our equilibrium model includes the decision optimization process of each participant. To reformulate the models presented as a single-level one, we replace the producer, consumer, ISO, and market equilibrium problems with their Karush-Kuhn-Tucker (KKT) conditions, which is further reformulated as a mixed-integer linear programming (MILP) and solved in Gurobi solver. Major findings: The result shows that: (1) the green power market can significantly promote renewable power absorption while the TGC market provides a more flexible way for green power trading. (2) The phenomena of inefficient occupation and no available transmission lines appear simultaneously. The existing interregional transmission lines cannot fully meet the demand for wind and solar PV power trading in some areas while the situation is vice versa in other areas. (3) Synchronous implementation of green power and TGC trading mechanism can benefit the development of green power as well as interregional power transmission. (4) The green power transaction exacerbates the unfair distribution of carbon emissions. The Carbon Gini Coefficient is up to 0.323 under the green power market which shows a high Carbon inequality. The eastern coastal region will benefit the most due to its huge demand for external power.

Keywords: green power market, tradable green certificate, interregional power transmission, power market equilibrium model

Procedia PDF Downloads 104
3584 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India

Authors: Tirthankar Chakraborty, Indranil Mukherjee

Abstract:

The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.

Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector

Procedia PDF Downloads 362
3583 Accelerating Sustainable Urban Transition Through Green Technology Innovation and Clean Energy to Achieve Net Zero Emissions

Authors: Emma Serwaa Obobisa

Abstract:

Urbanization has become the focus for challenging goals relating to environmental performance, such as carbon neutrality. Green technological innovation and clean energy are considered the prominent factors in reducing emissions and achieving sustainable cities. Through the application of a fixed effect model, generalized method of moments, and quantile-on-quantile regression, this study explores the role of green technology innovation and clean energy in accelerating the sustainable urban transition towards net zero emissions in developing countries while controlling for nonrenewable energy consumption, and economic growth. The long-run results show that green technology innovation and renewable energy consumption reduce CO₂ emissions from urban residential buildings. In contrast, economic growth and nonrenewable energy consumption increase CO₂ emissions. This study proposes a consistent technique for encouraging green technological innovation and renewable energy projects in developing countries where the role of innovation in achieving carbon neutrality is still understudied.

Keywords: green technology innovation, renewable energy, urbanization, net zero emissions

Procedia PDF Downloads 9
3582 Incentive Policies to Promote Green Infrastructure in Urban Jordan

Authors: Zayed Freah Zeadat

Abstract:

The wellbeing of urban dwellers is strongly associated with the quality and quantity of green infrastructure. Nevertheless, urban green infrastructure is still lagging in many Arab cities, and Jordan is no exception. The capital city of Jordan, Amman, is becoming more urban dense with limited green spaces. The unplanned urban growth in Amman has caused several environmental problems such as urban heat islands, air pollution, and lack of green spaces. This study aims to investigate the most suitable drivers to leverage the implementation of urban green infrastructure in Jordan through qualitative and quantitative analysis. The qualitative research includes an extensive literature review to discuss the most common drivers used internationally to promote urban green infrastructure implementation in the literature. The quantitative study employs a questionnaire survey to rank the suitability of each driver. Consultants, contractors, and policymakers were invited to fill the research questionnaire according to their judgments and opinions. Relative Importance Index has been used to calculate the weighted average of all drivers and the Kruskal-Wallis test to check the degree of agreement among groups. This study finds that research participants agreed that indirect financial incentives (i.e., tax reductions, reduction in stormwater utility fee, reduction of interest rate, density bonus, etc.) are the most effective incentive policy whilst granting sustainability certificate policy is the least effective driver to ensure widespread of UGI is elements in Jordan.

Keywords: urban green infrastructure, relative importance index, sustainable urban development, urban Jordan

Procedia PDF Downloads 130
3581 Urban Transport System Resilience Guidelines

Authors: Evangelia Gaitanidou, Evangelos Bekiaris

Abstract:

Considering that resilience implies the ability of a system to adapt continuously in order to respond to its operational goals, a system is considered as more or less resilient depending on the level and time of recovering from disruptive events and/or shocks to its initial state. Regarding transport systems, enhancing resilience is considered imperative for two main reasons: Such systems provide critical support to every socio-economic activity, while being one of the most important economic sectors and, secondly, the paths that convey people, goods and information, are the same through which risks are propagated. RESOLUTE (RESilience management guidelines and Operationalization appLied to Urban Transport Environment) Horizon 2020 research project is answering those needs, by proposing and testing a set of guidelines for resilience management of the urban transport system. The methods and steps towards this goal, through a step-wise methodology, taking into account established models like FRAM (Functional Resonance Analysis Model), and upon gathering existing practices are described in this paper, together with an overview of the produced guidelines. The overall aim is to create a framework which public transport authorities could consult and apply, for rendering their infrastructure resilient against natural disaster and other threats.

Keywords: guidelines, infrastructure, resilience, transport

Procedia PDF Downloads 224
3580 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: bioremediation, Green Remediation, phytoremediation, remediation technologies, soil

Procedia PDF Downloads 204
3579 A Green Analytical Curriculum for Renewable STEM Education

Authors: Mian Jiang, Zhenyi Wu

Abstract:

We have incorporated green components into existing analytical chemistry curriculum with the aims to present a more environment benign approach in both teaching laboratory and undergraduate research. These include the use of cheap, sustainable, and market-available material; minimized waste disposal, replacement of non-aqueous media; and scale-down in sample/reagent consumption. Model incorporations have covered topics in quantitative chemistry as well as instrumental analysis, lower division as well as upper level, and research in traditional titration, spectroscopy, electrochemical analysis, and chromatography. The green embedding has made chemistry more daily life relevance, and application focus. Our approach has the potential to expand into all STEM fields to make renewable, high-impact education experience for undergraduate students.

Keywords: green analytical chemistry, pencil lead, mercury, renewable

Procedia PDF Downloads 304
3578 Analysis of Energy Required for the Massive Incorporation of Electric Buses in the City of Ambato - Ecuador

Authors: Paola Quintana, Angélica Vaca, Sebastián Villacres, Henry Acurio

Abstract:

Ecuador through the Organic Law of Energy Efficiency establishes that "Starting in the year 2025, all vehicles that are incorporated into the urban and inter-parroquial public transport service must only be electric”, this marks a foundation for the introduction of electric mobility in the country. The present investigation is based on developing an analysis and projection of the Energy Required for the incorporation of electric buses for public passenger transport in the city of Ambato-Ecuador, taking into account the useful life of the vehicle fleet, number of existing vehicles and analysis of transport routes in the study city. The energy demand based on the vehicular dynamics is analyzed, determination of equations for the calculation of force in the wheel since it is considered a variable of slope due to the fact that this has a great incidence in the autonomy when speaking of electric mobility, later the energy analysis applied to public transport routes, finally a projection of the energy requirement is made based on the change of public transport units according to their useful life.

Keywords: public transport, electric mobility, energy, ecuador

Procedia PDF Downloads 61
3577 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: supply chain management, green supply chain management, system dynamics, energy consumption

Procedia PDF Downloads 113
3576 Residents’ Awareness of Green Infrastructure Types in the Neighbourhood: Panacea for Biodiversity Conservation

Authors: Adedotun Ayodele Dipeolu, Olusegun Ayotunde Oriola

Abstract:

Rapid urban growth has led to the loss of contact with nature for most urban residents. While Green Infrastructure (GI) is promoted as a strategy to manage ecosystems’ functionality, the extent to which residents are aware of GI types which serve as alternatives to conventional landscapes to be conserved remains unclear. This paper examines the awareness level of GI types among residents of Lagos Metropolis, Nigeria and the association of their demographic characteristics with the level of awareness. Multi-stage sampling technique was used to select 1560 residents who completed semi-structured questionnaires. Descriptive statistics were used to explore data distributions while t-test assessed the differences in the awareness level of the male and female participants. From the 23 different types of GI facilities identified in the study area, residents reported a high level of awareness on just five of them. These include green gardens, green parks, grasses, street trees, and sports fields but a low level of awareness of the remaining 18 GI types. Awareness of GI types is presently low in the study area. Increased awareness will encourage care and protection of green infrastructure by residents which will consequently enhance availability and conservation of more biodiversity in Lagos, Nigeria, and other nations.

Keywords: awareness, biodiversity conservation, environmental sustainability, green infrastructure, urban centres

Procedia PDF Downloads 188
3575 Green Innovation and Artificial Intelligence in Service

Authors: Fatemeh Khalili Varnamkhasti

Abstract:

Numerous nations have recognized the critical ought to address natural issues, such as discuss contamination, squander transfer, worldwide warming, and common asset consumption, through the application of green innovation. The rise of cleverly advances has driven mechanical basic changes that will offer assistance accomplish carbon decrease. Manufactured insights (AI) innovation is an imperative portion of digitalization, giving unused mechanical apparatuses and bearings for the moo carbon advancement of endeavors. Quickening the brilliantly change of fabricating industry is an critical vital choice to realize the green advancement change. The reason why fabricating insights can advance the advancement of green advancement execution is that fabricating insights is conducive to the generation of "innovation advancement impact" and "fetched decrease impact" so as to advance green innovation advancement, at that point viably increment the alluring yields and essentially diminish the undesirable yields. AI improvement will boost GTI as it were when the escalated of natural direction and organization environment is over a certain edge esteem. In any case, the AI improvement spoken to by mechanical robot applications still has no self-evident impact on GTI, indeed, when the R&D venture surpasses a certain edge.

Keywords: greenhouse gas emissions, green infrastructure, artificial intelligence, environmental protection

Procedia PDF Downloads 40
3574 Date Pits Oil Used as Potential Source for Synthesizing Jet Fuel and Green Diesel Fractions

Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Date pits are major agricultural waste produced in Oman. Current work was conducted to produce jet fuel and green diesel from hydrodeoxygenation of Date pits oil in the presence of Pd/C catalyst. The hydrodeoxygenation of Date pits oil occurred to be highly efficient at following mild operating conditions such as conditions temperature 300°C pressure 10bar with continuous stirring at 500rpm. Detailed product characterization revealed that large fraction of paraffinic hydrocarbons was found which accounts up to 91.1 % which attributed due to efficient hydrodeoxygenation. Based on the type of components in product oil, it was calculated that the maximum fraction of hydrocarbons formed lies within the range of green diesel 72.0 % then jet fuel 30.4% by using Pd/C catalysts. The densities of product oil were 0.88 kg/m³, the viscosity of products calculated was 3.49 mm²/s. Calorific values for products obtained were 44.11 MJ/kg when Pd/C catalyst was used for hydrodeoxygenation. Based on products analysis it can conclude that Date pits oil could successfully utilize for synthesizing green diesel and jet fuel fraction.

Keywords: biomass, jet fuel, green diesel, catalyst

Procedia PDF Downloads 267
3573 Development of a Green Star Certification Tool for Existing Buildings in South Africa

Authors: Bouwer Kleynhans

Abstract:

The built environment is responsible for about 40% of the world’s energy consumption and generates one third of global carbon dioxide emissions. The Green Building Council of South Africa’s (GBCSA) current rating tools are all for new buildings. By far the largest portion of buildings exist stock and therefore the need to develop a certification tool for existing buildings. Direct energy measurement comprises 27% of the total available points in this tool. The aim of this paper is to describe the development process of a green star certification tool for existing buildings in South Africa with specific emphasis on the energy measurement criteria. Successful implementation of this tool within the property market will ensure a reduced carbon footprint of buildings.

Keywords: certification tool, development process, energy consumption, green buildings

Procedia PDF Downloads 299
3572 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand

Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth

Abstract:

Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.

Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand

Procedia PDF Downloads 348
3571 Thermal Performance of the Extensive Wetland Green Roofs in Winter in Humid Subtropical Climate

Authors: Yi-Yu Huang, Chien-Kuo Wang, Sreerag Chota Veettil, Hang Zhang, Hu Yike

Abstract:

Regarding the pressing issue of reducing energy consumption and carbon footprint of buildings, past research has focused more on analyzing the thermal performance of the extensive terrestrial green roofs with sedum plants in summer. However, the disadvantages of this type of green roof are relatively limited thermal performance, low extreme weather adaptability, relatively higher demands in maintenance, and lower added value in healing landscape. In view of this, this research aims to develop the extensive wetland green roofs with higher thermal performance, high extreme weather adaptability, low demands in maintenance, and high added value in healing landscape, and to measure its thermal performance for buildings in winter. The following factors are considered including the type and mixing formula of growth medium (light weight soil, akadama, creek gravel, pure water) and the type of aquatic plants. The research adopts a four-stage field experiment conducting on the rooftop of a building in a humid subtropical climate. The results found that emergent (Roundleaf rotala), submerged (Ribbon weed), floating-leaved (Water lily) wetland green roofs had similar thermal performance, and superior over wetland green roof without plant, traditional terrestrial green roof (without plant), and pure water green roof (without plant, nighttime only) in terms of overall passive cooling (8.00C) and thermal insulation (4.50C) effects as well as a reduction in heat amplitude (77-85%) in winter in a humid subtropical climate. The thermal performance of the free-floating (Water hyacinth) wetland green roof is inferior to that of the other three types of wetland green roofs, whether in daytime or nighttime.

Keywords: thermal performance, extensive wetland green roof, Aquatic plant, Winter , Humid subtropical climate

Procedia PDF Downloads 147
3570 CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

Authors: Jinliang Yuan, Jong-Sung Yu, Bengt Sundén

Abstract:

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Keywords: Computational Fluid Dynamics (CFD), modeling, multi-phase, transport phenomena, lithium-air battery

Procedia PDF Downloads 422
3569 Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes

Authors: I. Sani, A. Abdulhamid, F. Bello, Isah M. Fakai

Abstract:

This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes.

Keywords: Escherichia coli SCC1, fermentation process, green fluorescent protein, red fluorescence

Procedia PDF Downloads 481
3568 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 304
3567 Spatial Analysis of the Impact of City Developments Degradation of Green Space in Urban Fringe Eastern City of Yogyakarta Year 2005-2010

Authors: Pebri Nurhayati, Rozanah Ahlam Fadiyah

Abstract:

In the development of the city often use rural areas that can not be separated from the change in land use that lead to the degradation of urban green space in the city fringe. In the long run, the degradation of green open space this can impact on the decline of ecological, psychological and public health. Therefore, this research aims to (1) determine the relationship between the parameters of the degradation rate of urban development with green space, (2) develop a spatial model of the impact of urban development on the degradation of green open space with remote sensing techniques and Geographical Information Systems in an integrated manner. This research is a descriptive research with data collection techniques of observation and secondary data . In the data analysis, to interpret the direction of urban development and degradation of green open space is required in 2005-2010 ASTER image with NDVI. Of interpretation will generate two maps, namely maps and map development built land degradation green open space. Secondary data related to the rate of population growth, the level of accessibility, and the main activities of each city map is processed into a population growth rate, the level of accessibility maps, and map the main activities of the town. Each map is used as a parameter to map the degradation of green space and analyzed by non-parametric statistical analysis using Crosstab thus obtained value of C (coefficient contingency). C values were then compared with the Cmaximum to determine the relationship. From this research will be obtained in the form of modeling spatial map of the City Development Impact Degradation Green Space in Urban Fringe eastern city of Yogyakarta 2005-2010. In addition, this research also generate statistical analysis of the test results of each parameter to the degradation of green open space in the Urban Fringe eastern city of Yogyakarta 2005-2010.

Keywords: spatial analysis, urban development, degradation of green space, urban fringe

Procedia PDF Downloads 286
3566 Innovations for Freight Transport Systems

Authors: M. Lu

Abstract:

The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.

Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)

Procedia PDF Downloads 295
3565 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract

Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie

Abstract:

In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.

Keywords: biopolymer, microencapsulation, spray-drying, walnut green husk

Procedia PDF Downloads 137
3564 Green Intellectual Capital and Green Supply Chain Performance

Authors: Mohammed Ibrahim Bu Haya, Abdelmoneim Bahyeldin Mohamed Metwally

Abstract:

This paper examines the impact of Green Intellectual Capital (GIC) on Green Supply Chain Performance (GSCP). Further, the study examines the moderating role of external pressures (EP) on the relationship between GIC and GSCP. Data were collected from employees working in Egyptian hotels and tourism companies (N= 366). The collected data were analyzed using smart partial least squares (Smart-PLS) software. The current research indicated that there is a positive and significant impact of all GIC components on GSCP. The results also revealed that EP were found to moderate the relationship between GIC and GSCP. The study model was able to explain 63.1% of the variance in GSCP. The findings of this study serve as a pivotal yardstick for guiding corporate policy formulation, offering valuable insights to drive continuous improvements in supply chain management and performance. Furthermore, the research holds substantial implications for managerial strategies by shedding light on the potential of GIC and EP to elevate GSCP. Positioned as one of the initial studies to delve into the moderating role of EP in the relationship between GIC and GSCP, this research offers insights within an emerging market context.

Keywords: green intellectual capital, green supply chain, supply chain performance, external pressures, emerging economy, Egypt

Procedia PDF Downloads 26
3563 The Transport of Coexisting Nanoscale Zinc Oxide Particles, Cu(Ⅱ) and Cr(Ⅵ) Ions in Simulated Landfill Leachate

Authors: Xiaoyu Li, Wenchuan Ding, Yujia Yia

Abstract:

As the nanoscale zinc oxide particles (nano-ZnO) accumulate in the landfill, nano-ZnO will enter the landfill leachate and come into contact with the heavy metal ions in leachate, which will change their transport process in the landfill and, furthermore, affect each other's environmental fate and toxicity. In this study, we explored the transport of co-existing nano-ZnO, Cu(II) and Cr(VI) ions by column experiments under different stages of landfill leachate conditions (flow rate, pH, ionic strength, humic acid). The results show that Cu(II) inhibits the transport of nano-ZnO in the quartz sand column by increasing the surface potential of nano-ZnO, and nano-ZnO increases the retention of Cu(II) in the quartz sand column by adsorbing Cu(II) ions. Cr(VI) promotes the transport of nano-ZnO in the quartz sand column by neutralizing the surface potential of the nano-ZnO which reduces electrostatic attraction between nZnO and quartz sand, but the nano-ZnO has no effect on the transport of Cr(VI). The nature of landfill leachates such as flow rate, pH, ionic strength (IS) and humic acid (HA) has a certain effect on the transport of coexisting nano-ZnO and heavy metal ions. For leachate containing Cu(II) and Cr(VI) ions, at the initial stage of landfilling, the pH of leachate is acidic, ionic strength value is high, the humic acid concentration is low, and the transportability of nano-ZnO is weak. As the landfill age increased, the pH value in the leachate gradually increases, when the ions are raised to alkaline, these ions are trending to precipitated or adsorbed to the solid wastes in landfill, which resulting in low IS value of leachate. At the same time, more refractory organic matter gradually increases such as HA, which provides repulsive steric effects, so the nano-ZnO is more likely to migrate. Overall, the Cr(VI) can promote the transport of nano-ZnO more than Cu(II).

Keywords: heavy metal ions, landfill leachate, nano-ZnO, transport

Procedia PDF Downloads 114
3562 Suitable Indoor Plants for Green Office Development in Faculty of Science and Technology, Suan Sunandha Rajabhat University, Thailand

Authors: Tatsanawalai Utarasakul

Abstract:

Nowadays, green office principles are very broadly initiated in many offices, organizations, as well as in universities. The concepts of green office are composed of seven prominent issues. One of them, physical implementation, is to develop a pleasant atmosphere for staff in the faculty with selected optimum plant species for the office. 50 species from NASA research and other documents were studied for the selection criteria of plants which were appropriate for specific locations in order to reduce indoor air pollutants such as formaldehyde, benzene, and trichloroethylene. For the copy and examination preparation room in which particulate matter and volatile organic compounds can be found, some plants such as peace lily, gerbera daisy, and bamboo palm should be set, which are very effective in treating trichloroethylene. For common rooms and offices where formaldehyde can be found, which is generated from many building materials, bamboo palm, mother-in-law's tongue, peace lily, striped dracaena, cornstalk plant, golden pathos, and green spider plant should be set.

Keywords: indoor plants, indoor air quality, phytoremediation, green office

Procedia PDF Downloads 436