Search results for: gene Selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3631

Search results for: gene Selection

3511 Effect of Leptin Gene Methylation on Colorectal Cancer Chemoresistance

Authors: Wissem Abdaoui, Nizar M. Mhaidat, Ilhem Mokhtari, Adel Gouri

Abstract:

Colorectal cancer (CRC) is one of the most common tumors all over the world. Obesity, considered a risk factor of CRC, is characterized by a high level of secreted cytokines from adipose tissue. Among these inflammatory molecules, leptin is considered the key mediator for CRC cancer development and progression by activation of mitogenic and anti apoptotic signaling pathways. Gene expression can be significantly modulated by alterations in DNA methylation patterns. The aim of this study is to investigate the impact of leptin gene methylation on CRC prognosis and sensitivity to chemotherapy. The study involved 70 CRC tissue samples collected from King Abdullah University Hospital (KAUH) from which only 53 was analyzed because of bisulfate fragmentation and low yield of DNA extracted from FFPE tissues. A total of 22 blood samples were collected from healthy volunteers and enrolled as a control group. Leptin promoter methylation was analyzed by methylation specific PCR after bisulfate conversion. Results revealed that the incidence of leptin gene methylation was significantly higher in CRC patients in comparison to that of controls (P < 0.05). The correlation between patient’s demographics and leptin gene methylation was not significant (P < 0.05). However, a significant correlation between leptin gene methylation status and early cancer stages (I, II and III) was found in male but not in female (p < 0.05). Moreover, a significant correlation was found between leptin promoter methylation and early tumor localization T1-2 (p < 0.05). The correlation between epigenetic regulation of leptin and chemosensitivity was not significant. Taken together, these results suggest the possibility to use leptin gene methylation as a biomarker for the evaluation of CRC prognosis and metastasis.

Keywords: colorectal cancer, obesity, leptin, DNA methylation, disease prognosis, bisulfate conversion, chemoresistance

Procedia PDF Downloads 335
3510 The Association of Estrogen Receptor Alpha Xbai Gg Genotype and Severe Preeclampsia

Authors: Saeedeh Salimi, Farzaneh Farajian- Mashhadi, Ehsan Tabatabaei, Mahnaz Shahrakipoor, Minoo Yaghmaei, Mojgan Mokhtari

Abstract:

Purpose: Estrogen receptor-α (ERα) plays an essential role in the adaptation of increased uterine blood flow during gestation. Therefore ERα gene could be a possible candidate for preeclampsia(PE) susceptibility. In the current study, we aimed to investigate the association of the ERα gene polymorphisms and PE in an Iranian population. Methods: One hundred ninety-two pregnant women with PE and 186 normotensive women were genotyped for ERα gene (PvuII and XbaI) polymorphisms by PCR-RFLP method. Results: The frequency of alleles and genotypes of ERα PvuII and XbaI polymorphisms were not different between PE and normotensive control women. However, higher frequency of GG genotype was observed in women with severe PE compared to mild PE (OR, 1.8 [95% CI, 1.1 to 3]; P = 0.02) and in severe PE compared to normotensive women [OR= 1.8(1.1-3), P=0.02] after adjusting for age, ethnicity and primiparity. Conclusions: The GG genotype of ERα XbaI polymorphism could be a genetic risk factor for PE predisposition.

Keywords: estrogen receptor-α, polymorphism, gene, preeclampsia

Procedia PDF Downloads 274
3509 Transformation of ectA Gene From Halomonas elongata in Tomato Plant

Authors: Narayan Moger, Divya B., Preethi Jambagi, Krishnaveni C. K., Apsana M. R., B. R. Patil, Basvaraj Bagewadi

Abstract:

Salinity is one of the major threats to world food security. Considering the requirement for salt tolerant crop plants in the present study was undertaken to clone and transferred the salt tolerant ectA gene from marine ecosystem into agriculture crop system to impart salinity tolerance. Ectoine is the compatible solute which accumulates in the cell membrane, is known to be involved in salt tolerance activity in most of the Halophiles. The present situation is insisting to development of salt tolerant transgenic lines to combat abiotic stress. In this background, the investigation was conducted to develop transgenic tomato lines by cloning and transferring of ectA gene is an ectoine derivative capable of enzymatic action for the production of acetyl-diaminobutyric acid. The gene ectA is involved in maintaining the osmotic balance of plants. The PCR amplified ectA gene (579bp) was cloned into T/A cloning vector (pTZ57R/T). The construct pDBJ26 containing ectA gene was sequenced by using gene specific forward and reverse primers. Sequence was analyzed using BLAST algorithm to check similarity of ectA gene with other isolates. Highest homology of 99.66 per cent was found with ectA gene sequences of isolates Halomonas elongata with the available sequence information in NCBI database. The ectA gene was further sub cloned into pRI101-AN plant expression vector and transferred into E. coli DH5α for its maintenance. Further pDNM27 was mobilized into A. tumefaciens LBA4404 through tri-parental mating system. The recombinant Agrobacterium containing pDNM27 was transferred into tomato plants through In planta plant transformation method. Out of 300 seedlings, co-cultivated only twenty-seven plants were able to well establish under the greenhouse condition. Among twenty-seven transformants only twelve plants showed amplification with gene specific primers. Further work must be extended to evaluate the transformants at T1 and T2 generations for ectoine accumulation, salinity tolerance, plant growth and development and yield.

Keywords: salinity, computable solutes, ectA, transgenic, in planta transformation

Procedia PDF Downloads 55
3508 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics

Procedia PDF Downloads 531
3507 Transcriptomine: The Nuclear Receptor Signaling Transcriptome Database

Authors: Scott A. Ochsner, Christopher M. Watkins, Apollo McOwiti, David L. Steffen Lauren B. Becnel, Neil J. McKenna

Abstract:

Understanding signaling by nuclear receptors (NRs) requires an appreciation of their cognate ligand- and tissue-specific transcriptomes. While target gene regulation data are abundant in this field, they reside in hundreds of discrete publications in formats refractory to routine query and analysis and, accordingly, their full value to the NR signaling community has not been realized. One of the mandates of the Nuclear Receptor Signaling Atlas (NURSA) is to facilitate access of the community to existing public datasets. Pursuant to this mandate we are developing a freely-accessible community web resource, Transcriptomine, to bring together the sum total of available expression array and RNA-Seq data points generated by the field in a single location. Transcriptomine currently contains over 25,000,000 gene fold change datapoints from over 1200 contrasts relevant to over 100 NRs, ligands and coregulators in over 200 tissues and cell lines. Transcriptomine is designed to accommodate a spectrum of end users ranging from the bench researcher to those with advanced bioinformatic training. Visualization tools allow users to build custom charts to compare and contrast patterns of gene regulation across different tissues and in response to different ligands. Our resource affords an entirely new paradigm for leveraging gene expression data in the NR signaling field, empowering users to query gene fold changes across diverse regulatory molecules, tissues and cell lines, target genes, biological functions and disease associations, and that would otherwise be prohibitive in terms of time and effort. Transcriptomine will be regularly updated with gene lists from future genome-wide expression array and expression-sequencing datasets in the NR signaling field.

Keywords: target gene database, informatics, gene expression, transcriptomics

Procedia PDF Downloads 248
3506 Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease

Authors: Feng Zhang

Abstract:

Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD.

Keywords: Kashin-Beck disease, genome-wide association study, COL2A1, hand

Procedia PDF Downloads 179
3505 Target and Biomarker Identification Platform to Design New Drugs against Aging and Age-Related Diseases

Authors: Peter Fedichev

Abstract:

We studied fundamental aspects of aging to develop a mathematical model of gene regulatory network. We show that aging manifests itself as an inherent instability of gene network leading to exponential accumulation of regulatory errors with age. To validate our approach we studied age-dependent omic data such as transcriptomes, metabolomes etc. of different model organisms and humans. We build a computational platform based on our model to identify the targets and biomarkers of aging to design new drugs against aging and age-related diseases. As biomarkers of aging, we choose the rate of aging and the biological age since they completely determine the state of the organism. Since rate of aging rapidly changes in response to an external stress, this kind of biomarker can be useful as a tool for quantitative efficacy assessment of drugs, their combinations, dose optimization, chronic toxicity estimate, personalized therapies selection, clinical endpoints achievement (within clinical research), and death risk assessments. According to our model, we propose a method for targets identification for further interventions against aging and age-related diseases. Being a biotech company, we offer a complete pipeline to develop an anti-aging drug-candidate.

Keywords: aging, longevity, biomarkers, senescence

Procedia PDF Downloads 244
3504 Effects of Epinephrine on Gene Expressions during the Metamorphosis of Pacific Oyster Crassostrea gigas

Authors: Fei Xu, Guofan Zhang, Xiao Liu

Abstract:

Many major marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic adults via settlement and metamorphosis, which has many advantages for organisms to adapt marine environment. Studying the biological process of metamorphosis is thus a key to understand the origin and evolution of indirect development. Although the mechanism of metamorphosis has been largely studied on their relationships with the marine environment, microorganisms, as well as the neurohormones, little is known on the gene regulation network (GRN) during metamorphosis. We treated competent oyster pediveligers with epinephrine, which was known to be able to effectively induce oyster metamorphosis, and analyzed the dynamics of gene and proteins with transcriptomics and proteomics methods. The result indicated significant upregulation of protein synthesis system, as well as some transcription factors including Homeobox, basic helix-loop-helix, and nuclear receptors. The result suggested the GRN complexity of the transition stage during oyster metamorphosis.

Keywords: indirect development, gene regulation network, protein synthesis, transcription factors

Procedia PDF Downloads 107
3503 An Analysis System for Integrating High-Throughput Transcript Abundance Data with Metabolic Pathways in Green Algae

Authors: Han-Qin Zheng, Yi-Fan Chiang-Hsieh, Chia-Hung Chien, Wen-Chi Chang

Abstract:

As the most important non-vascular plants, algae have many research applications, including high species diversity, biofuel sources, adsorption of heavy metals and, following processing, health supplements. With the increasing availability of next-generation sequencing (NGS) data for algae genomes and transcriptomes, an integrated resource for retrieving gene expression data and metabolic pathway is essential for functional analysis and systems biology in algae. However, gene expression profiles and biological pathways are displayed separately in current resources, and making it impossible to search current databases directly to identify the cellular response mechanisms. Therefore, this work develops a novel AlgaePath database to retrieve gene expression profiles efficiently under various conditions in numerous metabolic pathways. AlgaePath, a web-based database, integrates gene information, biological pathways, and next-generation sequencing (NGS) datasets in Chlamydomonasreinhardtii and Neodesmus sp. UTEX 2219-4. Users can identify gene expression profiles and pathway information by using five query pages (i.e. Gene Search, Pathway Search, Differentially Expressed Genes (DEGs) Search, Gene Group Analysis, and Co-Expression Analysis). The gene expression data of 45 and 4 samples can be obtained directly on pathway maps in C. reinhardtii and Neodesmus sp. UTEX 2219-4, respectively. Genes that are differentially expressed between two conditions can be identified in Folds Search. Furthermore, the Gene Group Analysis of AlgaePath includes pathway enrichment analysis, and can easily compare the gene expression profiles of functionally related genes in a map. Finally, Co-Expression Analysis provides co-expressed transcripts of a target gene. The analysis results provide a valuable reference for designing further experiments and elucidating critical mechanisms from high-throughput data. More than an effective interface to clarify the transcript response mechanisms in different metabolic pathways under various conditions, AlgaePath is also a data mining system to identify critical mechanisms based on high-throughput sequencing.

Keywords: next-generation sequencing (NGS), algae, transcriptome, metabolic pathway, co-expression

Procedia PDF Downloads 376
3502 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)

Authors: Fatih Iscan, Ceren Yagci

Abstract:

Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economical, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economical factors for site selection of landfill areas and using GIS for an decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/TURKEY city, Güzelyurt district practice.

Keywords: GIS, landfill, solid waste, spatial analysis

Procedia PDF Downloads 331
3501 Association of ApoB, CETP and GALNT2 Genetic Variants with Type 2 Diabetes-Related Traits in Population from Bosnia and Herzegovina

Authors: Anida Causevic-Ramosevac, Sabina Semiz

Abstract:

The aim of this study was to investigate the association of four single nucleotide polymorphisms (SNPs) - rs673548, rs693 in ApoB gene, rs1800775 in CETP gene and rs4846914 in GALNT2 gene with parameters of type 2 diabetes (T2D) and diabetic dyslipidemia in the population of Bosnia and Herzegovina (BH). Materials and methods: Our study involved 352 patients with T2D and 156 healthy subjects. Biochemical and anthropometric parameters were measured in all participants. DNA was extracted from the peripheral blood for the purpose of genetic testing. Polymorphisms in ApoB (rs673548, rs693), CETP (rs1800775) and GALNT2 (rs4846914) genes were analyzed by using Sequenom IPLEX platform. Results: Our results demonstrated significant associations for rs180075 polymorphism in CETP gene with levels of fasting insulin (p = 0.020; p = 0.027; p = 0.044), triglycerides (p = 0.046) and ALT (p = 0.031) activity in control group. In group of diabetic patients, results showed a significant association of rs673548 in ApoB gene with levels of fasting insulin (p = 0.008), HOMA-IR (p = 0.013), VLDL-C (p = 0.037) and CRP (p = 0.029) and rs693 in ApoB gene with BMI (p = 0.025), systolic blood pressure (p = 0.027), fasting insulin (p = 0.037) and HOMA-IR (p = 0.023) levels. Significant associations were also observed for rs1800775 in CETP gene with triglyceride (p = 0.023) levels and rs4846914 in GALNT2 gene with HbA1C (p = 0.013) and triglyceride (p = 0.043) levels. Conclusion: In conclusion, this is the first study that examined the impact of variations of candidate genes on a wide range of metabolic parameters in BH population. Our results suggest an association of variations of ApoB, CETP and GALNT2 genes with specific markers of T2D and dyslipidemia. Further studies would be needed in order to confirm these genetic effects in other ethnic groups as well.

Keywords: ApoB, CETP, dyslipidemia, GALNT2, type 2 diabetes

Procedia PDF Downloads 212
3500 Following the Modulation of Transcriptional Activity of Genes by Chromatin Modifications during the Cell Cycle in Living Cells

Authors: Sharon Yunger, Liat Altman, Yuval Garini, Yaron Shav-Tal

Abstract:

Understanding the dynamics of transcription in living cells has improved since the development of quantitative fluorescence-based imaging techniques. We established a method for following transcription from a single copy gene in living cells. A gene tagged with MS2 repeats, used for mRNA tagging, in its 3' UTR was integrated into a single genomic locus. The actively transcribing gene was detected and analyzed by fluorescence in situ hybridization (FISH) and live-cell imaging. Several cell clones were created that differed in the promoter regulating the gene. Thus, comparative analysis could be obtained without the risk of different position effects at each integration site. Cells in S/G2 phases could be detected exhibiting two adjacent transcription sites on sister chromatids. A sharp reduction in the transcription levels was observed as cells progressed along the cell cycle. We hypothesized that a change in chromatin structure acts as a general mechanism during the cell cycle leading to down-regulation in the activity of some genes. We addressed this question by treating the cells with chromatin decondensing agents. Quantifying and imaging the treated cells suggests that chromatin structure plays a role both in regulating transcriptional levels along the cell cycle, as well as in limiting an active gene from reaching its maximum transcription potential at any given time. These results contribute to understanding the role of chromatin as a regulator of gene expression.

Keywords: cell cycle, living cells, nucleus, transcription

Procedia PDF Downloads 255
3499 A Two-Stage Bayesian Variable Selection Method with the Extension of Lasso for Geo-Referenced Data

Authors: Georgiana Onicescu, Yuqian Shen

Abstract:

Due to the complex nature of geo-referenced data, multicollinearity of the risk factors in public health spatial studies is a commonly encountered issue, which leads to low parameter estimation accuracy because it inflates the variance in the regression analysis. To address this issue, we proposed a two-stage variable selection method by extending the least absolute shrinkage and selection operator (Lasso) to the Bayesian spatial setting, investigating the impact of risk factors to health outcomes. Specifically, in stage I, we performed the variable selection using Bayesian Lasso and several other variable selection approaches. Then, in stage II, we performed the model selection with only the selected variables from stage I and compared again the methods. To evaluate the performance of the two-stage variable selection methods, we conducted a simulation study with different distributions for the risk factors, using geo-referenced count data as the outcome and Michigan as the research region. We considered the cases when all candidate risk factors are independently normally distributed, or follow a multivariate normal distribution with different correlation levels. Two other Bayesian variable selection methods, Binary indicator, and the combination of Binary indicator and Lasso were considered and compared as alternative methods. The simulation results indicated that the proposed two-stage Bayesian Lasso variable selection method has the best performance for both independent and dependent cases considered. When compared with the one-stage approach, and the other two alternative methods, the two-stage Bayesian Lasso approach provides the highest estimation accuracy in all scenarios considered.

Keywords: Lasso, Bayesian analysis, spatial analysis, variable selection

Procedia PDF Downloads 105
3498 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation

Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori

Abstract:

The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.

Keywords: clustering, edges, feature points, landmark selection, X-means

Procedia PDF Downloads 246
3497 Screening for Enterotoxigenic Staphylococcus spp. Strains Isolated From Raw Milk and Dairy Products in R. N. Macedonia

Authors: Marija Ratkova Manovska, Mirko Prodanov, Dean Jankuloski, Katerina Blagoevska

Abstract:

Staphylococci, which are widely found in the environment, animals, humans, and food products, include Staphylococcus aureus (S. aureus), the most significant pathogenic species in this genus. The virulence and toxicity of S. aureus are primarily attributed to the presence of specific genes responsible for producing toxins, biofilms, invasive components, and antibiotic resistance. Staphylococcal food poisoning, caused by the production of staphylococcal enterotoxins (SEs) by these strains in food, is a common occurrence. Globally, S. aureus food intoxications are typically ranked as the third or fourth most prevalent foodborne intoxications. For this study, a total of 333 milk samples and 1160 dairy product samples were analyzed between 2016 and 2020. The strains were isolated and confirmed using the ISO 6888-1:1999 "Horizontal method for enumeration of coagulase-positive staphylococci." Molecular analysis of the isolates, conducted using conventional PCR, involved detecting the 23s gene of S. aureus, the nuc gene, the mecA gene, and 11 genes responsible for producing enterotoxins (sea, seb, sec, sed, see, seg, seh, sei, ser, sej, and sep). The 23s gene was found in 93 (75.6%) out of 123 isolates of Staphylococcus spp. obtained from milk. Among the 76 isolates from dairy products, either S. aureus or the 23s gene was detected in 49 (64.5%) of them. The mecA gene was identified in three isolates from raw milk and five isolates from cheese samples. The nuc gene was present in 98.9% of S. aureus strains from milk and 97.9% from dairy products. Other Staphylococcus strains carried the nuc gene in 26.7% of milk strains and 14.8% of dairy product strains. Genes associated with SEs production were detected in 85 (69.1%) strains from milk and 38 (50%) strains from dairy products. In this study, 10 out of the 11 SEs genes were found, with no isolates carrying the see gene. The most prevalent genes detected were seg and sei, with some isolates containing up to five different SEs genes. These findings indicate the presence of enterotoxigenic staphylococci strains in the tested samples, emphasizing the importance of implementing proper sanitation and hygienic practices, utilizing safe raw materials, and ensuring adequate handling of finished products. Continued monitoring for the presence of SEs is necessary to ensure food safety and prevent intoxication.

Keywords: dairy products, milk, Staphylococci, enterotoxins, SE genes

Procedia PDF Downloads 40
3496 Characterization of Enterotoxigenic Escherichia coli CS6 Promoter

Authors: Mondal Indranil, Bhakat Debjyoti, Mukhopadayay Asish K., Chatterjee Nabendu S.

Abstract:

CS6 is the prevalent CF in our region and deciphering its molecular regulators would play a pivotal role in reducing the burden of ETEC pathogenesis. In prokaryotes, most of the genes are under the control of one operon and the promoter present upstream of the gene regulates the transcription of that gene. Here the promoter of CS6 was characterized by computational method and further analyzed by β-galactosidase assay and sequencing. Promoter constructs and deletions were prepared as required to analyze promoter activity. The effect of different additives on the CS6 promoter was analysed by the β-galactosidase assay. Bioinformatics analysis done by Softberry/BPROM predicted fur, lrp, and crp boxes, -10 and -35 region upstream of the CS6 gene. The promoter construction in no promoter plasmid pTL61T showed that region -573 to +1 is actually the promoter region as predicted. Sequential deletion of the region upstream of CS6 revealed that promoter activity remains the same when -573bp to -350bp is deleted. But after the deletion of the upstream region -350 bp to -255bp, promoter expression decreases drastically to 26%. Further deletion also decreases promoter activity up to a little range. So the region -355bp to -255bp holds the promoter sequence for the CS6 gene. Additives like iron, NaCl, etc., modulate promoter activity in a dose-dependent manner. From the promoter analysis, it can be said that the minimum region lies between -254 and +1. Important region(s) lies between -350 bp to -255 bp upstream in the promoter, which might have important elements needed to control CS6 gene expression.

Keywords: microbiology, promoter, colonization factor, ETEC

Procedia PDF Downloads 133
3495 The Influence of Polymorphisms of NER System Genes on the Risk of Colorectal Cancer in the Polish Population

Authors: Ireneusz Majsterek, Karolina Przybylowska, Lukasz Dziki, Adam Dziki, Jacek Kabzinski

Abstract:

Colorectal cancer (CRC) is one of the deadliest cancers. Every year we see an increase in the number of cases, and in spite of intensive research etiology of the disease remains unknown. For many years, researchers are seeking to associate genetic factors with an increased risk of CRC, so far it has proved to be a compelling link between the MMR system of DNA repair and hereditary nonpolyposis colorectal cancers (HNPCC). Currently, research is focused on finding the relationship between the remaining DNA repair systems and an increased risk of developing colorectal cancer. The aim of the study was to determine the relationship between gene polymorphisms Ser835Ser of XPF gene and Gly23Ala of XPA gene–elements of NER DNA repair system, and modulation of the risk of colorectal cancer in the Polish population. Determination of the molecular basis of carcinogenesis process and predicting increased risk will allow qualifying patients to increased risk group and including them in preventive program. We used blood collected from 110 patients diagnosed with colorectal cancer. The control group consisted of equal number of healthy people. Genotyping was performed by TaqMan method. The obtained results indicate that the genotype 23Gly/Ala of XPA gene is associated with an increased risk of colorectal cancer, while 23Ala/Ala as well as TCT allele of Ser835Ser of XPF gene may reduce the risk of CRC.

Keywords: NER, colorectal cancer, XPA, XPF, polymorphisms

Procedia PDF Downloads 532
3494 DNA Methylation Changes in Response to Ocean Acidification at the Time of Larval Metamorphosis in the Edible Oyster, Crassostrea hongkongensis

Authors: Yong-Kian Lim, Khan Cheung, Xin Dang, Steven Roberts, Xiaotong Wang, Vengatesen Thiyagarajan

Abstract:

Unprecedented rate of increased CO₂ level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g., some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors, including OA, can influence the addition and removal of methyl groups through epigenetic modification (e.g., DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, the above hypothesis was tested through testing the effect of OA, using decreased pH 7.4 as a proxy, on the DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis, at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1; however, over one-third of the larvae raised at pH 7.4 failed to attach to an optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Keywords: adaptive plasticity, DNA methylation, larval metamorphosis, ocean acidification

Procedia PDF Downloads 108
3493 Disruption of MoNUC1 Gene Mediates Conidiation in Magnaporthe oryzae

Authors: Irshad Ali Khan, Jian-Ping Lu, Xiao-Hong Liu, Fu-Cheng Lin

Abstract:

This study reports the functional analysis of a gene MoNUC1 in M. oryzae, which is homologous to the Saccharomyces cerevisiae NUC1 encoding a mitochondrial nuclease protein. The MoNUC1 having a gene locus MGG_05324 is 1002-bp in length and encodes an identical protein of 333 amino acids. We disrupted the gene through gene disruption strategy and isolated two mutants confirmed by southern blotting. The deleted mutants were then used for phenotypic studies and their phenotypes were compared to those of the Guy-11 strain. The mutants were first grown on CM medium to find the effect of MoNUC1 gene disruption on colony growth and the mutants were found to show normal culture colony growth similar to that of the Guy-11 strain. Conidial germination and appressorial formation were also similar in both the mutants and Guy-11 strains showing that this gene plays no significant role in these phenotypes. For pathogenicity, the mutants and Guy-11 mycelium blocks were inoculated on blast susceptible barley seedlings and it was found that both the strains exhibited full pathogenicity showing coalesced and necrotic blast lesions suggesting that this gene is not involved in pathogenicity. Mating of the mutants with 2539 strain formed numerous perithecia showing that MoNUC1 is not essential for sexual reproduction in M. oryzae. However, the mutants were found to form reduced conidia (1.06±8.03B and 1.08±9.80B) than those of the Guy-11 strain (1.46±10.61A) and we conclude that this protein is not required for the blast fungus to cause pathogenicity but plays significant role in conidiation. Proteins of signal transduction pathways that could be disrupted/ intervened genetically or chemically could lead to antifungal products of important fungal cereal diseases and reduce rice yield losses. Tipping the balance toward understanding the whole of pathogenesis, rather than simply conidiation will take some time, but clearly presents the most exciting challenge of all.

Keywords: appressorium formation, conidiation, NUC1, Magnaporthe oryzae, pathogenicity

Procedia PDF Downloads 453
3492 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses

Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts

Abstract:

Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.

Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV

Procedia PDF Downloads 381
3491 Functional Analysis of Thyroid Peroxidase (TPO) Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis

Authors: Biswabandhu Bankura, Srikanta Guria, Madhusudan Das

Abstract:

Purpose: Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. Methods: 200 hypothyroid patients (case) and their corresponding sex and age matched 200 normal individuals (control) were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14) was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Results: Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. Key Findings: The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.

Keywords: thyroid peroxidase, hypothyroidism, mutation, in vitro assay, transfection

Procedia PDF Downloads 313
3490 Functional Analysis of Thyroid Peroxidase Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis

Authors: Biswabandhu Bankura, Srikanta Guria, Madhusudan Das

Abstract:

Purpose: Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. Methods: 200 hypothyroid patients (case) and their corresponding sex and age matched 200 normal individuals (control) were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14) was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Results: Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. Key Findings: The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.

Keywords: thyroid peroxidase, hypothyroidism, mutation, in vitro assay, transfection

Procedia PDF Downloads 304
3489 A Deletion in Duchenne Muscular Dystrophy Gene Found Through Whole Exome Sequencing in Iran

Authors: Negin Parsamanesh, Saman Ameri-Mahabadi, Ali Nikfar, Mojdeh Mansouri, Hossein Chiti, Gita Fatemi Abhari

Abstract:

Duchenne muscular dystrophy (DMD) is a severe progressive X-linked neuromuscular illness that affects movement through mutations in dystrophin gene. The mutation leads to insufficient, lack of or dysfunction of dystrophin. The cause of DMD was determined in an Iranian family. Exome sequencing was carried out along with a complete physical examination of the family. In silico methods were applied to find the alteration in the protein structure. The homozygous variant in DMD gene (NM-004006.2) was defined as c.2732-2733delTT (p.Phe911CysfsX8) in exon 21. In addition, phylogenetic conservation study of the human dystrophin protein sequence revealed that phenylalanine 911 is one of the evolutionarily conserved amino acids. In conclusion, our study indicated a new deletion in the DMD gene in the affected family. This deletion with an X-linked inheritance pattern is new in Iran. These findings could facilitate genetic counseling for this family and other patients in the future.

Keywords: duchenne muscular dystrophy, whole exome sequencing, iran, metabolic syndrome

Procedia PDF Downloads 35
3488 Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica

Authors: J. Adeppa, S. Samanta, O. K. Raina

Abstract:

Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis.

Keywords: fasciola gigantic, fasciola hepatica, GST, RT- PCR

Procedia PDF Downloads 158
3487 A Theoretical Framework for Conceptualizing Integration of Environmental Sustainability into Supplier Selection

Authors: Tonny Ograh, Joshua Ayarkwa, Dickson Osei-Asibey, Alex Acheampong, Peter Amoah

Abstract:

Theories are used to improve the conceptualization of research ideas. These theories enhance valuable elucidations that help us to grasp the meaning of research findings. Nevertheless, the use of theories to promote studies in green supplier selection in procurement decisions has attracted little attention. With the emergence of sustainable procurement, public procurement practitioners in Ghana are yet to achieve relevant knowledge on green supplier selections due to insufficient knowledge and inadequate appropriate frameworks. The flagrancy of the consequences of public procurers’ failure to integrate environmental considerations into supplier selection explains the adoption of a multi-theory approach for comprehension of the dynamics of green integration into supplier selection. In this paper, the practicality of three theories for improving the understanding of the influential factors enhancing the integration of environmental sustainability into supplier selection was reviewed. The three theories are Resource-Based Theory, Human Capital Theory and Absorptive Capacity Theory. This review uncovered knowledge management, top management commitment, and environmental management capabilities as important elements needed for the integration of environmental sustainability into supplier selection in public procurement. The theoretical review yielded a framework that conceptualizes knowledge and capabilities of practitioners relevant to the incorporation of environmental sustainability into supplier selection in public procurement.

Keywords: environmental, sustainability, supplier selection, environmental procurement, sustainable procurement

Procedia PDF Downloads 143
3486 Ribosomal Protein S4 Gene: Exploring the Presence in Syrian Strain of Leishmania Tropica Genome, Sequencing it and Evaluating Immune Response of pCI-S4 DNA Vaccine

Authors: Alyaa Abdlwahab

Abstract:

Cutaneous leishmaniasis represents a serious health problem in Syria; this problem has become noticeably aggravated after the civil war in the country. Leishmania tropica parasite is the main cause of cutaneous leishmaniasis in Syria. In order to control the disease, we need an effective vaccine against leishmania parasite. DNA vaccination remains one of the favorable approaches that have been used to face cutaneous leishmaniasis. Ribosomal protein S4 is responsible for important roles in Leishmania parasite life. DNA vaccine based on S4 gene has been used against infections by many species of Leishmania parasite but leishmania tropica parasite, so this gene represents a good candidate for DNA vaccine construction. After proving the existence of ribosomal protein S4 gene in a Syrian strain of Leishmania tropica (LCED Syrian 01), sequencing it and cloning it into pCI plasmid, BALB/C mice were inoculated with pCI-S4 DNA vaccine. The immune response was determined by monitoring the lesion progression in inoculated BALB/C mice for six weeks after challenging mice with Leishmania tropica (LCED Syrian 01) parasites. IL-12, IFN-γ, and IL-4 were quantified in draining lymph nodes (DLNa) of the immunized BALB/C mice by using the RT-qPCR technique. The parasite burden was calculated in the final week for the footpad lesion and the DLNs of the mice. This study proved the existence and the expression of the ribosomal protein S4 gene in Leishmania tropica (LCED Syrian 01) promastigotes. The sequence of ribosomal protein cDNA S4 gene was determined and published in Genbank; the gene size was 822 bp. Expression was also demonstrated at the level of cDNA. Also, this study revealed that pCI-S4 DNA vaccine induces TH1\TH2 response in immunized mice; this response prevents partially developing a dermal lesion of Leishmania.

Keywords: ribosomal protein S4, DNA vaccine, Leishmania tropica, BALB\c

Procedia PDF Downloads 103
3485 Advanced Technologies and Algorithms for Efficient Portfolio Selection

Authors: Konstantinos Liagkouras, Konstantinos Metaxiotis

Abstract:

In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.

Keywords: portfolio selection, optimization techniques, financial models, stochastic, heuristics

Procedia PDF Downloads 399
3484 Effect of SCN5A Gene Mutation in Endocardial Cell

Authors: Helan Satish, M. Ramasubba Reddy

Abstract:

The simulation of an endocardial cell for gene mutation in the cardiac sodium ion channel NaV1.5, encoded by SCN5A gene, is discussed. The characterization of Brugada Syndrome by loss of function effect on SCN5A mutation due to L812Q mutant present in the DII-S4 transmembrane region of the NaV1.5 channel protein and its effect in an endocardial cell is studied. Ten Tusscher model of human ventricular action potential is modified to incorporate the changes contributed by L812Q mutant in the endocardial cells. Results show that BrS-associated SCN5A mutation causes reduction in the inward sodium current by modifications in the channel gating dynamics such as delayed activation, enhanced inactivation, and slowed recovery from inactivation in the endocardial cell. A decrease in the inward sodium current was also observed, which affects depolarization phase (Phase 0) that leads to reduction in the spike amplitude of the cardiac action potential.

Keywords: SCN5A gene mutation, sodium channel, Brugada syndrome, cardiac arrhythmia, action potential

Procedia PDF Downloads 98
3483 The Immunology Evolutionary Relationship between Signal Transducer and Activator of Transcription Genes from Three Different Shrimp Species in Response to White Spot Syndrome Virus Infection

Authors: T. C. C. Soo, S. Bhassu

Abstract:

Unlike the common presence of both innate and adaptive immunity in vertebrates, crustaceans, in particular, shrimps, have been discovered to possess only innate immunity. This further emphasizes the importance of innate immunity within shrimps in pathogenic resistance. Under the study of pathogenic immune challenge, different shrimp species actually exhibit varying degrees of immune resistance towards the same pathogen. Furthermore, even within the same shrimp species, different batches of challenged shrimps can have different strengths of immune defence. Several important pathways are activated within shrimps during pathogenic infection. One of them is JAK-STAT pathway that is activated during bacterial, viral and fungal infections by which STAT(Signal Transducer and Activator of Transcription) gene is the core element of the pathway. Based on theory of Central Dogma, the genomic information is transmitted in the order of DNA, RNA and protein. This study is focused in uncovering the important evolutionary patterns present within the DNA (non-coding region) and RNA (coding region). The three shrimp species involved are Macrobrachium rosenbergii, Penaeus monodon and Litopenaeus vannamei which all possess commercial significance. The shrimp species were challenged with a famous penaeid shrimp virus called white spot syndrome virus (WSSV) which can cause serious lethality. Tissue samples were collected during time intervals of 0h, 3h, 6h, 12h, 24h, 36h and 48h. The DNA and RNA samples were then extracted using conventional kits from the hepatopancreas tissue samples. PCR technique together with designed STAT gene conserved primers were utilized for identification of the STAT coding sequences using RNA-converted cDNA samples and subsequent characterization using various bioinformatics approaches including Ramachandran plot, ProtParam and SWISS-MODEL. The varying levels of immune STAT gene activation for the three shrimp species during WSSV infection were confirmed using qRT-PCR technique. For one sample, three biological replicates with three technical replicates each were used for qRT-PCR. On the other hand, DNA samples were important for uncovering the structural variations within the genomic region of STAT gene which would greatly assist in understanding the STAT protein functional variations. The partially-overlapping primers technique was used for the genomic region sequencing. The evolutionary inferences and event predictions were then conducted through the Bayesian Inference method using all the acquired coding and non-coding sequences. This was supplemented by the construction of conventional phylogenetic trees using Maximum likelihood method. The results showed that adaptive evolution caused STAT gene sequence mutations between different shrimp species which led to evolutionary divergence event. Subsequently, the divergent sites were correlated to the differing expressions of STAT gene. Ultimately, this study assists in knowing the shrimp species innate immune variability and selection of disease resistant shrimps for breeding purpose. The deeper understanding of STAT gene evolution from the perspective of both purifying and adaptive approaches not only can provide better immunological insight among shrimp species, but also can be used as a good reference for immunological studies in humans or other model organisms.

Keywords: gene evolution, JAK-STAT pathway, immunology, STAT gene

Procedia PDF Downloads 116
3482 DNA Barcoding of Tree Endemic Campanula Species From Artvi̇n, Türki̇ye

Authors: Hayal Akyildirim Beğen, Özgür Emi̇nağaoğlu

Abstract:

DNA barcoding is the method of description of species based on gene diversity. In current studies, registration, genetic identification and protection of especially endemic plants pecies are carried out by DNA barcoding techniques. Molecular studies are based on the amplification and sequencing of the barcode gene region by the PCR method. Endemic Campanula choruhensis Kit Tan & Sorger, Campanula troegera Damboldt and Campanula betulifolia K.Koch is widespread in Artvin, Erzurum and around Çoruh valley passing through it. Intense road and dam constructions are carried out in and around the distribution area of this species. This situation harms the habitat of the species and puts its extinction. In this study, the plastid matK barcode gene regions (650 bp) of three Campanula species were created. To make the identification of this species quickly and accurately, gene sequence compared with sequences of other Campanula L. species. As a result of phylogenetic analysis, C. choruhensis is close relative to C. betulifolia. Morphologically, these species were determined to be more similar to each other with flower and leaf characters. C. troegera formed a separate branch.

Keywords: campanula, DNA barcoding, endemic, türkiye, artvin

Procedia PDF Downloads 38