Search results for: facial reputation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 475

Search results for: facial reputation

445 Emotion Recognition in Video and Images in the Wild

Authors: Faizan Tariq, Moayid Ali Zaidi

Abstract:

Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.

Keywords: face recognition, emotion recognition, deep learning, CNN

Procedia PDF Downloads 159
444 Facial Infiltrating Lipomatosis, a Rare Cause of Facial Asymmetry to Be Known: Case Report and Literature Review

Authors: Shantanu Vyas, Neerja Meena

Abstract:

Facial infiltrating lipomatosis is a rare lipomatous lesion, first described by Slavin in 1983. It is a benign pseudotumor pathology. It corresponds to a non-encapsulated collection of mature adipocytes infiltrating the local tissue and hyperplasia of underlying bone leading to a craniofacial deformity. Very few cases have been reported in the literature. We report the case of a 19-year-old female patient, who was consulted for a swelling of the right hemiface progressively evolving since birth. Physical examination revealed facial asymmetry. On palpation, the mass was soft, painless, not compressible, not pulsatile, not fluctuating. In view of the asymptomatic nature and slow progression of the lesion, a lipomatous tumour, namely lipoma, was suggested. CT scan image shows a hyperplastic subcutaneous fat on the right hemiface. On the right jugal and temporal areas, there is a subcutaneous formation of fatty density, poorly limited, with no detectable peripheral capsule. It merges with the adjacent fat. In the bone window, there was a hyperplasia of underlying bone. Facial lipomatosis infiltration of the face is a benign pseudotumor pathology. As a result, it can be confused with other disorders, in particular, hemifacial hyperplasia. Combination of physical and radiological findings can establish the diagnosis. Surgical treatment is done for cosmetic purposes.

Keywords: cosmetic correction and facial assemetry, aesthetic results, facial infiltration, surgery

Procedia PDF Downloads 44
443 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: facial expression identification, curvelet coefficient, support vector machine (SVM), recognition system

Procedia PDF Downloads 211
442 Peripheral Facial Nerve Palsy after Lip Augmentation

Authors: Sana Ilyas, Kishalaya Mukherjee, Suresh Shetty

Abstract:

Lip Augmentation has become more common in recent years. Patients do not expect to experience facial palsy after having lip augmentation. This poster will present the findings of such a presentation and will discuss the possible pathophysiology and management. (This poster has been published as a paper in the dental update, June 2022) Aim: The aim of the study was to explore the link between facial nerve palsy and lip fillers, to explore the literature surrounding facial nerve palsy, and to discuss the case of a patient who presented with facial nerve palsy with seemingly unknown cause. Methodology: There was a thorough assessment of the current literature surrounding the topic. This included published papers in journals through PubMed database searches and printed books on the topic. A case presentation was discussed in detail of a patient presenting with peripheral facial nerve palsy and associating it with lip augmentation that she had a day prior. Results and Conclusion: Even though the pathophysiology may not be clear for this presentation, it is important to highlight uncommon presentations or complications that may occur after treatment. This can help with understanding and managing similar cases, should they arise.It is also important to differentiate cause and association in order to make an accurate diagnosis. This may be difficult if there is little scientific literature. Therefore, further research can help to improve the understanding of the pathophysiology of similar presentations. This poster has been published as a paper in dental update, June 2022, and therefore shares a similar conclusiom.

Keywords: facial palsy, lip augmentation, causation and correlation, dental cosmetics

Procedia PDF Downloads 121
441 DBN-Based Face Recognition System Using Light Field

Authors: Bing Gu

Abstract:

Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.

Keywords: DBN, face recognition, light field, Lytro

Procedia PDF Downloads 433
440 Contagious Corporate Reputation Risk: Uncovering the Pandemic’s Impact

Authors: Yawen Xia, Rubi Yang, Jing Zhao

Abstract:

By using the Reputation Risk Index (RRI) to measure company environmental, social, and governance (ESG) activities, this research studies firms’ ESG comovement with their industry and local peers. This comovement is attenuated during the Covid-19 pandemic. Further analysis shows that corporate governance plays an important role in comovement decrease. We classify companies by region (city, state, region) and industry and calculate the average RRI of companies of the same type. We run separate regressions to test 1) industry comovement; 2) local comovement; 3) Covid-19 pandemic and reputation risk comovement; 4) corporate governance and reputation risk comovement. Our findings are consistent with previous literature that companies follow their industry and local counterparts in engaging in irresponsible activities and reducing ESG engagement. We speculate Covid shock led to a reduction in social activities and information sharing among enterprise managers, and comovement between enterprises, as a result, decreased during the pandemic.

Keywords: ESG, Covid, peer pressure, local comovement, corporate governance

Procedia PDF Downloads 92
439 Tick Induced Facial Nerve Paresis: A Narrative Review

Authors: Jemma Porrett

Abstract:

Background: We present a literature review examining the research surrounding tick paralysis resulting in facial nerve palsy. A case of an intra-aural paralysis tick bite resulting in unilateral facial nerve palsy is also discussed. Methods: A novel case of otoacariasis with associated ipsilateral facial nerve involvement is presented. Additionally, we conducted a review of the literature, and we searched the MEDLINE and EMBASE databases for relevant literature published between 1915 and 2020. Utilising the following keywords; 'Ixodes', 'Facial paralysis', 'Tick bite', and 'Australia', 18 articles were deemed relevant to this study. Results: Eighteen articles included in the review comprised a total of 48 patients. Patients' ages ranged from one year to 84 years of age. Ten studies estimated the possible duration between a tick bite and facial nerve palsy, averaging 8.9 days. Forty-one patients presented with a single tick within the external auditory canal, three had a single tick located on the temple or forehead region, three had post-auricular ticks, and one patient had a remarkable 44 ticks removed from the face, scalp, neck, back, and limbs. A complete ipsilateral facial nerve palsy was present in 45 patients, notably, in 16 patients, this occurred following tick removal. House-Brackmann classification was utilised in 7 patients; four patients with grade 4, one patient with grade three, and two patients with grade 2 facial nerve palsy. Thirty-eight patients had complete recovery of facial palsy. Thirteen studies were analysed for time to recovery, with an average time of 19 days. Six patients had partial recovery at the time of follow-up. One article reported improvement in facial nerve palsy at 24 hours, but no further follow-up was reported. One patient was lost to follow up, and one article failed to mention any resolution of facial nerve palsy. One patient died from respiratory arrest following generalized paralysis. Conclusions: Tick paralysis is a severe but preventable disease. Careful examination of the face, scalp, and external auditory canal should be conducted in patients presenting with otalgia and facial nerve palsy, particularly in tropical areas, to exclude the possibility of tick infestation.

Keywords: facial nerve palsy, tick bite, intra-aural, Australia

Procedia PDF Downloads 80
438 The Effects of Affective Dimension of Face on Facial Attractiveness

Authors: Kyung-Ja Cho, Sun Jin Park

Abstract:

This study examined what effective dimension affects facial attractiveness. Two orthogonal dimensions, sharp-soft and babyish-mature, were used to rate the levels of facial attractiveness in 20’s women. This research also investigated the sex difference on the effect of effective dimension of face on attractiveness. The test subjects composed of 15 males and 18 females. They looked 330 photos of women in 20s. Then they rated the levels of the effective dimensions of faces with sharp-soft and babyish-mature, and the attraction with charmless-charming. The respond forms were Likert scales, the answer was scored from 1 to 9. As a result of multiple regression analysis, the subject reported the milder and younger appearance as more attractive. Both male and female subjects showed the same evaluation. This result means that two effective dimensions have the effect on estimating attractiveness.

Keywords: affective dimension of faces, facial attractiveness, sharp-soft, babyish-mature

Procedia PDF Downloads 308
437 Effect of Management Compensation and Auditor Reputation on Tax Management in the Listed Banking Companies in Indonesia

Authors: Fahreza, Yudhi Herliansyah, Harnovinsah

Abstract:

This study aims to examine how management compensation and auditor reputation effect on corporate tax management in banking using a sample banking companies listed in Indonesia Stock Exchange. At first, this study examines how the influence of management compensation on the implementation of tax management that may be made by management in order to improve the performance of the company. Second, this study also examines the effect of auditor reputation conducting audit on the implementation of the tax management. The population used in this study is the banking companies listed in Indonesia Stock Exchange. The method used was purposive sampling because the samples of this study have certain criteria that are tailored to the purpose of the study. Based on purposive sampling method, the number of samples in this study is 28 samples. Hypothesis tested using multiple regression analysis. The results of this study indicate that on the 5 % significance level, management compensation significantly influenced tax management as measured using the proxy book tax gap. Other result is management compensation does not significantly affect the tax management that measured using a proxy GAAP effective tax rate. In addition the auditor's reputation does significantly influence tax management as measured using the proxy book tax gap and GAAP effective tax rate.

Keywords: tax management, management compensation, auditor reputation, corporate characteristic

Procedia PDF Downloads 281
436 Research on Contract's Explicit Incentive and Reputation's Implicit Incentive Mechanism towards Construction Contractors

Authors: Li Ma, Meishuang Ma, Mengying Huang

Abstract:

The quality of construction projects reflects the credit and responsibilities of construction contractors for the owners and the whole society. Because the construction contractors master more relevant information about the entrusted engineering project under construction while the owners are in unfavorable position of gaining information, asymmetric information may lead the contractors act against the owners in order to pursue their own interests. Building a powerful motivation mechanism is the key to guarantee investor economic interests and the life and property of users in construction projects. Based on principal-agent theory and game theory, the authors develop relevant mathematical models to analyze and compare the contractor’s utility functions under different combinations of contracts’ explicit incentive mechanism and reputation’s implicit incentive mechanism aiming at finding out the conditions for incentive validity. The research concludes that the most rational motivation way is to combine the explicit and implicit incentive effects of both contracts and reputation mechanism, and puts forth some measures for problems on account of China’s current situation.

Keywords: construction contractors, contract, reputation, incentive mechanism

Procedia PDF Downloads 481
435 Facial Behavior Modifications Following the Diffusion of the Use of Protective Masks Due to COVID-19

Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Daniel Zaccariello

Abstract:

Our study explores the usefulness of implementing facial expression recognition capabilities and using the Facial Action Coding System (FACS) in contexts where the other person is wearing a mask. In the communication process, the subjects use a plurality of distinct and autonomous reporting systems. Among them, the system of mimicking facial movements is worthy of attention. Basic emotion theorists have identified the existence of specific and universal patterns of facial expressions related to seven basic emotions -anger, disgust, contempt, fear, sadness, surprise, and happiness- that would distinguish one emotion from another. However, due to the COVID-19 pandemic, we have come up against the problem of having the lower half of the face covered and, therefore, not investigable due to the masks. Facial-emotional behavior is a good starting point for understanding: (1) the affective state (such as emotions), (2) cognitive activity (perplexity, concentration, boredom), (3) temperament and personality traits (hostility, sociability, shyness), (4) psychopathology (such as diagnostic information relevant to depression, mania, schizophrenia, and less severe disorders), (5) psychopathological processes that occur during social interactions patient and analyst. There are numerous methods to measure facial movements resulting from the action of muscles, see for example, the measurement of visible facial actions using coding systems (non-intrusive systems that require the presence of an observer who encodes and categorizes behaviors) and the measurement of electrical "discharges" of contracting muscles (facial electromyography; EMG). However, the measuring system invented by Ekman and Friesen (2002) - "Facial Action Coding System - FACS" is the most comprehensive, complete, and versatile. Our study, carried out on about 1,500 subjects over three years of work, allowed us to highlight how the movements of the hands and upper part of the face change depending on whether the subject wears a mask or not. We have been able to identify specific alterations to the subjects’ hand movement patterns and their upper face expressions while wearing masks compared to when not wearing them. We believe that finding correlations between how body language changes when our facial expressions are impaired can provide a better understanding of the link between the face and body non-verbal language.

Keywords: facial action coding system, COVID-19, masks, facial analysis

Procedia PDF Downloads 49
434 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences

Authors: T. Hari Prasath, P. Ithaya Rani

Abstract:

In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.

Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization

Procedia PDF Downloads 248
433 In vivo Mechanical Characterization of Facial Skin Combining Digital Image Correlation and Finite Element

Authors: Huixin Wei, Shibin Wang, Linan Li, Lei Zhou, Xinhao Tu

Abstract:

Facial skin is a biomedical material with complex mechanical properties of anisotropy, viscoelasticity, and hyperelasticity. The mechanical properties of facial skin are crucial for a number of applications including facial plastic surgery, animation, dermatology, cosmetic industry, and impact biomechanics. Skin is a complex multi-layered material which can be broadly divided into three main layers, the epidermis, the dermis, and the hypodermis. Collagen fibers account for 75% of the dry weight of dermal tissue, and it is these fibers which are responsible for the mechanical properties of skin. Many research on the anisotropic mechanical properties are mainly concentrated on in vitro, but there is a great difference between in vivo and in vitro for mechanical properties of the skin. In this study, we presented a method to measure the mechanical properties of facial skin in vivo. Digital image correlation (DIC) and indentation tests were used to obtain the experiment data, including the deformation of facial surface and indentation force-displacement curve. Then, the experiment was simulated using a finite element (FE) model. Application of Computed Tomography (CT) and reconstruction techniques obtained the real tissue geometry. A three-dimensional FE model of facial skin, including a bi-layer system, was obtained. As the epidermis is relatively thin, the epidermis and dermis were regarded as one layer and below it was hypodermis in this study. The upper layer was modeled as a Gasser-Ogden-Holzapfel (GOH) model to describe hyperelastic and anisotropic behaviors of the dermis. The under layer was modeled as a linear elastic model. In conclusion, the material properties of two-layer were determined by minimizing the error between the FE data and experimental data.

Keywords: facial skin, indentation test, finite element, digital image correlation, computed tomography

Procedia PDF Downloads 91
432 Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning

Authors: Muhammad Maisam Abbas, Salman Tariq, Usama Riaz, Muhammad Tanveer, Humaira Abdul Ghafoor

Abstract:

Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system.

Keywords: autism spectrum disorder, ASD, EigenFace, facial expression recognition, FisherFace, local binary pattern histogram, LBPH

Procedia PDF Downloads 149
431 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients

Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund

Abstract:

This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.

Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients

Procedia PDF Downloads 121
430 Facial Expression Recognition Using Sparse Gaussian Conditional Random Field

Authors: Mohammadamin Abbasnejad

Abstract:

The analysis of expression and facial Action Units (AUs) detection are very important tasks in fields of computer vision and Human Computer Interaction (HCI) due to the wide range of applications in human life. Many works have been done during the past few years which has their own advantages and disadvantages. In this work, we present a new model based on Gaussian Conditional Random Field. We solve our objective problem using ADMM and we show how well the proposed model works. We train and test our work on two facial expression datasets, CK+, and RU-FACS. Experimental evaluation shows that our proposed approach outperform state of the art expression recognition.

Keywords: Gaussian Conditional Random Field, ADMM, convergence, gradient descent

Procedia PDF Downloads 325
429 Impact of Storytelling for Effective Marketing and Reputation Management of Heritage Tourism Destination with Special Reference to Haflong (Assam, India)

Authors: Rohit Sarin

Abstract:

This paper is an attempt to prove the impact of storytelling for effective marketing and maintaining the reputation of the destination for long run. This notable aspect of heritage tourism is cultural exchange among the various communities who visit our country India. Every destination has a life cycle like the product known as destination life cycle. India is considered to be the hub of cultural heritage tourism; its cultural heritage tourism can be traced back to several centuries. Heritage tourism has gained the popularity of global cuisine activity. The statistics of 2014 reveals 903 million International Tourist in heritage tourism destination is done to know the impact of storytelling for their visit to particulars heritage tourism destination. SWOT analysis of the destination is undertaken for the research purpose. A collection of data from the travel agency was taken who visited the heritage tourism destination and were asked to fill questionnaire for the research purpose to know the impact of storytelling for their visit to destination. A total of 100 respondents filled the questionnaire. Likert scale was used in the paper also highlighted the scope, advantage and disadvantage of storytelling for effective marketing and reputation management.

Keywords: destination life cycle, heritage tourism, random sampling, reputation management, storytelling

Procedia PDF Downloads 545
428 When and Why Unhappy People Avoid Enjoyable Experiences

Authors: Hao Shen, Aparna Labroo

Abstract:

Across four studies, we show people in a negative mood avoid anticipated enjoyable experiences because of the subjective difficulty in simulating those experiences, and they misattribute these feelings of difficulty to reduced pleasantness of the anticipated experience. We observe the avoidance of enjoyable experiences only for anticipated experiences that involve smile-like facial-muscular simulation. When the need for facial-muscular simulation is attenuated, or when the anticipated experience relies on facial-muscular simulation to a lesser extent, people in a negative mood no longer avoid enjoyable experiences, but rather seek such experiences because they fit better with their ongoing mood-repair goals.

Keywords: emotion regulation, mood repair, embodiment, anticipated experiences

Procedia PDF Downloads 393
427 Role of Social Media for Institutional Branding: Ethics of Communication Review

Authors: Iva Ariani, Mohammad Alvi Pratama

Abstract:

Currently, the world of communication experiences a rapid development. There are many ways of communication utilized in line with the development of science which creates many technologies that encourage a rapid development of communication system. However, despite giving convenience for the society, the development of communication system is not accompanied by the development of applicable values and regulations. Therefore, it raises many issues regarding false information or hoax which can influence the society’s mindset. This research aims to know the role of social media towards the reputation of an institution using a communication ethics study. It is a qualitative research using interview, observation, and literature study for collecting data. Then, the data will be analyzed using philosophical methods which are hermeneutic and deduction methods. This research is expected to show the role of social media in developing an institutional reputation in ethical review.

Keywords: social media, ethics, communication, reputation

Procedia PDF Downloads 186
426 A Theoretical Study on Pain Assessment through Human Facial Expresion

Authors: Mrinal Kanti Bhowmik, Debanjana Debnath Jr., Debotosh Bhattacharjee

Abstract:

A facial expression is undeniably the human manners. It is a significant channel for human communication and can be applied to extract emotional features accurately. People in pain often show variations in facial expressions that are readily observable to others. A core of actions is likely to occur or to increase in intensity when people are in pain. To illustrate the changes in the facial appearance, a system known as Facial Action Coding System (FACS) is pioneered by Ekman and Friesen for human observers. According to Prkachin and Solomon, a set of such actions carries the bulk of information about pain. Thus, the Prkachin and Solomon pain intensity (PSPI) metric is defined. So, it is very important to notice that facial expressions, being a behavioral source in communication media, provide an important opening into the issues of non-verbal communication in pain. People express their pain in many ways, and this pain behavior is the basis on which most inferences about pain are drawn in clinical and research settings. Hence, to understand the roles of different pain behaviors, it is essential to study the properties. For the past several years, the studies are concentrated on the properties of one specific form of pain behavior i.e. facial expression. This paper represents a comprehensive study on pain assessment that can model and estimate the intensity of pain that the patient is suffering. It also reviews the historical background of different pain assessment techniques in the context of painful expressions. Different approaches incorporate FACS from psychological views and a pain intensity score using the PSPI metric in pain estimation. This paper investigates in depth analysis of different approaches used in pain estimation and presents different observations found from each technique. It also offers a brief study on different distinguishing features of real and fake pain. Therefore, the necessity of the study lies in the emerging fields of painful face assessment in clinical settings.

Keywords: facial action coding system (FACS), pain, pain behavior, Prkachin and Solomon pain intensity (PSPI)

Procedia PDF Downloads 305
425 Protection of a Doctor’s Reputation Against the Unjustified Medical Malpractice Allegations

Authors: Anna Wszołek

Abstract:

For a very long time, the doctor-patient relationship had a paternalistic character. The events of the II World War, as well as fast development of the biotechnology and medicine caused an important change in that relationship. Human beings and their dignity were put in the centre of philosophical and legal debate. The increasing frequency of clinical trials led to the emergence of bioethics, which dealt with the topic of the possibilities and boundaries of such research in relation to individual’s autonomy. Thus, there was a transformation from a paternalistic relationship to a more collaborative one in which the patient has more room for self-determination. Today, patients are more and more aware of their rights and the obligations placed on doctors and the health care system, which is linked to an increase in medical malpractice claims. Unfortunately, these claims are not always justified. There is a strong concentration around the topic of patient’s good, however, at the other side there are doctors who feel, on the example of Poland, they might be easily accused and sued for medical malpractice even though they fulfilled their duties. Such situation may have a negative impact on the quality of health care services and patient’s interests. This research is going to present doctor’s perspective on the topic of medical malpractice allegations. It is supposed to show possible damage to a doctor’s reputation caused by frivolous and weakly justified medical malpractice accusations, as well as means to protect this reputation.

Keywords: doctor's reputation, medical malpractice, personal rights, unjustified allegations

Procedia PDF Downloads 69
424 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner

Authors: Yu-Chen Wei, Dan-Leng Wang

Abstract:

This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.

Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management

Procedia PDF Downloads 400
423 Gender Recognition with Deep Belief Networks

Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang

Abstract:

A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.

Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs

Procedia PDF Downloads 423
422 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection

Procedia PDF Downloads 141
421 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 101
420 The Effect of Experimentally Induced Stress on Facial Recognition Ability of Security Personnel’s

Authors: Zunjarrao Kadam, Vikas Minchekar

Abstract:

The facial recognition is an important task in criminal investigation procedure. The security guards-constantly watching the persons-can help to identify the suspected accused. The forensic psychologists are tackled such cases in the criminal justice system. The security personnel may loss their ability to correctly identify the persons due to constant stress while performing the duty. The present study aimed at to identify the effect of experimentally induced stress on facial recognition ability of security personnel’s. For this study 50, security guards from Sangli, Miraj & Jaysingpur city of the Maharashtra States of India were recruited in the experimental study. The randomized two group design was employed to carry out the research. In the initial condition twenty identity card size photographs were shown to both groups. Afterward, artificial stress was induced in the experimental group through the difficultpuzzle-solvingtask in a limited period. In the second condition, both groups were presented earlier photographs with another additional thirty new photographs. The subjects were asked to recognize the photographs which are shown earliest. The analyzed data revealed that control group has ahighest mean score of facial recognition than experimental group. The results were discussed in the present research.

Keywords: experimentally induced stress, facial recognition, cognition, security personnel

Procedia PDF Downloads 235
419 Forensic Comparison of Facial Images for Human Identification

Authors: D. P. Gangwar

Abstract:

Identification of human through facial images has got great importance in forensic science. The video recordings, CCTV footage, passports, driver licenses and other related documents are invariably sent to the laboratory for comparison of the questioned photographs as well as video recordings with suspected photographs/recordings to prove the identity of a person. More than 300 questioned and 300 control photographs received in actual crime cases, received from various investigation agencies, have been compared by me so far using various familiar analysis and comparison techniques such as Holistic comparison, Morphological analysis, Photo-anthropometry and superimposition. On the basis of findings obtained during the examination huge photo exhibits, a realistic and comprehensive technique has been proposed which could be very useful for forensic.

Keywords: CCTV Images, facial features, photo-anthropometry, superimposition

Procedia PDF Downloads 503
418 Tensor Deep Stacking Neural Networks and Bilinear Mapping Based Speech Emotion Classification Using Facial Electromyography

Authors: P. S. Jagadeesh Kumar, Yang Yung, Wenli Hu

Abstract:

Speech emotion classification is a dominant research field in finding a sturdy and profligate classifier appropriate for different real-life applications. This effort accentuates on classifying different emotions from speech signal quarried from the features related to pitch, formants, energy contours, jitter, shimmer, spectral, perceptual and temporal features. Tensor deep stacking neural networks were supported to examine the factors that influence the classification success rate. Facial electromyography signals were composed of several forms of focuses in a controlled atmosphere by means of audio-visual stimuli. Proficient facial electromyography signals were pre-processed using moving average filter, and a set of arithmetical features were excavated. Extracted features were mapped into consistent emotions using bilinear mapping. With facial electromyography signals, a database comprising diverse emotions will be exposed with a suitable fine-tuning of features and training data. A success rate of 92% can be attained deprived of increasing the system connivance and the computation time for sorting diverse emotional states.

Keywords: speech emotion classification, tensor deep stacking neural networks, facial electromyography, bilinear mapping, audio-visual stimuli

Procedia PDF Downloads 222
417 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 229
416 Facial Recognition on the Basis of Facial Fragments

Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza

Abstract:

There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.

Keywords: face recognition, labeled faces in the wild (LFW) database, random local descriptor (RLD), random features

Procedia PDF Downloads 330