Search results for: excited DC motor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1117

Search results for: excited DC motor

247 To Estimate the Association between Visual Stress and Visual Perceptual Skills

Authors: Vijay Reena Durai, Krithica Srinivasan

Abstract:

Introduction: The two fundamental skills involved in the growth and wellbeing of any child can be categorized into visual motor and perceptual skills. Visual stress is a disorder which is characterized by visual discomfort, blurred vision, misspelling words, skipping lines, letters bunching together. There is a need to understand the deficits in perceptual skills among children with visual stress. Aim: To estimate the association between visual stress and visual perceptual skills Objective: To compare visual perceptual skills of children with and without visual stress Methodology: Children between 8 to 15 years of age participated in this cross-sectional study. All children with monocular visual acuity better than or equal to 6/6 were included. Visual perceptual skills were measured using test for visual perceptual skills (TVPS) tool. Reading speed was measured with the chosen colored overlay using Wilkins reading chart and pattern glare score was estimated using a 3cpd gratings. Visual stress was defined as change in reading speed of greater than or equal to 10% and a pattern glare score of greater than or equal to 4. Results: 252 children participated in this study and the male: female ratio of 3:2. Majority of the children preferred Magenta (28%) and Yellow (25%) colored overlay for reading. There was a significant difference between the two groups (MD=1.24±0.6) (p<0.04, 95% CI 0.01-2.43) only in the sequential memory skills. The prevalence of visual stress in this group was found to be 31% (n=78). Binary logistic regression showed that odds ratio of having poor visual perceptual skills was OR: 2.85 (95% CI 1.08-7.49) among children with visual stress. Conclusion: Children with visual stress are found to have three times poorer visual perceptual skills than children without visual stress.

Keywords: visual stress, visual perceptual skills, colored overlay, pattern glare

Procedia PDF Downloads 378
246 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 269
245 The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores

Authors: Natheer Alatawneh

Abstract:

The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores.

Keywords: alternating core losses, electric machines, finite element analysis, rotational core losses

Procedia PDF Downloads 245
244 Human Gesture Recognition for Real-Time Control of Humanoid Robot

Authors: S. Aswath, Chinmaya Krishna Tilak, Amal Suresh, Ganesh Udupa

Abstract:

There are technologies to control a humanoid robot in many ways. But the use of Electromyogram (EMG) electrodes has its own importance in setting up the control system. The EMG based control system helps to control robotic devices with more fidelity and precision. In this paper, development of an electromyogram based interface for human gesture recognition for the control of a humanoid robot is presented. To recognize control signs in the gestures, a single channel EMG sensor is positioned on the muscles of the human body. Instead of using a remote control unit, the humanoid robot is controlled by various gestures performed by the human. The EMG electrodes attached to the muscles generates an analog signal due to the effect of nerve impulses generated on moving muscles of the human being. The analog signals taken up from the muscles are supplied to a differential muscle sensor that processes the given signal to generate a signal suitable for the microcontroller to get the control over a humanoid robot. The signal from the differential muscle sensor is converted to a digital form using the ADC of the microcontroller and outputs its decision to the CM-530 humanoid robot controller through a Zigbee wireless interface. The output decision of the CM-530 processor is sent to a motor driver in order to control the servo motors in required direction for human like actions. This method for gaining control of a humanoid robot could be used for performing actions with more accuracy and ease. In addition, a study has been conducted to investigate the controllability and ease of use of the interface and the employed gestures.

Keywords: electromyogram, gesture, muscle sensor, humanoid robot, microcontroller, Zigbee

Procedia PDF Downloads 403
243 Design of a Thrust Vectoring System for an Underwater ROV

Authors: Isaac Laryea

Abstract:

Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model.

Keywords: PID control, thrust vectoring, parallel manipulators, ROV, underwater, attitude control

Procedia PDF Downloads 60
242 Mega Sporting Events and Branding: Marketing Implications for the Host Country’s Image

Authors: Scott Wysong

Abstract:

Qatar will spend billions of dollars to host the 2022 World Cup. While football fans around the globe get excited to cheer on their favorite team every four years, critics debate the merits of a country hosting such an expensive and large-scale event. That is, the host countries spend billions of dollars on stadiums and infrastructure to attract these mega sporting events with the hope of equitable returns in economic impact and creating jobs. Yet, in many cases, the host countries are left in debt with decaying venues. There are benefits beyond the economic impact of hosting mega-events. For example, citizens are often proud of their city/country to host these famous events. Yet, often overlooked in the literature is the proposition that serving as the host for a mega-event may enhance the country’s brand image, not only as a tourist destination but for the products made in that country of origin. This research aims to explore this phenomenon by taking an exploratory look at consumer perceptions of three host countries of a mega-event in sports. In 2014, the U.S., Chinese and Finn (Finland) consumer attitudes toward Brazil and its products were measured before and after the World Cup via surveys (n=89). An Analysis of Variance (ANOVA) revealed that there were no statistically significant differences in the pre-and post-World Cup perceptions of Brazil’s brand personality or country-of-origin image. After the World Cup in 2018, qualitative interviews were held with U.S. sports fans (n=17) in an effort to further explore consumer perceptions of products made in the host country: Russia. A consistent theme of distrust and corruption with Russian products emerged despite their hosting of this prestigious global event. In late 2021, U.S. football (soccer) fans (n=42) and non-fans (n=37) were surveyed about the upcoming 2022 World Cup. A regression analysis revealed that how much an individual indicated that they were a soccer fan did not significantly influence their desire to visit Qatar or try products from Qatar in the future even though the country was hosting the World Cup—in the end, hosting a mega-event as grand as the World Cup showcases the country to the world. However, it seems to have little impact on consumer perceptions of the country, as a whole, or its brands. That is, the World Cup appeared to enhance already pre-existing stereotypes about Brazil (e.g., beaches, partying and fun, yet with crime and poverty), Russia (e.g., cold weather, vodka and business corruption) and Qatar (desert and oil). Moreover, across all three countries, respondents could rarely name a brand from the host country. Because mega-events cost a lot of time and money, countries need to do more to market their country and its brands when hosting. In addition, these countries would be wise to measure the impact of the event from different perspectives. Hence, we put forth a comprehensive future research agenda to further the understanding of how countries, and their brands, can benefit from hosting a mega sporting event.

Keywords: branding, country-of-origin effects, mega sporting events, return on investment

Procedia PDF Downloads 276
241 Birth Path and the Vitality of Caring Models in the Continuity of Midwifery

Authors: Elnaz Lalezari, Ramin Ghasemi Shaya

Abstract:

The birth way is influenced by a fracture within the quiet care handle, making a brokenness of this final one. The pregnant lady has got to interface with numerous experts, both amid the pregnancy, the childbirth, and the puerperium. Be that as it may, amid the final ten a long time, there has been an expanding of the pregnancy care worked by the midwife, who is considered to be the administrator with the correct competences, who can beware of each pregnancy and may profit herself of other professionals' commitments in arrange to make strides the results of maternal and neonatal health. To confirm whether there are proofs of viability that bolster the caseload birthing assistance care show, and in case it is conceivable to apply this show within the birth way in Italy. A amendment of writing has been done utilizing a few look motor (Google, Bing) and particular databases (MEDLINE, CINAHL, Embase, Domestic - ClinicalTrials.gov). There has, too, been a discussion of the Italian directions, the national rules, and the proposals of WHO. Results: The look string, legitimately adjusted to the three databases, has given the taking after comes about: MEDLINE 64 articles, CINAHL 94 articles, Embase 88 articles. From this choice, 14 articles have been extricated: 1 orderly survey, 3 controlled arbitrary trial, 7 observational ponders, 3 subjective studies. The caseload maternity care appears to be an successful and dependable organisational/caring strategy. It reacts to the criterions of quality and security, to the requirements of ladies not as it were amid the pregnancy but moreover amid the post-partum stage. For these reasons, it appears exceptionally valuable also for the birth way within the Italian reality.

Keywords: midwifery, care, caseload, maternity

Procedia PDF Downloads 126
240 Effect of Fatiguing Hip Muscles on Dynamic Posture Control in Recurrent Ankle Sprain

Authors: Radwa El Shorbagy, Alaa El Din Balbaa, Khaled Ayad, Waleed Reda

Abstract:

Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated.Objective: to determine the contribution of proximal hip strategy to dynamic posture control in patients with recurrent ankle sprain. Methods:Fifteen subjects with recurrent ankle sprain (Group A) and fifteen healthy control subjects (Group B) participated in this study. Abductor-adductor as well as flexor-extensor hip musculature control was abolished by fatigue using the Biodex Isokinatic System. Dynamic posture control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare within group differences. In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) lowered overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors lowered significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Conclusion: fatiguing of hip muscles has a significant deleterious effect on dynamic posture control in patient with recurrent ankle sprain indicating their increased dependence on hip strategy.

Keywords: ankle sprain, fatigue hip muscles, dynamic balance, ankle sprain

Procedia PDF Downloads 350
239 Explaining the Steps of Designing and Calculating the Content Validity Ratio Index of the Screening Checklist of Preschool Students (5 to 7 Years Old) Exposed to Learning Difficulties

Authors: Sajed Yaghoubnezhad, Sedygheh Rezai

Abstract:

Background and Aim: Since currently in Iran, students with learning disabilities are identified after entering school, and with the approach to the gap between IQ and academic achievement, the purpose of this study is to design and calculate the content validity of the pre-school screening checklist (5-7) exposed to learning difficulties. Methods: This research is a fundamental study, and in terms of data collection method, it is quantitative research with a descriptive approach. In order to design this checklist, after reviewing the research background and theoretical foundations, cognitive abilities (visual processing, auditory processing, phonological awareness, executive functions, spatial visual working memory and fine motor skills) are considered the basic variables of school learning. The basic items and worksheets of the screening checklist of pre-school students 5 to 7 years old with learning difficulties were compiled based on the mentioned abilities and were provided to the specialists in order to calculate the content validity ratio index. Results: Based on the results of the table, the validity of the CVR index of the background information checklist is equal to 0.9, and the CVR index of the performance checklist of preschool children (5 to7 years) is equal to 0.78. In general, the CVR index of this checklist is reported to be 0.84. The results of this study provide good evidence for the validity of the pre-school sieve screening checklist (5-7) exposed to learning difficulties.

Keywords: checklist, screening, preschoolers, learning difficulties

Procedia PDF Downloads 97
238 Therapeutic Effect of 12 Weeks of Sensorimotor Exercise on Pain, Functionality and Quality of Life in Non-athlete Women With Patellofemoral Pain Syndrome

Authors: Kasbparast Mehdi, Hassani Zainab

Abstract:

Aim: The purpose of this research was to investigate the effectiveness of therapeutical sensorimotor exercise. The statistical population of women who were diagnosed with patellofemoral pain syndrome by a doctor and were between the ages of 35 and 45 and registered for the first time in a sports club in the 4th district of Tehran, 30 people by random sampling and according to The include and exclude criteria were selected and divided into 2 equal control and experimental and homogeneous groups (in terms of height, weight and BMI).In both control and experimental groups, the pain was measured using a Visual Analog Scale(VAS) functionality was measured using the step-down test and quality of life was measured using a World Health Organization Quality of Life Scale (WHOQOL-BREF) (pre-test). Then, only the experimental group performed sensorimotor exercises for 12 weeks and 3 sessions each week, a total of 24 sessions and each session for 1 hour, and during this period, the control group only continued their daily activities. After the end of the training period, the desired factors were evaluated again (post-test) in the same way as the pre-test was done for them (experimental group and control group), with the same quality. Findings: The statistical results showed that in the experimental group, the amount of pain, function and quality of life had a statistical improvement (P≤0.05). Conclusion: In general conclusion, it can be stated that using sensorimotor exercises not only improved functionality and quality of life but also reduced the amount of pain in people with patellofemoral pain syndrome.

Keywords: pain, PFPS, sensori motor training, functionality

Procedia PDF Downloads 66
237 Analysis of Pathogen Populations Occurring in Oilseed Rape Using DNA Sequencing Techniques

Authors: Elizabeth Starzycka-Korbas, Michal Starzycki, Wojciech Rybinski, Mirosława Dabert

Abstract:

For a few years, the populations of pathogenic fungi occurring in winter oilseed rape in Malyszyn were analyzed. Brassica napus L. in Poland and in the world is a source of energy for both the men (oil), and animals, as post-extraction middling, as well as a motor fuel (oil, biofuel) therefore studies of this type are very important. The species composition of pathogenic fungi can be an indicator of seed yield. The occurrence of oilseed rape pathogens during several years were analyzed using the sequencing method DNA ITS. The results were compared in the gene bank using the program NCBI / BLAST. In field conditions before harvest of oilseed rape presence of pathogens infesting B. napus has been assessed. For example, in 2015, 150 samples have been isolated and applied to PDA medium for the identification of belonging species. From all population has been selected mycelium of 83 isolates which were sequenced. Others (67 isolates) were pathogenic fungi of the genus Alternaria which are easily to recognize. The population of pathogenic species on oilseed rape have been identified after analyzing the DNA ITS and include: Leptosphaeria sp. 38 (L. maculans 25, L. biglobosa 13), Alternaria sp. 29, Fusarium sp. 3, Sclerotinia sclerotiorum 7, heterogeneous 6, total of 83 isolates. The genus Alternaria sp. fungi wear the largest share of B. napus pathogens in particular years. Another dangerous species for oilseed rape was Leptosphaeria sp. Populations of pathogens in each year were different. The number of pathogens occurring in the field and their composition is very important for breeders and farmers because of the possible selection of the most resistant genotypes for sowing in the next growing season.

Keywords: B. napus, DNA ITS Sequencing, pathogenic fungi, population

Procedia PDF Downloads 282
236 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: frequency response function, impact testing, modal analysis, oblique angle, oblique impact

Procedia PDF Downloads 494
235 Smartphone Addiction and Reaction Time in Geriatric Population

Authors: Anjali N. Shete, G. D. Mahajan, Nanda Somwanshi

Abstract:

Context: Smartphones are the new generation of mobile phones; they have emerged over the last few years. Technology has developed so much that it has become part of our life and mobile phones are one of them. These smartphones are equipped with the capabilities to display photos, play games, watch videos and navigation, etc. The advances have a huge impact on many walks of life. The adoption of new technology has been challenging for the elderly. But, the elder population is also moving towards digitally connected lives. As age advances, there is a decline in the motor and cognitive functions of the brain, and hence the reaction time is affected. The study was undertaken to assess the usefulness of smartphones in improving cognitive functions. Aims and Objectives: The aim of the study was to observe the effects of smartphone addiction on reaction time in elderly population Material and Methods: This is an experimental study. 100 elderly subjects were enrolled in this study randomly from urban areas. They all were using smartphones for several hours a day. They were divided into two groups according to the scores of the mobile phone addiction scale (MPAS). Simple reaction time was estimated by the Ruler drop method. The reaction time was then calculated for each subject in both groups. The data were analyzed using mean, standard deviation, and Pearson correlation test. Results: The mean reaction time in Group A is 0.27+ 0.040 and in Group B is 0.20 + 0.032. The values show a statistically significant change in reaction time. Conclusion: Group A with a high MPAS score has a low reaction time compared to Group B with a low MPAS score. Hence, it can be concluded that the use of smartphones in the elderly is useful, delaying the neurological decline, and smarten the brain.

Keywords: smartphones, MPAS, reaction time, elderly population

Procedia PDF Downloads 172
234 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 293
233 Acoustic Energy Harvesting Using Polyvinylidene Fluoride (PVDF) and PVDF-ZnO Piezoelectric Polymer

Authors: S. M. Giripunje, Mohit Kumar

Abstract:

Acoustic energy that exists in our everyday life and environment have been overlooked as a green energy that can be extracted, generated, and consumed without any significant negative impact to the environment. The harvested energy can be used to enable new technology like wireless sensor networks. Technological developments in the realization of truly autonomous MEMS devices and energy storage systems have made acoustic energy harvesting (AEH) an increasingly viable technology. AEH is the process of converting high and continuous acoustic waves from the environment into electrical energy by using an acoustic transducer or resonator. AEH is not popular as other types of energy harvesting methods since sound waves have lower energy density and such energy can only be harvested in very noisy environment. However, the energy requirements for certain applications are also correspondingly low and also there is a necessity to observe the noise to reduce noise pollution. So the ability to reclaim acoustic energy and store it in a usable electrical form enables a novel means of supplying power to relatively low power devices. A quarter-wavelength straight-tube acoustic resonator as an acoustic energy harvester is introduced with polyvinylidene fluoride (PVDF) and PVDF doped with ZnO nanoparticles, piezoelectric cantilever beams placed inside the resonator. When the resonator is excited by an incident acoustic wave at its first acoustic eigen frequency, an amplified acoustic resonant standing wave is developed inside the resonator. The acoustic pressure gradient of the amplified standing wave then drives the vibration motion of the PVDF piezoelectric beams, generating electricity due to the direct piezoelectric effect. In order to maximize the amount of the harvested energy, each PVDF and PVDF-ZnO piezoelectric beam has been designed to have the same structural eigen frequency as the acoustic eigen frequency of the resonator. With a single PVDF beam placed inside the resonator, the harvested voltage and power become the maximum near the resonator tube open inlet where the largest acoustic pressure gradient vibrates the PVDF beam. As the beam is moved to the resonator tube closed end, the voltage and power gradually decrease due to the decreased acoustic pressure gradient. Multiple piezoelectric beams PVDF and PVDF-ZnO have been placed inside the resonator with two different configurations: the aligned and zigzag configurations. With the zigzag configuration which has the more open path for acoustic air particle motions, the significant increases in the harvested voltage and power have been observed. Due to the interruption of acoustic air particle motion caused by the beams, it is found that placing PVDF beams near the closed tube end is not beneficial. The total output voltage of the piezoelectric beams increases linearly as the incident sound pressure increases. This study therefore reveals that the proposed technique used to harvest sound wave energy has great potential of converting free energy into useful energy.

Keywords: acoustic energy, acoustic resonator, energy harvester, eigenfrequency, polyvinylidene fluoride (PVDF)

Procedia PDF Downloads 377
232 Guillain Barre Syndrome in Children

Authors: A. Erragh, K. Amanzoui, M. Elharit, H. Salem, M. Ababneh, K. Elfakhr, S. Kalouch, A. Chlilek

Abstract:

Guillain-Barre syndrome (GBS) is the most common form of acute polyradiculoneuritis (PRNA). It is a medical emergency in pediatrics that requires rapid diagnosis and immediate assessment of the severity criteria for the implementation of appropriate treatment. Retrospective, descriptive study in 24 patients under the age of 18 who presented with GBS between September 2017 and July 2021 and were hospitalized in the multipurpose pediatric intensive care unit of the Abderrahim EL Harouchi children's hospital in Casablanca. The average age was 7.91 years, with extremes ranging from 18 months and 14 years and a male predominance of 75%. After a prodromal event, most often infectious (80%) and a free interval of 12 days on average, 2 types of motor disorders begin either hypo or arereflectic flaccid paralysis of the lower limbs (45.8%) or flaccid quadriplegia hypo or arereflectic (54.2%). During GBS, the most formidable complication is respiratory distress, which can occur at any time. In our study, respiratory impairment was observed in 70.8% of cases. In addition, other signs of severity, such as swallowing disorders (75%) and dysautonomic disorders (8.33%), were also observed, which justified care in the intensive care unit for all of our patients. The use of invasive ventilation was necessary in 76.5% of cases, and specific treatments based on immunoglobulins were administered in all our patients. Despite everything, the death rate remains high (25%) and is mainly due to complications related to hospitalization. Guillain Barré syndrome is, therefore, a pediatric emergency that requires rapid diagnosis and immediate assessment of severity criteria for the implementation of appropriate treatment.

Keywords: guillain barre syndrome, emergency, children, medical

Procedia PDF Downloads 63
231 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: mechatronic systems, Matlab GUI, sensitivity, tolerance

Procedia PDF Downloads 430
230 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method

Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens

Abstract:

Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.

Keywords: healthcare, knowledge acquisition, maximal data sets, action design science

Procedia PDF Downloads 333
229 The Design of Smart Tactile Textiles for Therapeutic Applications

Authors: Karen Hong

Abstract:

Smart tactile textiles are a series of textile-based products that incorporates smart embedded technology to be utilized as tactile therapeutic applications for 2 main groups of target users. The first group of users will be children with sensory processing disorder who are suffering from tactile sensory dysfunction. Children with tactile sensory issues may have difficulty tolerating the sensations generated from the touch of certain textures on the fabrics. A series of smart tactile textiles, collectively known as ‘Tactile Toys’ are developed as tactile therapy play objects, exposing children to different types of touch sensations within textiles, enabling them to enjoy tactile experiences together with interactive play which will help them to overcome fear of certain touch sensations. The second group of users will be the elderly or geriatric patients who are suffering from deteriorating sense of touch. One of the common consequences of aging is suffering from deteriorating sense of touch and a decline in motoric function. With the focus in stimulating the sense of touch for this particular group of end users, another series of smart tactile textiles, collectively known as ‘Tactile Aids’ are developed also as tactile therapy. This range of products can help to maintain touch sensitivity and at the same time allowing the elderly to enjoy interactive play to practice their hand-eye coordination and enhancing their motor skills. These smart tactile textile products are being designed and tested out by the end users and have proofed their efficacy as tactile therapy enabling the users to lead a better quality of life.

Keywords: smart textiles, embedded technology, tactile therapy, tactile aids, tactile toys

Procedia PDF Downloads 172
228 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing

Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin

Abstract:

Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.

Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel

Procedia PDF Downloads 171
227 Survey of the Relationship between Functional Movement Screening Tests and Anthropometric Dimensions in Healthy People, 2018

Authors: Akram Sadat Jafari Roodbandi, Parisa Kahani, Fatollah Rahimi Bafrani, Ali Dehghan, Nava Seyedi, Vafa Feyzi, Zohreh Forozanfar

Abstract:

Introduction: Movement function is considered as the ability to produce and maintain balance, stability, and movement throughout the movement chain. Having a score of 14 and above on 7 sub-tests in the functional movement screening (FMS) test shows agility and optimal movement performance. On the other hand, the person's body is an important factor in physical fitness and optimal movement performance. The aim of this study was to identify effective anthropometric dimensions in increasing motor function. Methods: This study was a descriptive-analytical and cross-sectional study using simple random sampling. FMS test and 25 anthropometric dimensions and subcutaneous in five body regions measured in 139 healthy students of Bam University of Medical Sciences. Data analysis was performed using SPSS software and univariate tests and linear regressions at a significance level of 0.05. Results: 139 students were enrolled in the study, 51.1% (71 subjects) and the rest were female. The mean and standard deviation of age, weight, height, and arm subcutaneous fat were 21.5 ± 1.45, 12.6 ± 64.3, 168.7 ± 9.8, 15.3 ± 7, respectively. 17 subjects (12.2%) of the participants in the study have a score of less than 14, and the rest were above 14. Using regression analysis, it was found that exercise and arm subcutaneous fat are predictive variables associated with obtaining a high score in the FMS test. Conclusion: Exercise and weight loss are effective factors for increasing the movement performance of individuals, and this factor is independent of the size of other physical dimensions.

Keywords: functional movement, screening test, anthropometry, ergonomics

Procedia PDF Downloads 144
226 Effectiveness of Cognitive and Supportive-Expressive Group Therapies on Self-Efficiency and Life Style in MS Patients

Authors: Kamran Yazdanbakhsh, Somayeh Mahmoudi

Abstract:

Multiple sclerosis is the most common chronic disease of the central nervous system associated with demyelination of neurons and several demyelinated parts of the disease encompasses throughout the white matter and affects the sensory and motor function. This study compared the effectiveness of two methods of cognitive therapy and supportive-expressive therapy on the efficacy and quality of life in MS patients. This is an experimental project which has used developed group pretest - posttest and follow-up with 3 groups. The study included all patients with multiple sclerosis in 2013 that were members of the MS Society of Iran in Tehran. The sample included 45 patients with MS that were selected volunteerily of members of the MS society of Iran and randomly divided into three groups and pretest, posttest, and follow-up (three months) for the three groups had been done.The dimensions of quality of life in patients with multiple sclerosis scale, and general self-efficiency scale of Schwarzer and Jerusalem was used for collecting data. The results showed that there was a significant difference between the mean of quality of life scores at pretest, posttest, and follow-up of the experimental groups. There was no significant difference between the mean of quality of life of the experimental groups which means that both groups were effective and had the same effect. There was no significant difference between the mean of self-efficiency scores in control and experimental group in pretest, posttest and follow-up. Thus, by using cognitive and supportive-expressive group therapy we can improve quality of life in MS patients and make great strides in their mental health.

Keywords: cognitive group therapy, life style, MS, self-efficiency, supportive-expressive group therapy

Procedia PDF Downloads 478
225 Testing the Possibility of Healthy Individuals to Mimic Fatigability in Multiple Sclerotic Patients

Authors: Emmanuel Abban Sagoe

Abstract:

A proper functioning of the Central Nervous System ensures that we are able to accomplish just about everything we do as human beings such as walking, breathing, running, etc. Myelinated neurons throughout the body which transmit signals at high speeds facilitate these actions. In the case of MS, the body’s immune system attacks the myelin sheath surrounding the neurons and overtime destroys the myelin sheaths. Depending upon where the destruction occurs in the brain symptoms can vary from person to person. Fatigue is, however, the biggest problem encountered by an MS sufferer. It is very often described as the bedrock upon which other symptoms of MS such challenges in balance and coordination, dizziness, slurred speech, etc. may occur. Classifying and distinguishing between perceptions based fatigue and performance based fatigability is key to identifying appropriate treatment options for patients. Objective methods for assessing motor fatigability is also key to providing clinicians and physiotherapist with critical information on the progression of the symptom. This study tested if the Fatigue Index Kliniken Schmieder assessment tool can detect fatigability as seen in MS patients when healthy subjects with no known history of neurological pathology mimic abnormal gaits. Thirty three healthy adults between ages 18-58years volunteered as subjects for the study. The subjects, strapped with RehaWatch sensors on both feet, completed 6 gait protocols of normal and mimicked fatigable gaits for 60 seconds per each gait and at 1.38889m/s treadmill speed following clear instructions given.

Keywords: attractor attributes, fatigue index Kliniken Schmieder, gait variability, movement pattern

Procedia PDF Downloads 115
224 Numerical Study on the Flow around a Steadily Rotating Spring: Understanding the Propulsion of a Bacterial Flagellum

Authors: Won Yeol Choi, Sangmo Kang

Abstract:

The propulsion of a bacterial flagellum in a viscous fluid has attracted many interests in the field of biological hydrodynamics, but remains yet fully understood and thus still a challenging problem. In this study, therefore, we have numerically investigated the flow around a steadily rotating micro-sized spring to further understand such bacterial flagellum propulsion. Note that a bacterium gains thrust (propulsive force) by rotating the flagellum connected to the body through a bio motor to move forward. For the investigation, we convert the spring model from the micro scale to the macro scale using a similitude law (scale law) and perform simulations on the converted macro-scale model using a commercial software package, CFX v13 (ANSYS). To scrutinize the propulsion characteristics of the flagellum through the simulations, we make parameter studies by changing some flow parameters, such as the pitch, helical radius and rotational speed of the spring and the Reynolds number (or fluid viscosity), expected to affect the thrust force experienced by the rotating spring. Results show that the propulsion characteristics depend strongly on the parameters mentioned above. It is observed that the forward thrust increases in a linear fashion with either of the rotational speed or the fluid viscosity. In addition, the thrust is directly proportional to square of the helical radius and but the thrust force is increased and then decreased based on the peak value to the pitch. Finally, we also present the appropriate flow and pressure fields visualized to support the observations.

Keywords: fluid viscosity, hydrodynamics, similitude, propulsive force

Procedia PDF Downloads 346
223 A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings

Authors: Adinew Gebremeskel Tizazu

Abstract:

The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness.

Keywords: effect of soil structure, dynamic response corroborated, the modal superposition principle, parametric studies

Procedia PDF Downloads 19
222 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis

Procedia PDF Downloads 128
221 Rear Seat Belt Use in Developing Countries: A Case Study from the United Arab Emirates

Authors: Salaheddine Bendak, Sara S. Alnaqbi

Abstract:

The seat belt is a vital tool in improving traffic safety conditions and minimising injuries due to traffic accidents. Most developing countries are facing a big problems associated with the human and financial losses due to traffic accidents. One way to minimise these losses is the use of seat belts by passengers both in the front and rear seats of a vehicle; however, at the same time, close to nothing is known about the rates of seat belt utilisation among rear seat passengers in many developing countries. Therefore, there is a need to estimate these rates in order to know the extent of this problem and how people interact with traffic safety measures like seat belts and find demographic characteristics that contribute to wearing or non-wearing of seat belts with the aim of finding solutions to improve wearing rates. In this paper, an observational study was done to gather data on restraints use in motor vehicle rear seats in eight observational stations in a rapidly developing country, the United Arab Emirates (UAE), and estimate a use rate for the whole country. Also, a questionnaire was used in order to study demographic characteristics affecting the wearing of seatbelts in rear seats. Results of the observational study showed that the overall wearing/usage rate was 12.3%, which is considered very low when compared to other countries. Survey results show that single, male, less educated passengers from Arab and South Asian backgrounds use seat belts reportedly less than others. Finally, solutions are put forward to improve this wearing rate based on the results of this study.

Keywords: Seat belts, traffic crashes, United Arab Emirates, rear seats

Procedia PDF Downloads 242
220 Design Study on a Contactless Material Feeding Device for Electro Conductive Workpieces

Authors: Oliver Commichau, Richard Krimm, Bernd-Arno Behrens

Abstract:

A growing demand on the production rate of modern presses leads to higher stroke rates. Commonly used material feeding devices for presses like grippers and roll-feeding systems can only achieve high stroke rates along with high gripper forces, to avoid stick-slip. These forces are limited by the sensibility of the surfaces of the workpieces. Stick-slip leads to scratches on the surface and false positioning of the workpiece. In this paper, a new contactless feeding device is presented, which develops higher feeding force without damaging the surface of the workpiece through gripping forces. It is based on the principle of the linear induction motor. A primary part creates a magnetic field and induces eddy currents in the electrically conductive material. A Lorentz-Force applies to the workpiece in feeding direction as a mutual reaction between the eddy-currents and the magnetic induction. In this study, the FEA model of this approach is shown. The calculation of this model was used to identify the influence of various design parameters on the performance of the feeder and thus showing the promising capabilities and limits of this technology. In order to validate the study, a prototype of the feeding device has been built. An experimental setup was used to measure pulling forces and placement accuracy of the experimental feeder in order to give an outlook of a potential industrial application of this approach.

Keywords: conductive material, contactless feeding, linear induction, Lorentz-Force

Procedia PDF Downloads 176
219 Comparison of Mini-BESTest versus Berg Balance Scale to Evaluate Balance Disorders in Parkinson's Disease

Authors: R. Harihara Prakash, Shweta R. Parikh, Sangna S. Sheth

Abstract:

The purpose of this study was to explore the usefulness of the Mini-BESTest compared to the Berg Balance Scale in evaluating balance in people with Parkinson's Disease (PD) of varying severity. Evaluation were done to obtain (1) the distribution of patients scores to look for ceiling effects, (2) concurrent validity with severity of disease, and (3) the sensitivity & specificity of separating people with or without postural response deficits. Methods and Material: Seventy-seven(77) people with Parkinson's Disease were tested for balance deficits using the Berg Balance Scale, Mini-BESTest. Unified Parkinson’s Disease Rating Scale (UPDRS) III and the Hoehn & Yahr (H&Y) disease severity scales were used for classification. Materials used in this study were case record sheet, chair without arm rests or wheels, Incline ramp, stopwatch, a box, 3 meter distance measured out and marked on the floor with tape [from chair]. Statistical analysis used: Multiple Linear regression was carried out of UPDRS jointly on the two scores for the Berg and Mini-BESTest. Receiver operating characteristic curves for classifying people into two groups based on a threshold for the H&Y score, to discriminate between mild PD versus more severe PD.Correlation co-efficient to find relativeness between the two variables. Results: The Mini-BESTest is highly correlated with the Berg (r = 0.732,P < 0.001), but avoids the ceiling compression effect of the Berg for mild PD (skewness −0.714 Berg, −0.512 Mini-BESTest). Consequently, the Mini-BESTest is more effective than the Berg for predicting UPDRS Motor score (P < 0.001 Mini-BESTest versus P = 0.72 Berg), and for discriminating between those with and without postural response deficits as measured by the H&Y (ROC).

Keywords: balance, berg balance scale, MINI BESTest, parkinson's disease

Procedia PDF Downloads 390
218 Therapeutic Potential of GSTM2-2 C-Terminal Domain and Its Mutants, F157A and Y160A on the Treatment of Cardiac Arrhythmias: Effect on Ca2+ Transients in Neonatal Ventricular Cardiomyocytes

Authors: R. P. Hewawasam, A. F. Dulhunty

Abstract:

The ryanodine receptor (RyR) is an intracellular ion channel that releases Ca2+ from the sarcoplasmic reticulum and is essential for the excitation-contraction coupling and contraction in striated muscle. Human muscle specific glutathione transferase M2-2 (GSTM2-2) is a highly specific inhibitor of cardiac ryanodine receptor (RyR2) activity. Single channel-lipid bilayer studies and Ca2+ release assays performed using the C-terminal half of the GSTM2-2 and its mutants F157A and Y160A confirmed the ability of the C terminal domain of GSTM2-2 to specifically inhibit the cardiac ryanodine receptor activity. Objective of the present study is to determine the effect of C terminal domain of GSTM2-2 (GSTM2-2C) and the mutants, F157A and Y160A on the Ca2+ transients of neonatal ventricular cardiomyocytes. Primary cardiomyocytes were cultured from neonatal rats. They were treated with GSTM2-2C and the two mutants F157A and Y160A at 15µM and incubated for 2 hours. Then the cells were led with Fluo-4AM, fluorescent Ca2+ indicator, and the field stimulated (1 Hz, 3V and 2ms) cells were excited using the 488 nm argon laser. Contractility of the cells were measured and the Ca2+ transients in the stained cells were imaged using Leica SP5 confocal microscope. Peak amplitude of the Ca2+ transient, rise time and decay time from the peak were measured for each transient. In contrast to GSTM2C which significantly reduced the % shortening (42.8%) in the field stimulated cells, F157A and Y160A failed to reduce the % shortening.Analysis revealed that the average amplitude of the Ca2+ transient was significantly reduced (P<0.001) in cells treated with the wild type GSTM2-2C compared to that of untreated cells. Cells treated with the mutants F157A and Y160A didn’t change the Ca2+ transient significantly compared to the control. A significant increase in the rise time (P< 0.001) and a significant reduction in the decay time (P< 0.001) were observed in cardiomyocytes treated with GSTM2-2C compared to the control but not with F157A and Y160A. These results are consistent with the observation that GSTM2-2C reduced the Ca2+ release from the cardiac SR significantly whereas the mutants, F157A and Y160A didn’t show any effect compared to the control. GSTM2-2C has an isoform-specific effect on the cardiac ryanodine receptor activity and also it inhibits RyR2 channel activity only during diastole. Selective inhibition of RyR2 by GSTM2-2C has significant clinical potential in the treatment of cardiac arrhythmias and heart failure. Since GSTM2-2C-terminal construct has no GST enzyme activity, its introduction to the cardiomyocyte would not exert any unwanted side effects that may alter its enzymatic action. The present study further confirms that GSTM2-2C is capable of decreasing the Ca2+ release from the cardiac SR during diastole. These results raise the future possibility of using GSTM2-2C as a template for therapeutics that can depress RyR2 function when the channel is hyperactive in cardiac arrhythmias and heart failure.

Keywords: arrhythmia, cardiac muscle, cardiac ryanodine receptor, GSTM2-2

Procedia PDF Downloads 277