Search results for: ethanol tolerance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1206

Search results for: ethanol tolerance

186 Phytochemical Screening and Assessment of Hepatoprotective Activity of Geigeria alata Leaves Ethanolic Extract on Wistar Rats

Authors: Girgis Younan, Ikram Eltayeb

Abstract:

Geigeria alata belongs to the family Asteraceae, is an effective plant traditionally used in Sudan as a therapy for hepatic disease and as an antiepileptic, antispasmodic and to treat cough and intestinal complaints.The liver is responsible for many critical functions within the body and any liver disease or injury will result in the loss of those functions leading to significant damage in the body. Liver diseases cause increase in liver enzymes (AST, ALP ALT) and total bilirubin and a decrease in total blood protein level. The objective of this study is to investigate the hepato-protective activity of Geigeria alata leaves ethanolic extract. The plant leaves were extracted using 96% ethanol using Soxhlet apparatus. The hepatoprotective effect was determined using 25 wistar rats, the rats was divided to 5 groups, each group contain 5 rats: [Normal control group] receiving purified water, liver damage was induced in wistar rats by administering a 1:1 (v/v) mixture of CCl4 (1.25 ml/kg) and olive oil once at day four of the experiment [negative control group]. Two doses of extract [400mg/kg and 200mg/kg] was applied daily for 7 days, and standard drug Silymarin (200 mg/kg) were administered daily for 7 days to CCl4-treated rats. The degree of hepato-protective activity was evaluated by determining the hepatic marker enzymes AST, ALP, ALT, total Bilirubin and total proteins (TP). Results have shown that, the extract of G.alata leaves reduced the level of liver enzymes ALT, AST, ALP, total bilirubin and increased the level of total proteins. Since the levels of liver enzymes; bilirubin and total protein are considered as markers of liver function, the extract has proven to reduce the detrimental effects of liver toxicity induced using CCl4. The hepato-protective effect of extract on liver was found to be dose dependent, where the 400mg/kg dose of the extract exhibited higher activity than 200mg/kg dose. In addition, the effect of the higher dose (400mg/kg) of the extract was found to be higher than Silymarin standard drug. The result concludes that, G.alata leaves extract was found to exhibit profound hepato-protective activity, which justifies the traditional use of the plant for the treatment of hepatic diseases.

Keywords: alata, extract, geigeria, hepatoprotective

Procedia PDF Downloads 201
185 Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics

Authors: Vivian A. Panes, Raymond John S. Rebong, Miel Q. Diaz

Abstract:

Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders.

Keywords: stress response, genes, Moringa oleifera, transcriptomics

Procedia PDF Downloads 116
184 In vitro Callus Production from Lantana Camara: A Step towards Biotransformation Studies

Authors: Maged El-Sayed Mohamed

Abstract:

Plant tissue culture practices are presented nowadays as the most promising substitute to a whole plant in the terms of secondary metabolites production. They offer the advantages of high production, tunability and they have less effect on plant ecosystems. Lantana camara is a weed, which is common all over the world as an ornamental plant. Weeds can adapt to any type of soil and climate due to their rich cellular machinery for secondary metabolites’ production. This characteristic is found in Lantana camara as a plant of very rich diversity of secondary metabolites with no dominant class of compounds. Aim: This trait has encouraged the author to develop tissue culture experiments for Lantana camara to be a platform for production and manipulation of secondary metabolites through biotransformation. Methodology: The plant was collected in its flowering stage in September 2014, from which explants were prepared from shoot tip, auxiliary bud and leaf. Different types of culture media were tried as well as four phytohormones and their combinations; NAA, 2,4-D, BAP and kinetin. Explants were grown in dark or in 12 hours dark and light cycles at 25°C. A metabolic profile for the produced callus was made and then compared to the whole plant profile. The metabolic profile was made using GC-MS for volatile constituents (extracted by n-hexane) and by HPLC-MS and capillary electrophoresis-mass spectrometry (CE-MS) for non-volatile constituents (extracted by ethanol and water). Results: The best conditions for the callus induction was achieved using MS media supplied with 30 gm sucrose and NAA/BAP (1:0.2 mg/L). Initiation of callus was favoured by incubation in dark for 20 day. The callus produced under these conditions showed yellow colour, which changed to brownish after 30 days. The rate of callus growth was high, expressed in the callus diameter, which reached to 1.15±0.2 cm in 30 days; however, the induction of callus delayed for 15 days. The metabolic profile for both volatile and non-volatile constituents of callus showed more simple background metabolites than the whole plant with two new (unresolved) peaks in the callus’ nonvolatile constituents’ chromatogram. Conclusion: Lantana camara callus production can be itself a source of new secondary metabolites and could be used for biotransformation studies due to its simple metabolic background, which allow easy identification of newly formed metabolites. The callus production gathered the simple metabolic background with the rich cellular secondary metabolite machinery of the plant, which could be elicited to produce valuable medicinally active products.

Keywords: capillary electrophoresis-mass spectrometry, gas chromatography, metabolic profile, plant tissue culture

Procedia PDF Downloads 342
183 Signal Processing Techniques for Adaptive Beamforming with Robustness

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

Adaptive beamforming using antenna array of sensors is useful in the process of adaptively detecting and preserving the presence of the desired signal while suppressing the interference and the background noise. For conventional adaptive array beamforming, we require a prior information of either the impinging direction or the waveform of the desired signal to adapt the weights. The adaptive weights of an antenna array beamformer under a steered-beam constraint are calculated by minimizing the output power of the beamformer subject to the constraint that forces the beamformer to make a constant response in the steering direction. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering operation. In the literature, it is well known that the performance of an adaptive beamformer will be deteriorated by any steering angle error encountered in many practical applications, e.g., the wireless communication systems with massive antennas deployed at the base station and user equipment. Hence, developing effective signal processing techniques to deal with the problem due to steering angle error for array beamforming systems has become an important research work. In this paper, we present an effective signal processing technique for constructing an adaptive beamformer against the steering angle error. The proposed array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. Based on the presumed steering vector and a preset angle range for steering mismatch tolerance, we first create a matrix related to the direction vector of signal sources. Two projection matrices are generated from the matrix. The projection matrix associated with the desired signal information and the received array data are utilized to iteratively estimate the actual direction vector of the desired signal. The estimated direction vector of the desired signal is then used for appropriately finding the quiescent weight vector. The other projection matrix is set to be the signal blocking matrix required for performing adaptive beamforming. Accordingly, the proposed beamformer consists of adaptive quiescent weights and partially adaptive weights. Several computer simulation examples are provided for evaluating and comparing the proposed technique with the existing robust techniques.

Keywords: adaptive beamforming, robustness, signal blocking, steering angle error

Procedia PDF Downloads 94
182 Hibiscus Sabdariffa Extracts: A Sustainable and Eco-Friendly Resource for Multifunctional Cellulosic Fibers

Authors: Mohamed Rehan, Gamil E. Ibrahim, Mohamed S. Abdel-Aziz, Shaimaa R. Ibrahim, Tawfik A. Khattab

Abstract:

The utilization of natural products in finishing textiles toward multifunctional applications without side effects is an extremely motivating goal. Hibiscus sabdariffa usually has been used for many traditional medicine applications. To develop an additional use for Hibiscus sabdariffa, an extraction of bioactive compounds from Hibiscus sabdariffa followed by finishing on cellulosic fibers was designed to cleaner production of the value-added textiles fibers with multifunctional applications. The objective of this study is to explore, identify, and evaluate the bioactive compound extracted from Hibiscus sabdariffa by different solvent via ultrasonic technique as a potential eco-friendly agent for multifunctional cellulosic fabrics via two approaches. In the first approach, Hibiscus sabdariffa extract was used as a source of sustainable eco-friendly for simultaneous coloration and multi-finishing of cotton fabrics via in situ incorporations of nanoparticles (silver and metal oxide). In the second approach, the micro-capsulation of Hibiscus sabdariffa extracts was followed by coating onto cotton gauze to introduce multifunctional healthcare applications. The effect of the solvent type was accelerated by ultrasonic on the phytochemical, antioxidant, and volatile compounds of Hibiscus sabdariffa. The surface morphology and elemental content of the treated fabrics were explored using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The multifunctional properties of treated fabrics, including coloration, sensor properties and protective properties against pathogenic microorganisms and UV radiation as well as wound healing property were evaluated. The results showed that the water, as well as ethanol/water, was selected as a solvent for the extraction of natural compounds from Hibiscus Sabdariffa with high in extract yield, total phenolic contents, flavonoid contents, and antioxidant activity. These natural compounds were utilized to enhance cellulosic fibers functionalization by imparting faint/dark red color, antimicrobial against different organisms, and antioxidants as well as UV protection properties. The encapsulation of Hibiscus Sabdariffa extracts, as well as wound healing, is under consideration and evaluation. As a result, the current study presents a sustainable and eco-friendly approach to design cellulosic fabrics for multifunctional medical and healthcare applications.

Keywords: cellulosic fibers, Hibiscus sabdariffa extract, multifunctional application, nanoparticles

Procedia PDF Downloads 116
181 Modification of Carbon-Based Gas Sensors for Boosting Selectivity

Authors: D. Zhao, Y. Wang, G. Chen

Abstract:

Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.

Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials

Procedia PDF Downloads 91
180 TiO₂ Nanotube Array Based Selective Vapor Sensors for Breath Analysis

Authors: Arnab Hazra

Abstract:

Breath analysis is a quick, noninvasive and inexpensive technique for disease diagnosis can be used on people of all ages without any risk. Only a limited number of volatile organic compounds (VOCs) can be associated with the occurrence of specific diseases. These VOCs can be considered as disease markers or breath markers. Selective detection with specific concentration of breath marker in exhaled human breath is required to detect a particular disease. For example, acetone (C₃H₆O), ethanol (C₂H₅OH), ethane (C₂H₆) etc. are the breath markers and abnormal concentrations of these VOCs in exhaled human breath indicates the diseases like diabetes mellitus, renal failure, breast cancer respectively. Nanomaterial-based vapor sensors are inexpensive, small and potential candidate for the detection of breath markers. In practical measurement, selectivity is the most crucial issue where trace detection of breath marker is needed to identify accurately in the presence of several interfering vapors and gases. Current article concerns a novel technique for selective and lower ppb level detection of breath markers at very low temperature based on TiO₂ nanotube array based vapor sensor devices. Highly ordered and oriented TiO₂ nanotube array was synthesized by electrochemical anodization of high purity tatinium (Ti) foil. 0.5 wt% NH₄F, ethylene glycol and 10 vol% H₂O was used as the electrolyte and anodization was carried out for 90 min with 40 V DC potential. Au/TiO₂ Nanotube/Ti, sandwich type sensor device was fabricated for the selective detection of VOCs in low concentration range. Initially, sensor was characterized where resistive and capacitive change of the sensor was recorded within the valid concentration range for individual breath markers (or organic vapors). Sensor resistance was decreased and sensor capacitance was increased with the increase of vapor concentration. Now, the ratio of resistive slope (mR) and capacitive slope (mC) provided a concentration independent constant term (M) for a particular vapor. For the detection of unknown vapor, ratio of resistive change and capacitive change at any concentration was same to the previously calculated constant term (M). After successful identification of the target vapor, concentration was calculated from the straight line behavior of resistance as a function of concentration. Current technique is suitable for the detection of particular vapor from a mixture of other interfering vapors.

Keywords: breath marker, vapor sensors, selective detection, TiO₂ nanotube array

Procedia PDF Downloads 132
179 The Perspectives of the Society Regarding Relativism of Politics and Religion (Islam) In Modern Era

Authors: Mohammed Mutala Surazu

Abstract:

The origin of Islam is traced back to the time of Prophet Mohammed (SAW), 571 AD, who thought the six main articles of faith and the five pillars of the region. Today, Islam is regarded as one of the fastest growing religions in the world, another peaceful one and very accommodating to other religions. Politics dominates in Islam and, as a result, divisions into various groupings, including the Ahmadiyah, Tijania, Suni and many others. Despite all believing the Qur’an as the only holy book used, they are all affiliated with different types of hadiths, including the al-Nawawi’s. These divisions are the reasons for tension in Islam, and it is necessary to conduct this research to investigate political situations in Islam within the society. Over the past three or two decades, there have been diverse and divided opinions about politics and religion (Islam). Many believe that politics and religion are inherently subjective and should be accepted as such, and the further argument for a relativistic approach is that individuals' and communities’ beliefs and values should be acknowledged and respected since no single political or religious ideology can claim absolute truth and superiority over the other. The perspective view is that emphasis is placed on tolerance and coexistence between different political and religious views; moreover, society is comprised of individuals with different backgrounds, opinions and interests, so it is necessary to find common ground and create space where diverse ideas can peacefully coexist in order to promote dialogue, understanding and mutual respect to maintain social harmony and peaceful relation in the society. Also, some individuals in society argue about the universalism of certain moral principles, which should be certain and agreed upon by all. For example, the Jewish people believe that eating pork is wrong, and if someone of another religion is asked if they agree with that, objectively, the non-Jewish would be comfortable with that. Others still argue that a continuous relativistic approach to politics and religion can lead to a breakdown of shared moral standards, loss of ethical principles, doubting faith or loyalty and uprising against agencies of politics and religion. And within the political groupings, they believe in the same ideologies to propagate their message, likewise the religious belongings (Christianity, Islam, Judaism and others) who also ensure that their religious perspectives or beliefs are deeply rooted in the society. This forms the basis for research about the perspective of politics and religious relativism in this modern era to respond to the questions and the challenges of religious politics in Islam.

Keywords: relativism, religion, universality, politics

Procedia PDF Downloads 35
178 Synergistic and Antagonistic Interactions between Garlic Extracts and Metformin in Diabetes Treatment

Authors: Ikram Elsiddig, Yacouba Djamila, Amna Hamad

Abstract:

Abstract—The worldwide increasing of using herbs in form of medicine with or without prescription medications potentiates the interactions between herbal products and conventional medicines; due to more research for herb-drug interactions are needed. for a long time hyperglycemia had been treated with several medicinal plants. A. sativum, belonging to the Liliaceae family is well known for its medicinal uses in African traditional medicine, it used for treating of many human diseases mainly diabetes, high cholesterol and high blood pressure. The purpose of this study is to determine the interaction effect between A. sativum bulb extracts and metformin drug used in diabetes treatment. The in vitro and in vivo evaluation were conducted by glucose reuptake using isolated rats hemidiaphgrams tissue and by estimate glucose tolerance in glucose-loaded wistar albino rats. The results showed that, petroleum ether, chloroform and ethyl acetate extracts were found to have activity of glucose uptake in isolated rats hemidiaphgrams of 24.11 mg/g, 19.07 mg/g and 15.66 mg/g compared to metformin drug of 17 mg/g. These activity were reducded to 17.8 mg/g, 13.59 mg/g and 14.46 mg/g after combination with metformin, metformin itself reduced to 13.59 mg/g, 14.46 mg/g and 12.71 mg/g in comination with chloroform and ethyl acetate. These decrease in activity could be due to herbal–drug interaction between the extracts of A. sativum bulb and metformin drug. The interaction between A. sativum extract and metformin was also shown by in vivo study on the induced hyperglycemic rats. The glucose level after administered of 200 mg/kg was found to be increase with 47.2 % and 17.7% at first and second hour compared to the increase of blood glucose in the control group of 82.6% and76.7%.. At fourth hour the glucose level was became less than normal with 3.4% compared to control which continue to increase with 68.2%. Dose of 400 mg/kg at first hour showed increase in blood glucose of 31.5 %, at second and fourth hours the glucose level was became less than normal with decrease of 3.2 % and 30.4%. After combination the activity was found to be less than that of extract at both high and low dose, whereas, at first and second hour, the glucose level was found to be increase with 50.4% and 21.2%, at fourth hour the glucose level was became less than normal with 14%. Therefore A. sativum could be a potential source for anti-diabetic when it used alone, and it is significant important to use the garlic extract alone instead of combined with Metformin drug in diabetes- treatment.

Keywords: Antagonistic, Garlic, Metformin, Synergistic

Procedia PDF Downloads 152
177 The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors

Authors: Daniel Bülz, Franziska Lüttich, Sreetama Banerjee, Georgeta Salvan, Dietrich R. T. Zahn

Abstract:

For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2.

Keywords: organic field effect transistors, solution processed, surface treatment, TIPS-pentacene

Procedia PDF Downloads 419
176 Solanum Nigrum Show Anti-Obesity Effects on High Fat Diet Fed Sprague Dawley Rats

Authors: Kathryn Nderitu, Atunga Nyachieo, Ezekiel Mecha

Abstract:

Introduction: Solanum nigrum , also known as black nightshade, biosynthesizes various phytochemical compounds with various pharmacological activities, including treating cardiovascular diseases and type 2 diabetes, among others. Materials and Methods: To assess the anti-obesity effects of Solanum nigrum using high-fat-fed diet rats, Sprague Dawley male rats (n = 35) of weights 160–180 g were assigned randomly into seven groups comprising n = 5 rats each. Each group was fed for 11 weeks as follows: normal group (normal chow rat feed); high-fat diet control (HFD); HFD and standard drug (Orlistat 30 mg/kg bw); HFD and methanolic extract 150 mg/kgbw; HFD and methanolic extract 300 mg/kgbw; HFD and dichloromethane extract 150 mg/kgbw; HFD and dichloromethane extract 300 mg/kgbw. Body mass index and food intake were monitored per week, and an oral glucose tolerance test was measured in weeks 5 and 10. Lipid profiles, liver function tests, adipose tissue, liver weights, and phytochemical analysis of Solanum nigrum were later carried out. Results: High-fat diet control group rats exhibited a significant increase in body mass index (BMI), while rats administered with leaf extracts of Solanum nigrum showed a reduction in BMI. Both low doses of dichloromethane (150 mg/kgbw) and high doses of methanol extracts (300 mg/kgbw) showed a better reduction in BMI than the other treatment groups. A significant decrease (p <0.05) in low-density lipoprotein-cholesterol, triglycerides, and cholesterol was observed among the rats administered with Solanum nigrum extracts compared to those of HFD control. Moreover, the HFD control group significantly increased liver and adipose tissue weights compared to other treatment groups (p<0.05). Solanum nigrum also decreased glycemic levels and normalized the hepatic enzymes of HFD control. However, food intake among the groups showed no significant difference (p>0.05). Qualitative analysis of Solanum nigrum leaf extracts indicated the presence of various bioactive compounds associated with anti-obesity. Conclusion: These results validate the use of Solanum nigrum in controlling obesity.

Keywords: solanum nigrum, High fat diet, phytocompounds, obesity

Procedia PDF Downloads 28
175 Political Coercion from Within: Theoretical Convergence in the Strategies of Terrorist Groups, Insurgencies, and Social Movements

Authors: John Hardy

Abstract:

The early twenty-first century national security environment has been characterized by political coercion. Despite an abundance of political commentary on the various forms of non-state coercion leveraged against the state, there is a lack of literature which distinguishes between the mechanisms and the mediums of coercion. Frequently non-state movements seeking to coerce the state are labelled by their tactics, not their strategies. Terrorists, insurgencies and social movements are largely defined by the ways in which they seek to influence the state, rather than by their political aims. This study examines the strategies of coercion used by non-state actors against states. This approach includes terrorist groups, insurgencies, and social movements who seek to coerce state politics. Not all non-state actors seek political coercion, so not all examples of different group types are considered. This approach also excludes political coercion by states, focusing on the non-state actor as the primary unit of analysis. The study applies a general theory of political coercion, which is defined as attempts to change the policies or action of a polity against its will, to the strategies employed by terrorist groups, insurgencies, and social movements. This distinguishes non-state actors’ strategic objectives from their actions and motives, which are variables that are often used to differentiate between types of non-state actors and the labels commonly used to describe them. It also allows for a comparative analysis of theoretical perspectives from the disciplines of terrorism, insurgency and counterinsurgency, and social movements. The study finds that there is a significant degree of overlap in the way that different disciplines conceptualize the mechanism of political coercion by non-state actors. Studies of terrorism and counterterrorism focus more on the notions of cost tolerance and collective punishment, while studies of insurgency focus on a contest of legitimacy between actors, and social movement theory tend to link political objectives, social capital, and a mechanism of influence to leverage against the state. Each discipline has a particular vernacular for the mechanism of coercion, which is often linked to the means of coercion, but they converge on three core theoretical components of compelling a polity to change its policies or actions: exceeding resistance to change, using political or violent punishments, and withholding legitimacy or consent from a government.

Keywords: counter terrorism, homeland security, insurgency, political coercion, social movement theory, terrorism

Procedia PDF Downloads 149
174 Resilience of the American Agriculture Sector

Authors: Dipak Subedi, Anil Giri, Christine Whitt, Tia McDonald

Abstract:

This study aims to understand the impact of the pandemic on the overall economic well-being of the agricultural sector of the United States. The two key metrics used to examine the economic well-being are the bankruptcy rate of the U.S. farm operations and the operating profit margin. One of the primary reasons for farm operations (in the U.S.) to file for bankruptcy is continuous negative profit or a significant decrease in profit. The pandemic caused significant supply and demand shocks in the domestic market. Furthermore, the ongoing trade disruptions, especially with China, also impacted the prices of agricultural commodities. The significantly reduced demand for ethanol and closure of meat processing plants affected both livestock and crop producers. This study uses data from courts to examine the bankruptcy rate over time of U.S. farm operations. Preliminary results suggest there wasn’t an increase in farm operations filing for bankruptcy in 2020. This was most likely because of record high Government payments to producers in 2020. The Federal Government made direct payments of more than $45 billion in 2020. One commonly used economic metric to measure farm profitability is the operating profit margin (OPM). Operating profit margin measures profitability as a share of the total value of production and government payments. The Economic Research Service of the United States Department of Agriculture defines a farm operation to be in a) a high-risk zone if the OPM is less than 10 percent and b) a low-risk zone if the OPM is higher than 25 percent. For this study, OPM was calculated for small, medium, and large-scale farm operations using the data from the Agriculture Resource Management Survey (OPM). Results show that except for small family farms, the share of farms in high-risk zone decreased in 2020 compared to the most recent non-pandemic year, 2019. This was most likely due to higher commodity prices at the end of 2020 and record-high government payments. Further investigation suggests a lower share of smaller farm operations receiving lower average government payments resulting in a large share (over 70 percent) being in the critical zone. This study should be of interest to multiple stakeholders, including policymakers across the globe, as it shows the resilience of the U.S. agricultural system as well as (some) impact of government payments.

Keywords: U.S. farm sector, COVID-19, operating profit margin, farm bankruptcy, ag finance, government payments to the farm sector

Procedia PDF Downloads 64
173 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 322
172 Characterization of a Lipolytic Enzyme of Pseudomonas nitroreducens Isolated from Mealworm's Gut

Authors: Jung-En Kuan, Whei-Fen Wu

Abstract:

In this study, a symbiotic bacteria from yellow mealworm's (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column, and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s), and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40°C, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50°C. In metal ion assays, MgCl₂ and NH₄Cl induce the enzyme activities while MnSO₄, NiSO₄, CaCl₂, ZnSO₄, CoCl₂, CuSO₄, FeSO₄, and FeCl₃ reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme, such as hexane, methanol, ethanol, acetone, isopropanol, chloroform, and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01x10³ (s⁻¹), as well the total efficiency of kcat/Km is 6.17 x10³ (mM⁻¹/s⁻¹). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family.

Keywords: enzyme, esterase, lipotic hydrolase, type IV

Procedia PDF Downloads 105
171 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation

Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich

Abstract:

Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.

Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance

Procedia PDF Downloads 136
170 Synthesis, Physicochemical Characterization and Study of the Antimicrobial Activity of Chlorobutanol

Authors: N. Hadhoum, B. Guerfi, T. M. Sider, Z. Yassa, T. Djerboua, M. Boursouti, M. Mamou, F. Z. Hadjadj Aoul, L. R. Mekacher

Abstract:

Introduction and objectives: Chlorobutanol is a raw material, mainly used as an antiseptic and antimicrobial preservative in injectable and ophthalmic preparations. The main objective of our study was the synthesis and evaluation of the antimicrobial activity of chlorobutanol hemihydrates. Material and methods: Chlorobutanol was synthesized according to the nucleophilic addition reaction of chloroform to acetone, identified by an infrared absorption using Spectrum One FTIR spectrometer, melting point, Scanning electron microscopy and colorimetric reactions. The dosage of carvedilol active substance was carried out by assaying the degradation products of chlorobutanol in a basic solution. The chlorobutanol obtained was subjected to bacteriological tests in order to study its antimicrobial activity. The antibacterial activity was evaluated against strains such as Escherichia coli (ATCC 25 922), Staphylococcus aureus (ATCC 25 923) and Pseudomonas aeroginosa (ATCC = American type culture collection). The antifungal activity was evaluated against human pathogenic fungal strains, such as Candida albicans and Aspergillus niger provided by the parasitology laboratory of the Hospital of Tizi-Ouzou, Algeria. Results and discussion: Chlorobutanol was obtained in an acceptable yield. The characterization tests of the product obtained showed a white and crystalline appearance (confirmed by scanning electron microscopy), solubilities (in water, ethanol and glycerol), and a melting temperature in accordance with the requirements of the European pharmacopoeia. The colorimetric reactions were directed towards the presence of a trihalogenated carbon and an alcohol function. The spectral identification (IR) showed the presence of characteristic chlorobutanol peaks and confirmed the structure of the latter. The microbiological study revealed an antimicrobial effect on all strains tested (Sataphylococcus aureus (MIC = 1250 µg/ml), E. coli (MIC = 1250 µg/ml), Pseudomonas aeroginosa (MIC = 1250 µg/ml), Candida albicans (MIC =2500 µg/ml), Aspergillus niger (MIC =2500 µg/ml)) with MIC values close to literature data. Conclusion: Thus, on the whole, the synthesized chlorobutanol satisfied the requirements of the European Pharmacopoeia, and possesses antibacterial and antifungal activity; nevertheless, it is necessary to insist on the purification step of the product in order to eliminate the maximum impurities.

Keywords: antimicrobial agent, bacterial and fungal strains, chlorobutanol, MIC, minimum inhibitory concentration

Procedia PDF Downloads 136
169 Utilizing Literature Review and Shared Decision-Making to Support a Patient Make the Decision: A Case Study of Virtual Reality for Postoperative Pain

Authors: Pei-Ru Yang, Yu-Chen Lin, Jia-Min Wu

Abstract:

Background: A 58-year-old man with a history of osteoporosis and diabetes presented with chronic pain in his left knee due to severe knee joint degeneration. The knee replacement surgery was recommended by the doctor. But the patient suffered from low pain tolerance and wondered if virtual reality could relieve acute postoperative wound pain. Methods: We used the PICO (patient, intervention, comparison, and outcome) approach to generate indexed keywords and searched systematic review articles from 2017 to 2021 on the Cochran Library, PubMed, and Clinical Key databases. Results: The initial literature results included 38 articles, including 12 Cochrane library articles and 26 PubMed articles. One article was selected for further analysis after removing duplicates and off-topic articles. The eight trials included in this article were published between 2013 and 2019 and recruited a total of 723 participants. The studies, conducted in India, Lebanon, Iran, South Korea, Spain, and China, included adults who underwent hemorrhoidectomy, dental surgery, craniotomy or spine surgery, episiotomy repair, and knee surgery, with a mean age (24.1 ± 4.1 to 73.3 ± 6.5). Virtual reality is an emerging non-drug postoperative analgesia method. The findings showed that pain control was reduced by a mean of 1.48 points (95% CI: -2.02 to -0.95, p-value < 0.0001) in minor surgery and 0.32 points in major surgery (95% CI: -0.53 to -0.11, p-value < 0.03), and the overall postoperative satisfaction has improved. Discussion: Postoperative pain is a common clinical problem in surgical patients. Research has confirmed that virtual reality can create an immersive interactive environment, communicate with patients, and effectively relieve postoperative pain. However, virtual reality requires the purchase of hardware and software and other related computer equipment, and its high cost is a disadvantage. We selected the best literature based on clinical questions to answer the patient's question and used share decision making (SDM) to help the patient make decisions based on the clinical situation after knee replacement surgery to improve the quality of patient-centered care.

Keywords: knee replacement surgery, postoperative pain, share decision making, virtual reality

Procedia PDF Downloads 38
168 Cyclocoelids (Trematoda: Echinostomata) from Gadwall Mareca strepera in the South of the Russian Far East

Authors: Konstantin S. Vainutis, Mark E. Andreev, Anastasia N. Voronova, Mikhail Yu. Shchelkanov

Abstract:

Introduction: The trematodes from the family Cyclocoelidae (cyclocoelids) belong to the superfamily Echinostomatoidea infecting air sacs and trachea of wild birds. At present, the family Cyclocoelidae comprises nine valid genera in three subfamilies: Cyclocoelinae (type taxon), Haematotrephinae, and Typhlocoelinae. To our best knowledge, in this study, molecular genetic methods were used for the first time for studying cyclocoelids from the Russian Far East. Here we provide the data on the morphology and phylogeny of cyclocoelids from gadwall from the Russian Far East. The morphological and genetic data obtained for cyclocoelids indicated the necessity to revise the previously proposed classification within the family Cyclocoelidae. Objectives: The first objective was performing the morphological study of cyclocoelids found in M. strepera from the Russian Far East. The second objective is to reconstruct the phylogenetic relationships of the studied trematodes with other cyclocoelids using the 28S gene. Material and methods: During the field studies in the Khasansky district of the Primorsky region, 21 cyclocoelids were recovered from the air sacs of a single gadwall Mareca strepera. Seven samples of cyclocoelids were overstained in alum carmine, dehydrated in a graded ethanol series, cleared in clove oil, and mounted in Canada balsam. Genomic DNA was extracted from four cyclocoelids using the alkaline lysis method HotShot. The 28S rDNA fragment was amplified using the forward primer Digl2 and the reverse primer 1500R. Results: According to morphological features (ovary intratesticular, forming a triangle with the testes), the studied worms belong to the subfamily Cyclocoelinae Stossich, 1902. In particular, the highest morphological similarity was observed in relation to the trematodes of the genus Cyclocoelum Brandes, 1892 – genital pores are pharyngeal. However, the genetic analysis has shown significant discrepancies between the trematodes studied regarding the genus Cyclocoelum. On the phylogenetic tree, these trematodes took the sister position in relation to the genus Morishitium (previously considered in the subfamily Szidatitrematinae). Conclusion: Based on the results of the morphological and genetic studies, cyclocoelids isolated from Mareca strepera are suggested to be described in the previously unknown genus and differentiated from the type genus Cyclocoelum of the type subfamily Cyclocoelinae. Considering the available molecular data, including described cyclocoelids, the family Cyclocoelidae comprises ten valid genera in the three subfamilies mentioned above.

Keywords: new species, trematoda, phylogeny, cyclocoelidae

Procedia PDF Downloads 810
167 Radical Scavenging Activity of Protein Extracts from Pulse and Oleaginous Seeds

Authors: Silvia Gastaldello, Maria Grillo, Luca Tassoni, Claudio Maran, Stefano Balbo

Abstract:

Antioxidants are nowadays attractive not only for the countless benefits to the human and animal health, but also for the perspective of use as food preservative instead of synthetic chemical molecules. In this study, the radical scavenging activity of six protein extracts from pulse and oleaginous seeds was evaluated. The selected matrices are Pisum sativum (yellow pea from two different origins), Carthamus tinctorius (safflower), Helianthus annuus (sunflower), Lupinus luteus cv Mister (lupin) and Glycine max (soybean), since they are economically interesting for both human and animal nutrition. The seeds were grinded and proteins extracted from 20mg powder with a specific vegetal-extraction kit. Proteins have been quantified through Bradford protocol and scavenging activity was revealed using DPPH assay, based on radical DPPH (2,2-diphenyl-1-picrylhydrazyl) absorbance decrease in the presence of antioxidants molecules. Different concentrations of the protein extract (1, 5, 10, 50, 100, 500 µg/ml) were mixed with DPPH solution (DPPH 0,004% in ethanol 70% v/v). Ascorbic acid was used as a scavenging activity standard reference, at the same six concentrations of protein extracts, while DPPH solution was used as control. Samples and standard were prepared in triplicate and incubated for 30 minutes in dark at room temperature, the absorbance was read at 517nm (ABS30). Average and standard deviation of absorbance values were calculated for each concentration of samples and standard. Statistical analysis using t-students and p-value were performed to assess the statistical significance of the scavenging activity difference between the samples (or standard) and control (ABSctrl). The percentage of antioxidant activity has been calculated using the formula [(ABSctrl-ABS30)/ABSctrl]*100. The obtained results demonstrate that all matrices showed antioxidant activity. Ascorbic acid, used as standard, exhibits a 96% scavenging activity at the concentration of 500 µg/ml. At the same conditions, sunflower, safflower and yellow peas revealed the highest antioxidant performance among the matrices analyzed, with an activity of 74%, 68% and 70% respectively (p < 0.005). Although lupin and soybean exhibit a lower antioxidant activity compared to the other matrices, they showed a percentage of 46 and 36 respectively. All these data suggest the possibility to use undervalued edible matrices as antioxidants source. However, further studies are necessary to investigate a possible synergic effect of several matrices as well as the impact of industrial processes for a large-scale approach.

Keywords: antioxidants, DPPH assay, natural matrices, vegetal proteins

Procedia PDF Downloads 389
166 Pregnancy - The Unique Immunological Paradigm

Authors: Husham Bayazed

Abstract:

Purpose of presentation: Pregnancy represents the most important period for the conservation of the species. The immune system is one of the most important systems protecting the mother against the environment and preventing damage to the fetus. This presentation aims to review and discuss the role of the immune system during pregnancy, the evolutionary inflammatory process through pregnancy, infectious and environmental exposure influences on the mother and the fetus, and the impacts of sexual dimorphism of the placenta on offspring susceptibility to different disorders. Recent Findings: In 1960, Peter Medawar (Nobel Prize Winner) proposed that the fetus, a semi-allograft, is similar to a tissue graft that escapes rejection through a mechanism involving systemic immune suppression (Graft –Host response). However, recent researchers and studies have documented that implantation means inflammation, and the inflammatory process is considered a breach of tolerance in pregnancy with immune induction, which is necessary for the protection of the mother and the fetus against infections and environmental triggers. This inflammatory process should be maintained during different pregnancy phases till parturition, and any block at any phase will be associated with pregnancy complications, including pregnancy failure or loss, miscarriage, and preterm birth subsequently. Maternal immune activation following any trigger can have a positive effect on the fetus. The old concept of the placenta being asexual is inaccurate, and being with sexual dimorphism with clear differences in susceptibility to different factors that stimulate maternal immunity. Summary: The presence of different immune cells ((i.e., T cells, B cells, NK cells, etc.) at the implantation site is considered proof of a strong maternal immune response to the fetus. Therefore, human pregnancy is considered a unique immunological paradigm requiring maternal immune modulation rather than suppression. So Medawar's postulation of maternal systemic immunosuppression is wrong. Maternal immune system activation triggered by infections, stress, diet, and pollution can have a positive effect on the fetus, with the development of fetal-trained immunity necessary for survival. The sexual dimorphism of the placenta seems to have an impact on the differences in sex susceptible to the environment maternal risk stimuli. This link to why the incidence of autism is increasing more among boys than girls.

Keywords: pregnancy, maternal immunity, implantation and inflammation, placenta sexual dimorphism

Procedia PDF Downloads 63
165 Phytochemical Composition and Biological Activities of the Vegetal Extracts of Six Aromatic and Medicinal Plants of Algerian Flora and Their Uses in Food and Pharmaceutical Industries

Authors: Ziani Borhane Eddine Cherif, Hazzi Mohamed, Mouhouche Fazia

Abstract:

The vegetal extracts of aromatic and medicinal plants start to have much of interest like potential sources of natural bioactive molecules. Many features are conferred by the nature of the chemical function of their major constituents (phenol, alcohol, aldehyde, cetone). This biopotential lets us to focalize on the study of three main biological activities, the antioxidant, antibiotic and insecticidal activities of six Algerian aromatic plants in the aim of making in evidence by the chromatographic analysis (CPG and CG/SM) the phytochemical compounds implicating in this effects. The contents of Oxygenated monoterpenes represented the most prominent group of constituents in the majority of plants. However, the α-Terpineol (28,3%), Carvacrol (47,3%), pulégone (39,5%), Chrysanthenone (27,4%), Thymol 23,9%, γ-Terpinene 23,9% and 2-Undecanone(94%) were the main components. The antioxyding activity of the Essential oils and no-volatils extracts was evaluated in vitro using four tests: inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) radical-scavenging activity (ABTS•+), the thiobarbituric acid reactive substances (TBARS) assays and the reducing power. The measures of the IC50 of these natural compounds revealed potent activity (between 254.64-462.76mg.l-1), almost similar to that of BHT, BHA, Tocopherol and Ascorbic acid (126,4-369,1 mg.l-1) and so far than the Trolox one (IC50= 2,82mg.l-1). Furthermore, three ethanol extracts were found to be remarkably effective toward DPPH and ABTS inhibition, compared to chemical antioxidant BHA and BHT (IC = 9.8±0.1 and 28±0.7 mg.l-1, respectively); for reducing power test it has also exhibited high activity. The study on the insecticidal activity effect by contact, inhalation, fecundity and fertility of Callosobruchus maculatus and Tribolium confusum showed a strong potential biocide reaching 95-100% mortality only after 24 hours. The antibiotic activity of our essential oils were evaluated by a qualitative study (aromatogramme) and quantitative (MIC, MBC and CML) on four bacteria (Gram+ and Gram-) and one strain of pathogenic yeast, the results of these tests showed very interesting action than that induced by the same reference antibiotics (Gentamycin, and Nystatin Ceftatidine) such that the inhibition diameters and MIC values for tested microorganisms were in the range of 23–58 mm and 0.015–0.25%(v/v) respectively.

Keywords: aromatic plants, essential oils, no-volatils extracts, bioactive molecules, antioxidant activity, insecticidal activity, antibiotic activity

Procedia PDF Downloads 193
164 Coffee Consumption Has No Acute Effects on Glucose Metabolism in Healthy Men: A Randomized Crossover Clinical Trial

Authors: Caio E. G. Reis, Sara Wassell, Adriana L. Porto, Angélica A. Amato, Leslie J. C. Bluck, Teresa H. M. da Costa

Abstract:

Background: Multiple epidemiologic studies have consistently reported association between increased coffee consumption and a lowered risk of Type 2 Diabetes Mellitus. However, the mechanisms behind this finding have not been fully elucidated. Objective: We investigate the effect of coffee (caffeinated and decaffeinated) on glucose effectiveness and insulin sensitivity using the stable isotope minimal model protocol with oral glucose administration in healthy men. Design: Fifteen healthy men underwent 5 arms randomized crossover single-blinding (researchers) clinical trial. They consumed decaffeinated coffee, caffeinated coffee (with and without sugar), and controls – water (with and without sugar) followed 1 hour by an oral glucose tolerance test (75 g of available carbohydrate) with intravenous labeled dosing interpreted by the two compartment minimal model (225 minutes). One-way ANOVA with Bonferroni adjustment were used to compare the effects of the tested beverages on glucose metabolism parameters. Results: Decaffeinated coffee resulted in 29% and 85% higher insulin sensitivity compared with caffeinated coffee and water, respectively, and the caffeinated coffee showed 15% and 60% higher glucose effectiveness compared with decaffeinated coffee and water, respectively. However, these differences were not significant (p > 0.10). In overall analyze (0 – 225 min) there were no significant differences on glucose effectiveness, insulin sensitivity, and glucose and insulin area under the curve between the groups. The beneficial effects of coffee did not seem to act in the short-term (hours) on glucose metabolism parameters mainly on insulin sensitivity indices. The benefits of coffee consumption occur in the long-term (years) as has been shown in the reduction of Type 2 Diabetes Mellitus risk in epidemiological studies. The clinical relevance of the present findings is that there is no need to avoid coffee as the drink choice for healthy people. Conclusions: The findings of this study demonstrate that the consumption of caffeinated and decaffeinated coffee with or without sugar has no acute effects on glucose metabolism in healthy men. Further researches, including long-term interventional studies, are needed to fully elucidate the mechanisms behind the coffee effects on reduced risk for Type 2 Diabetes Mellitus.

Keywords: coffee, diabetes mellitus type 2, glucose, insulin

Procedia PDF Downloads 405
163 Phenolic Content and Antioxidant Potential of Selected Nigerian Herbs and Spices: A Justification for Consumption and Use in the Food Industry

Authors: Amarachi Delight Onyemachi, Gregory Ikechukwu Onwuka

Abstract:

The growing consumer trend for natural ingredients, functional foods with health benefits and the perceived risk of carcinogenesis associated with synthetic antioxidants have forced food manufacturers to look for alternatives for producing healthy and safe food. Herbs and spices are cheap, natural and harmless sources of antioxidants which can delay and prevent lipid oxidation of food products and also confer its unique organoleptic properties and health benefits to food products. The Nigerian climate has been proven to be conducive for the production of spices and herbs and is blessed bountifully with a wide range of them. Five selected Nigerian herbs and spices Piper guieense, Xylopia aethopica, Gongronema latifolium and Ocimum gratissimum were evaluated for their ability to act as radical scavengers. The spices were extracted with 80% ethanol and evaluated using total phenolic capacity (TPC), DPPH (1,1-diph diphenyl-2-picrylhydrazyl radical) ABTS (2,2’azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)), total antioxidant capacity (TAC), reducing power (RP) assays. The TPC ranged from 5.33 µg GAE/mg (in Gongronema latifolium) to 15.55 µg GAE/mg (in Ocimum gratissimum). The DPPH and ABTS scavenging activity of the extracts ranged from 0.23-0.36 IC50 mg/ml and 2.32-7.25 Trolox equivalent % respectively. The TAC and RP of the extract ranged from 6.73-10.64 µg AAE/mg and 3.52-10.19 µg AAE/mg. The result of percentage yield of the extract ranged from as low as 9.94% in Gongronema latifolium and to as high as 23.85% in Xylopia aethopica. A very strong positive relationship existed between the total antioxidant capacity and total phenolic content of the tested herbs and spices (R2=0.96). All of the extracts exhibited different extent of strong antioxidant activity, high antioxidant activity was found in Ocimum gratissimum and Gongronema latifolium with the least. However, Gongronema latifolium possessed the highest total antioxidant capacity. These data confirm the appreciable antioxidant potentials and high phenolic content of Nigerian herbs and spices, thereby providing justification for their use in dishes and functional foods, prevention of cellular damage caused by free radicals and use as natural antioxidants in the food industry for prevention of lipid oxidation in food products. However, to utilize these natural antioxidants in food products, further analysis and studies of their behaviour in food systems at varying temperature, pH conditions and ionic concentrations should be carried out to displace the use of synthetic antioxidants like BHT and BHA.

Keywords: Antioxidant, free radicals, herbs, phenolic, spices

Procedia PDF Downloads 225
162 Lamellodiscus spp. (Monogenoidea: Diplectanidae) Infecting the Gill Lamellae of Porgies (Spariformes: Sparidae) in Dakar Coast

Authors: Sikhou Drame, Arfang Diamanka

Abstract:

In Senegal, the fishing sector plays an important role in socio-economic development. However, he is going through enormous difficulties, caused by the scarcity of fish on the Senegalese coast, the overexploitation of fishery resources. Based on this observation, the authorities are betting on the development of aquaculture. It is in this context that the exploration of fish from the highly consumed Sparidae family remains a good solution. Indeed, the Sparidae family has good characteristics for farming at sea. However, parasites can proliferate and destroy the efforts made to cultivate fish in confined areas. the knowledge of these parasites in particular the monogeneans, very specific to the sparidae fishes will allow to better know the bio-ecology of the fishes. Better know the main parasitic monogeneans of the genus Lamellodiscus of sparidae fish of the genus Pagrus harvested in Senegal. It will first be a question of identifying from the observation of the morpho-anatomical characters, Monogeneans of the genus Lamellodiscus, branchial parasites collected from three species of host: Pagrus caeruleostictus , Pagrus auriga and Pagrus africanus. Then to evaluate the spatial and temporary distribution of parasitic indices on two Dakar landing sites (Soumbédioune and Yarakh) and finally to determine their specificity. The fish examined were purchased directly from the landing sites in Dakar and then transported to the laboratory where they were identified, then dissected. The gills were examined under a magnifying glass and the monogeneans were harvested, fixed in 70% ethanol and then mounted between slide and coverslip. The identification of the parasites is based on the observation of the morpho-anatomical characters and on the measurements of the sclerified organs of the haptor and the male copulatory organ. In total out of the 90 individuals examined: Pagrus auriga (30), Pagrus africanus (30) and Pagrus caeruleostictus (30), 6 species of monogeneans of the genus Lamellodiscus (Monogenea, Diplectanidae) are obtained: L. sarculus, L. sigillatus, L.vicinus, L. rastellus, L. africanus n.sp and L. yarakhensis n.sp. Our results show that specimens of small sizes [15-20[cm are the most infested. The values of infestation intensity and abundance are higher in fish from Yarakh and also during the cold season. it is the species Pagrus caeruleostictus which records the highest parasitic loads in the two localities. the majority of the parasites identified have a strict or oioxene specificity. It appears from this study that fish of the genus Pagrus are highly parasitized by monogeneans of the genus Lamellodiscus with a general prevalence of 87.78%. Each infested fish has an average of 30 monogeneans of the genus Lamellodiscus.

Keywords: monogeneans, Lamellodiscus, Dakar coast, genus Pagrus

Procedia PDF Downloads 41
161 Behavioral Analysis of Stock Using Selective Indicators from Fundamental and Technical Analysis

Authors: Vish Putcha, Chandrasekhar Putcha, Siva Hari

Abstract:

In the current digital era of free trading and pandemic-driven remote work culture, markets worldwide gained momentum for retail investors to trade from anywhere easily. The number of retail traders rose to 24% of the market from 15% at the pre-pandemic level. Most of them are young retail traders with high-risk tolerance compared to the previous generation of retail traders. This trend boosted the growth of subscription-based market predictors and market data vendors. Young traders are betting on these predictors, assuming one of them is correct. However, 90% of retail traders are on the losing end. This paper presents multiple indicators and attempts to derive behavioral patterns from the underlying stocks. The two major indicators that traders and investors follow are technical and fundamental. The famous investor, Warren Buffett, adheres to the “Value Investing” method that is based on a stock’s fundamental Analysis. In this paper, we present multiple indicators from various methods to understand the behavior patterns of stocks. For this research, we picked five stocks with a market capitalization of more than $200M, listed on the exchange for more than 20 years, and from different industry sectors. To study the behavioral pattern over time for these five stocks, a total of 8 indicators are chosen from fundamental, technical, and financial indicators, such as Price to Earning (P/E), Price to Book Value (P/B), Debt to Equity (D/E), Beta, Volatility, Relative Strength Index (RSI), Moving Averages and Dividend yields, followed by detailed mathematical Analysis. This is an interdisciplinary paper between various disciplines of Engineering, Accounting, and Finance. The research takes a new approach to identify clear indicators affecting stocks. Statistical Analysis of the data will be performed in terms of the probabilistic distribution, then follow and then determine the probability of the stock price going over a specific target value. The Chi-square test will be used to determine the validity of the assumed distribution. Preliminary results indicate that this approach is working well. When the complete results are presented in the final paper, they will be beneficial to the community.

Keywords: stock pattern, stock market analysis, stock predictions, trading, investing, fundamental analysis, technical analysis, quantitative trading, financial analysis, behavioral analysis

Procedia PDF Downloads 55
160 The Relationship Between Weight Gain, Cyclicality of Diabetologic Education and the Experienced Stress: A Study Involving Pregnant Women

Authors: Agnieszka Rolinska, Marta Makara-Studzinska

Abstract:

Introduction: In recent years, there has been an intensive development of research into the physiological relationships between the experienced stress and obesity. Moreover, strong chronic stress leads to the disorganization of a person’s activeness on various levels of functioning, including the behavioral and cognitive sphere (also in one’s diet). Aim: The present work addresses the following research questions: Is there a relationship between an increase in stress related to the disease and the need for the cyclicality of diabetologic education in gestational diabetes? Are there any differences in terms of the experienced stress during the last three months of pregnancy in women with gestational diabetes and in normal pregnancy between the patients with normal weight gains and those with abnormal weight gains? Are there any differences in terms of stress coping styles in women with gestational diabetes and in normal pregnancy between the patients with normal weight gains and those with abnormal weight gains? Method: The study involved pregnant women with gestational diabetes (treated with diet, without insulin therapy) and in normal pregnancy – 206 women in total. The following psychometric tools were employed: Perceived Stress Scale (PSS; Cohen, Kamarck, Mermelstein), Coping Inventory for Stressful Situations (CISS; Endler, Parker) and authors’ own questionnaire. Gestational diabetes mellitus was diagnosed on the basis of the results of fasting oral glucose tolerance test (75 g OGTT). Body weight measurements were confirmed in a diagnostic interview, taking into account medical data. Regularities in weight gains in pregnancy were determined according to the recommendations of the Polish Gynecological Society and American norms determined by the Institute of Medicine (IOM). Conclusions: An increase in stress related to the disease varies in patients with differing requirements for the cyclical nature of diabetologic education (i.e. education which is systematically repeated). There are no differences in terms of recently experienced stress and stress coping styles between women with gestational diabetes and those in normal pregnancy. There is a relationship between weight gains in pregnancy and the stress experienced in life as well as stress coping styles – both in pregnancy complicated by diabetes and in physiological pregnancy. In the discussion of the obtained results, the authors refer to scientific reports from English-language magazines of international range.

Keywords: diabetologic education, gestational diabetes, stress, weight gain in pregnancy

Procedia PDF Downloads 284
159 Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis

Authors: Alice Robba, Renaud Bouchet, Celine Barchasz, Jean-Francois Colin, Erik Elkaim, Kristina Kvashnina, Gavin Vaughan, Matjaz Kavcic, Fannie Alloin

Abstract:

With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries.

Keywords: Li-ion/Sulfur batteries, Li2S nanoparticles effect, Operando characterizations, working mechanism

Procedia PDF Downloads 237
158 Realistic Modeling of the Preclinical Small Animal Using Commercial Software

Authors: Su Chul Han, Seungwoo Park

Abstract:

As the increasing incidence of cancer, the technology and modality of radiotherapy have advanced and the importance of preclinical model is increasing in the cancer research. Furthermore, the small animal dosimetry is an essential part of the evaluation of the relationship between the absorbed dose in preclinical small animal and biological effect in preclinical study. In this study, we carried out realistic modeling of the preclinical small animal phantom possible to verify irradiated dose using commercial software. The small animal phantom was modeling from 4D Digital Mouse whole body phantom. To manipulate Moby phantom in commercial software (Mimics, Materialise, Leuven, Belgium), we converted Moby phantom to DICOM image file of CT by Matlab and two- dimensional of CT images were converted to the three-dimensional image and it is possible to segment and crop CT image in Sagittal, Coronal and axial view). The CT images of small animals were modeling following process. Based on the profile line value, the thresholding was carried out to make a mask that was connection of all the regions of the equal threshold range. Using thresholding method, we segmented into three part (bone, body (tissue). lung), to separate neighboring pixels between lung and body (tissue), we used region growing function of Mimics software. We acquired 3D object by 3D calculation in the segmented images. The generated 3D object was smoothing by remeshing operation and smoothing operation factor was 0.4, iteration value was 5. The edge mode was selected to perform triangle reduction. The parameters were that tolerance (0.1mm), edge angle (15 degrees) and the number of iteration (5). The image processing 3D object file was converted to an STL file to output with 3D printer. We modified 3D small animal file using 3- Matic research (Materialise, Leuven, Belgium) to make space for radiation dosimetry chips. We acquired 3D object of realistic small animal phantom. The width of small animal phantom was 2.631 cm, thickness was 2.361 cm, and length was 10.817. Mimics software supported efficiency about 3D object generation and usability of conversion to STL file for user. The development of small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

Keywords: mimics, preclinical small animal, segmentation, 3D printer

Procedia PDF Downloads 342
157 Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar

Authors: Dhritilekha Deka, Deepak Patwa, Ravi K., Archana M. Nair

Abstract:

Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species.

Keywords: phytoextraction, biochar, heavy metals, chrysopogon zizanioides, bioaccumulation factor

Procedia PDF Downloads 36