Search results for: energization of the cold proton
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1019

Search results for: energization of the cold proton

299 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: camera calibration, ice detection, ice load measurements, image processing

Procedia PDF Downloads 341
298 Urban Heat Island Effects on Human Health in Birmingham and Its Mitigation

Authors: N. A. Parvin, E. B. Ferranti, L. A. Chapman, C. A. Pfrang

Abstract:

This study intends to investigate the effects of the Urban Heat Island on public health in Birmingham. Birmingham is located at the center of the West Midlands and its weather is Highly variable due to geographical factors. Residential developments, road networks and infrastructure often replace open spaces and vegetation. This transformation causes the temperature of urban areas to increase and creates an "island" of higher temperatures in the urban landscape. Extreme heat in the urban area is influencing public health in the UK as well as in the world. Birmingham is a densely built-up area with skyscrapers and congested buildings in the city center, which is a barrier to air circulation. We will investigate the city regarding heat and cold-related human mortality and other impacts. We are using primary and secondary datasets to examine the effect of population shift and land-use change on the UHI in Birmingham. We will also use freely available weather data from the Birmingham Urban Observatory and will incorporate satellite data to determine urban spatial expansion and its effect on the UHI. We have produced a temperature map based on summer datasets of 2020, which has covered 25 weather stations in Birmingham to show the differences between diurnal and nocturnal summer and annual temperature trends. Some impacts of the UHI may be beneficial, such as the lengthening of the plant growing season, but most of them are highly negative. We are looking for various effects of urban heat which is impacting human health and investigating mitigation options.

Keywords: urban heat, public health, climate change

Procedia PDF Downloads 68
297 A Comparison of Air Quality in Arid and Temperate Climatic Conditions – a Case Study of Leeds and Makkah

Authors: Turki M. Habeebullah, Said Munir, Karl Ropkins, Essam A. Morsy, Atef M. F. Mohammed, Abdulaziz R. Seroji

Abstract:

In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from year 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and supress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions.

Keywords: air pollution, climatic conditions, particulate matter, Makkah, Leeds

Procedia PDF Downloads 435
296 A Novel PfkB Gene Cloning and Characterization for Expression in Potato Plants

Authors: Arfan Ali, Idrees Ahmad Nasir

Abstract:

Potato (Solanum tuberosum) is an important cash crop and popular vegetable in Pakistan and throughout the world. Cold storage of potatoes accelerates the conversion of starch into reduced sugars (glucose and fructose). This process causes dry mass and bitter taste in the potatoes that are not acceptable to end consumers. In the current study, the phosphofructokinase B gene was cloned into the pET-30 vector for protein expression and the pCambia-1301 vector for plant expression. Amplification of a 930bp product from an E. coli strain determined the successful isolation of the phosphofructokinase B gene. Restriction digestion using NcoI and BglII along with the amplification of the 930bp product using gene specific primers confirmed the successful cloning of the PfkB gene in both vectors. The protein was expressed as a His-PfkB fusion protein. Western blot analysis confirmed the presence of the 35 Kda PfkB protein when hybridized with anti-His antibodies. The construct Fani-01 was evaluated transiently using a histochemical gus assay. The appearance of blue color in the agroinfiltrated area of potato leaves confirmed the successful expression of construct Fani-01. Further, the area displaying gus expression was evaluated for PfkB expression using ELISA. Moreover, PfkB gene expression evaluated through transient expression determined successful gene expression and highlighted its potential utilization for stable expression in potato to reduce sweetening due to long-term storage.

Keywords: potato, Solanum tuberosum, transformation, PfkB, anti-sweetening

Procedia PDF Downloads 436
295 The Measurements of Nitrogen Dioxide Pollution in Street Canyons

Authors: Aukse Miskinyte, Audrius Dedele

Abstract:

The impact of urban air pollution on human health effects has been revealed in epidemiological studies, which have assessed the associations between various types of gases and particles and negative health outcomes. The percentage of population living in urban areas is increasing, and the assessment of air pollution in certain zones in the city (like street canyons) that have higher level of air pollution and specific dispersion conditions is essential as these places tend to contain a lot of people. Street canyon is defined as a street surrounded by tall buildings on both sides that trapes traffic emissions and prevents pollution dispersion. The aim of this study was to determine the pollution of nitrogen dioxide in street canyons in Kaunas city during cold and warm seasons. The measurements were conducted using passive sampling technique during two-week period in two street canyon sites, whose axes are approximately north-south and north-northeast‒south-southwest. Both of these streets are two-lane roads of 7 meters width, one is in the central part of the city, and other is in the Old Town. The results of two-week measurements showed that the concentration of nitrogen dioxide was higher in summer season than in winter in both street canyon sites. The difference between the level of NO2 in winter and summer seasons was 5.1 and 19.4 µg/m3 in the first and in the second street canyon sites, respectively. The higher concentration of NO2 was determined in the second street canyon site than in the first, although there was calculated lower traffic intensity. These results could be related to the certain street canyon characteristics.

Keywords: air pollution, nitrogen dioxide, passive sampler, street canyon

Procedia PDF Downloads 235
294 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy

Authors: Dhara Adhnandya Kumara, Novrizal Novrizal

Abstract:

Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.

Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock

Procedia PDF Downloads 196
293 Improved Thermal Comfort in Cabin Aircraft with in-Seat Microclimate Conditioning Module

Authors: Mathieu Le Cam, Tejaswinee Darure, Mateusz Pawlucki

Abstract:

Climate control of cabin aircraft is traditionally conditioned as a single unit by the environmental control system. Cabin temperature is controlled by the crew while passengers of the aircraft have control on the gaspers providing fresh air from the above head area. The small nozzles are difficult to reach and adjust to meet the passenger’s needs in terms of flow and direction. More dedicated control over the near environment of each passenger can be beneficial in many situations. The European project COCOON, funded under Clean Sky 2, aims at developing and demonstrating a microclimate conditioning module (MCM) integrated into a standard economy 3-seat row. The system developed will lead to improved passenger comfort with more control on their personal thermal area. This study focuses on the assessment of thermal comfort of passengers in the cabin aircraft through simulation on the TAITherm modelling platform. A first analysis investigates thermal comfort and sensation of passengers in varying cabin environmental conditions: from cold to very hot scenarios, with and without MCM installed in the seats. The modelling platform is also used to evaluate the impact of different physiologies of passengers on their thermal comfort as well as different seat locations. Under the current cabin conditions, a passenger of a 50th percentile body size is feeling uncomfortably cool due to the high velocity cabin air ventilation. The simulation shows that the in-seat MCM developed in COCOON project improves the thermal comfort of the passenger.

Keywords: cabin aircraft, in-seat HVAC, microclimate conditioning module, thermal comfort

Procedia PDF Downloads 154
292 Large Eddy Simulation Approach for Unsteady Analysis of the Flow Behavior inside a Dual Counter Rotating Axial Swirler

Authors: Foad Vashahi, Shahnaz Rezaei, Jeekeun Lee

Abstract:

Large Eddy Simulation (LES) was performed on a dual counter rotating axial swirler in a confined rectangular configuration. Grids were constructed based on a primary Reynolds Averaged Navier-Stokes (RANS) simulation and then were refined based on the Kolmogorov length scale. Water as cold flow condition was applied and results were compared via Particle Image Velocimetry (PIV) experimental results. The focus was to investigate the flow behavior within the region before the flare and very close to the exit of the swirler. This region contributes to a highly unsteady flow behavior and requires great attention to enhancing the flame stability in gas turbine combustor and swirl burners. The PVC formation within the central core flow is strongly related to the peaks of pressure or axial velocity spectrum and up to two distinct peaks at the swirler mouth could be observed. Here, spectra analysis in iso-thermal condition inside the swirler where the inner swirler dominates the flow, showed a higher potential of instabilities with three to four distinct peaks where moving forward to the exit of swirler the number of peaks is decreased. In addition to this, the central axis corresponds to no peaks of instabilities while further away in the radial direction, several peaks exist.

Keywords: axial counter rotating swirler, large eddy simulation (LES), precessing vortex core (PVC), power spectral density (PSD)

Procedia PDF Downloads 252
291 Study of the Feasibility of Submerged Arc Welding(SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius

Authors: Ajay Biswas, Swapan Bhaumik, Saurav Datta, Abhijit Bhowmik

Abstract:

A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. voltage, wire feed rate, travel speed, and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.

Keywords: submerged arc welding, zero degree celsius, Taguchi’s design of experiment, geometry of weldment

Procedia PDF Downloads 426
290 Feasibility Study of Submerged Arc Welding (SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius

Authors: Ajay Biswas, Abhijit Bhowmik, Saurav Datta, Swapan Bhaumik

Abstract:

A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. Voltage, wire feed rate, travel speed and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.

Keywords: geometry of weldment, submerged arc welding, Taguchi’s design of experiment, zero degree Celsius

Procedia PDF Downloads 406
289 Occurrence of Ranavirus in Edible Frogs and Fish Sold for Human Consumption in Kaduna State, Northern Nigeria

Authors: Inikpi Ameh, Grace Kia, A. K. B. Sackey, Joy Atawodi, Richard Whittington

Abstract:

Ranaviruses are belonging to the viral Family Iridoviridae, are a group of globally emerging pathogens recognized as major viral pathogens of cold-blooded vertebrates. They cause systemic infection in fishes, amphibians, and reptiles. Ranaviruses have been associated with numerous disease outbreaks in natural and cultured populations of fish, amphibians, and reptiles. To investigate the presence of the ranavirus in fish and edible frogs sourced from dams and ponds in Zaria, Kaduna State, Nigeria. A total of 425 frogs (Rana spp.) and fishes (n=215 and n=200, respectively) were randomly collected based on consent and availability. Liver, kidney, and spleen tissue samples from each animal were pooled and homogenized. The samples were screened for ranavirus using the Indirect Enzyme linked Immunosorbent assay (ELISA). An overall prevalence of 46.1% (196/425) was obtained from the study. Frogs had a prevalence of 51.2% (110/215) while fish had 43% (86/200). This is the first study on ranavirus in fish and edible frogs in Nigeria. This study has established that edible frogs (Rana spp) and fishes sold in Zaria, Nigeria were infected with ranavirus which may have great economic importance to the nation’s aquaculture. In view of occasional massive economic losses observed in fishery industry due to deaths of unknown origin, this preliminary investigation is useful in directing veterinarians, policy makers and researchers on need to survey for ranavirus and also enlighten the relevant stakeholders on its prevention and control in Nigeria.

Keywords: fish, frogs, Nigeria, Ranavirus

Procedia PDF Downloads 331
288 A Review on Application of Phase Change Materials in Textiles Finishing

Authors: Mazyar Ahrari, Ramin Khajavi, Mehdi Kamali Dolatabadi, Tayebeh Toliyat, Abosaeed Rashidi

Abstract:

Fabric as the first and most common layer that is in permanent contact with human skin is a very good interface to provide coverage, as well as heat and cold insulation. Phase change materials (PCMs) are organic and inorganic compounds which have the capability of absorbing and releasing noticeable amounts of latent heat during phase transitions between solid and liquid phases at a low temperature range. PCMs come across phase changes (liquid-solid and solid-liquid transitions) during absorbing and releasing thermal heat; so, in order to use them for a long time, they should have been encapsulated in polymeric shells, so-called microcapsules. Microencapsulation and nanoencapsulation methods have been developed in order to reduce the reactivity of a PCM with outside environment, promoting the ease of handling, decreasing the diffusion and evaporation rates. Methods of incorporation of PCMs in textiles such as electrospinning and determining thermal properties had been summarized. Paraffin waxes catch a lot of attention due to their high thermal storage density, repeatability of phase change, thermal stability, small volume change during phase transition, chemical stability, non-toxicity, non-flammability, non-corrosive and low cost and they seem to play a key role in confronting with climate change and global warming. In this article, we aimed to review the researches concentrating on the characteristics of PCMs and new materials and methods of microencapsulation.

Keywords: thermoregulation, microencapsulation, phase change materials, thermal energy storage, nanoencapsulation

Procedia PDF Downloads 353
287 Tandem Concentrated Photovoltaic-Thermoelectric Hybrid System: Feasibility Analysis and Performance Enhancement Through Material Assessment Methodology

Authors: Shuwen Hu, Yuancheng Lou, Dongxu Ji

Abstract:

Photovoltaic (PV) power generation, as one of the most commercialized methods to utilize solar power, can only convert a limited range of solar spectrum into electricity, whereas the majority of the solar energy is dissipated as heat. To address this problem, thermoelectric (TE) module is often integrated with the concentrated PV module for waste heat recovery and regeneration. In this research, a feasibility analysis is conducted for the tandem concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system considering various operational parameters as well as TE material properties. Furthermore, the power output density of the CPV-TE hybrid system is maximized by selecting the optimal TE material with application of a systematic assessment methodology. In the feasibility analysis, CPV-TE is found to be more advantageous than sole CPV system except under high optical concentration ratio with low cold side convective coefficient. It is also shown that the effects of the TE material properties, including Seebeck coefficient, thermal conductivity, and electrical resistivity, on the feasibility of CPV-TE are interacted with each other and might have opposite effect on the system performance under different operational conditions. In addition, the optimal TE material selected by the proposed assessment methodology can improve the system power output density by 227 W/m2 under highly concentrated solar irradiance hence broaden the feasible range of CPV-TE considering optical concentration ratio.

Keywords: feasibility analysis, material assessment methodology, photovoltaic waste heat recovery, tandem photovoltaic-thermoelectric

Procedia PDF Downloads 45
286 Impact of America's Anti-Ballistic Missile System (ABMS) on Power Dynamics of the World

Authors: Fehmeen Anwar, Ujala Liaqat

Abstract:

For over half a century, U.S. and the Soviet Union have been at daggers drawn with each other. Both leading powers of the world have been struggling hard to surpass each other in military and other technological fields. This neck-to-neck competition turned in favour of U.S. in the early 1990s when USSR had to face economic stagnation and later dismemberment of several of its states. The predominance of U.S. is still evident to date, rather it continues to grow. With this proposed defence program i.e. Anti-Ballistic Missile System, the U.S. will have a considerable chance of intercepting any nuclear strike by Russia, which re-asserts U.S. dominance in the region and creating a security dilemma for Russia and other states. The question is whether America’s recent nuclear deterrence project is merely to counter nuclear threats from Iran and North Korea or is it purely directed towards Russia, thus ensuring complete military supremacy in the world. Although U.S professes to direct its Anti-Ballistic Missile System (ABMS) against the axis of evil (Iran and North Korea), yet the deployment of this system in the East European territory undermines the Russian nuclear strategic capability, as this enables U.S. to initiate an attack and guard itself from retaliatory strike, thus disturbing the security equilibrium in Europe. The implications of this program can lead to power imbalance which can lead to the emergence of fundamentally different paradigm of international politics.

Keywords: Anti-Ballistic Missile System (ABMS), cold-war, axis of evil, power dynamics

Procedia PDF Downloads 273
285 Atomic Town: History and Vernacular Heritage at the Mary Kathleen Uranium Mine in Australia

Authors: Erik Eklund

Abstract:

Mary Kathleen was a purpose-built company town located in northwest Queensland in Australia. It was created to work on a rich uranium deposit discovered in the area in July 1954. The town was complete by 1958, possessing curved streets, modern materials, and a progressive urban planning scheme. Formed in the minds of corporate executives and architects and made manifest in arid zone country between Cloncurry and Mount Isa, Mary Kathleen was a modern marvel in the outback, a town that tamed the wild country of northwest Queensland, or so it seemed. The town was also a product of the Cold War. In the context of a nuclear arms race between the Soviet Union and her allies, and the United States of America (USA) and her Allies, a rapid rush to locate, mine, and process uranium after 1944 led to the creation of uranium towns in Czechoslovakia, Canada, the Soviet Union, USA and Australia of which Mary Kathleen was one such example. Mary Kathleen closed in 1981, and most of the town’s infrastructure was removed. Since then, the town’s ghostly remains have attracted travellers and tourists. Never an officially-sanctioned tourist site, the area has nevertheless become a regular stop for campers and day trippers who have engaged with the site often without formal interpretation. This paper explores the status of this vernacular heritage and asks why it has not gained any official status and what visitors might see in the place despite its uncertain status.

Keywords: uranium mining, planned communities, official heritage, vernacular heritage, Australian history

Procedia PDF Downloads 58
284 Comparison of Polyphonic Profile of a Berry from Two Different Sources, Using an Optimized Extraction Method

Authors: G. Torabian, A. Fathi, P. Valtchev, F. Dehghani

Abstract:

The superior polyphenol content of Sambucus nigra berries has high health potentials for the production of nutraceutical products. Numerous factors influence the polyphenol content of the final products including the berries’ source and the subsequent processing production steps. The aim of this study is to compare the polyphenol content of berries from two different sources and also to optimise the polyphenol extraction process from elderberries. Berries from source B obtained more acceptable physical properties than source A; a single berry from source B was double in size and weight (both wet and dry weight) compared with a source A berry. Despite the appropriate physical characteristics of source B berries, their polyphenolic profile was inferior; as source A berries had 2.3 fold higher total anthocyanin content, and nearly two times greater total phenolic content and total flavonoid content compared to source B. Moreover, the result of this study showed that almost 50 percent of the phenolic content of berries are entrapped within their skin and pulp that potentially cannot be extracted by press juicing. To address this challenge and to increase the total polyphenol yield of the extract, we used cold-shock blade grinding method to break the cell walls. The result of this study showed that using cultivars with higher phenolic content as well as using the whole fruit including juice, skin and pulp can increase polyphenol yield significantly; and thus, may boost the potential of using elderberries as therapeutic products.

Keywords: different sources, elderberry, grinding, juicing, polyphenols

Procedia PDF Downloads 264
283 Sensitivity of Steindachneridion parahybae Mature Oocytes versus Embryos at Low Temperature

Authors: Tais Silva Lopes, Danilo Caneppele, Elizabeth Romagosa

Abstract:

Surubim-do-Paraíba, Steindachneridion parahybae is a species of South American fish in critical conditions of extinction. Researches have been developed with the objective of conserving the biological material of this species. We evaluated the cooling of mature oocytes in the cryoprotective solutions containing the following alcohols: methanol, Propylene glycol and DMSO, each at concentrations of 1M, 2M and 4M, totaling nine treatments. After being submitted to treatments, the oocytes were maintained for 120 minutes in cooling to -5.52±2.58⁰C. A sample of oocytes was submitted to negative control (NC), kept in 90% L-15 solution, and positive control (PC), fertilized and taken directly to the incubator. Fertilization and hatching rates were evaluated. In order to compare the sensitivity of oocytes to embryos of the same species, the embryos maintained as CP in the previous assay were used in the free-flow stage (about 22 hours post fertilization) and submitted to the same treatments (prepared in distilled water) and also cooled for 120 min. The evaluation was done by the hatch rate. There was no fertilization rate of the oocytes submitted to the cooling with propylene glycol; the other cryoprotectants presented values of at most 3.7% of fertilization (Methanol 1M), and no treatment completed development until hatching. The cooled embryos had a significant percentage of normal larvae in all treatments, but inversely proportional to the increase in the concentration of the alcohols. DMSO 1M was the most promising treatment for embryo cooling, with 41.7% ± 20.2 of normal larvae, while mature oocytes were highly sensitive to cold.

Keywords: cryoconservation, cooling, embryos, freezing, oocytes, south American fish

Procedia PDF Downloads 213
282 The Material Behavior in Curved Glulam Beam of Jabon Timber

Authors: Erma Desmaliana, Saptahari Sugiri

Abstract:

Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam.

Keywords: curved glulam beam, HTR&HTI, load carrying, strength

Procedia PDF Downloads 267
281 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy

Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena

Abstract:

Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.

Keywords: online range monitoring, particle therapy, quality assurance, tracking detector

Procedia PDF Downloads 221
280 Efficient Use of Power Light-Emitting Diode Chips in the Main Lighting System and in Generating Heat in Intelligent Buildings

Authors: Siamak Eskandari, Neda Ebadi

Abstract:

Among common electronic parts which have been invented and have made a great revolution in the lighting system through the world, certainly LEDs have no rival. These small parts with their very low power consumption, very dazzling and powerful light and small size and with their extremely high lifetime- compared to incandescent bulbs and compact fluorescent lamp (CFLs) have undoubtedly revolutionized the lighting industry of the world. Based on conducted studies and experiments, in addition to their acceptable light and low power consumption -compared to incandescent bulbs and CFLs-, they have very low and in some cases zero environmental pollution and negative effects on human beings. Because of their longevity, in the case of using high-quality circuits and proper and consistent use of LEDs in conventional and intelligent buildings, there will be no need to replace the burnout lamps, for a long time (10 years). In this study which was conducted on 10-watt power LEDs with suitable heatsink/cooling, considerable amount of heat was generated during lighting after 5 minutes and 45 seconds. The temperature rose to above 99 degrees Celsius and this amount of heat can raise the water temperature to 60 degrees Celsius and more. Based on conducted experiments, this can provide the heat required for bathing, washing, radiators (in cold seasons) easily and only by imposing very low cost and it will be a big step in the optimization of energy consumption in the future.

Keywords: energy, light, water, optimization of power LED

Procedia PDF Downloads 116
279 Thermodynamic Analysis of Wet Compression Integrated with Air-Film Blade Cooling in Gas Turbine Power Plants

Authors: Hassan Athari, Alireza Ruhi Sales, Amin Pourafshar, Seyyed Mehdi Pestei, Marc. A. Rosen

Abstract:

In order to achieve high efficiency and high specific work with lower emissions, the use of advanced gas turbine cycles for power generation is useful and advantageous. Here, evaporative inlet air cooling is analyzed thermodynamically in the form of air film blade cooling of gas turbines. As the ambient temperature increases during summer months, the performance of gas turbines particularly the output power and energy efficiency are significantly decreased. The utilization of evaporative inlet cooling in gas turbine cycles increases gas turbine performance, which can assist to solve the problem in meeting the increasing demands for electrical power and offsetting shortages during peak load times. In the present research, because of the importance of turbine blade cooling, the turbine is investigated with cold compressed air used for cooling the turbine blades. The investigation of the basic and modified cycles shows that, by adding an evaporative cooler to a simple gas turbine cycle, for a turbine inlet temperature of 1400 °C, an ambient temperature of 45 °C and a relative humidity of 15%, the specific work can reach 331 (kJ/kg air), while the maximum specific work of a simple cycle for the same conditions is 273.7 (kJ/kg air). The exergy results reveal that the highest exergy destruction occurs in the combustion chamber, where the large temperature differences and highly exothermic chemical reactions are the main sources of the irreversibility.

Keywords: energy, exergy, wet compression, air-film cooling blade, gas turbine

Procedia PDF Downloads 119
278 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Authors: Muhammad Shahid, Muhammad Mansoor

Abstract:

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Keywords: carbon nanotubes, induction melting, strengthening mechanism, nanocomposite

Procedia PDF Downloads 340
277 Virtual Prototyping of Ventilated Corrugated Fibreboard Carton of Fresh Fruit for Improved Containerized Transportation

Authors: Alemayehu Ambaw, Matia Mukama, Umezuruike Linus Opara

Abstract:

This study introduces a comprehensive method for designing ventilated corrugated fiberboard carton for fresh fruit packaging utilising virtual prototyping. The technique efficiently assesses and analyses the mechanical and thermal capabilities of fresh fruit packing boxes prior to making production investments. Comprehensive structural, aerodynamic, and thermodynamic data from designs were collected and evaluated in comparison to real-world packaging needs. Physical prototypes of potential designs were created and evaluated afterward. The virtual prototype is created with computer-aided graphics, computational structural dynamics, and computational fluid dynamics technologies. The virtual prototyping quickly generated data on carton compression strength, airflow resistance, produce cooling rate, spatiotemporal temperature, and product quality map in the cold chain within a few hours. Six distinct designs were analysed. All the various carton designs showed similar effectiveness in preserving the quality of the goods. The innovative packaging box design is more compact, resulting in a higher freight density of 1720 kg more fruit per reefer compared to the commercial counterpart. The precooling process was improved, resulting in a 17% increase in throughput and a 30% reduction in power usage.

Keywords: postharvest, container logistics, space/volume usage, computational method, packaging technology

Procedia PDF Downloads 22
276 FEDBD Plasma, A Promising Approach for Skin Rejuvenation

Authors: P. Charipoor, M. Khani, H. Mahmoudi, E. Ghasemi, P. Akbartehrani, B. Shokri

Abstract:

Cold air plasma could have a variety of effects on cells and living organisms and also shows good results in medical and cosmetic cases. Herein, plasma floating electrode dielectric barrier discharge (FEDBD) plasma was designed for mouse skin rejuvenation purposes. It is safe and easy to use in clinics, laboratories, and homes. The effects of this device were investigated on mouse skin. Vitamin C ointment in combination with plasma was also used as a new method to improve FEDBD results. In this study, 20 Wistar rats were evaluated in four groups. The first group received high-dose plasma, the second group received moderate-dose plasma (with vitamin C cream), the third group received low-dose plasma (with vitamin C cream) for 6 minutes, and the fourth group received only vitamin C cream. This process was done 3 times a week for 4 weeks. Skin temperature was monitored to evaluate the thermal effect of plasma. The presence of reactive species was also demonstrated using optical spectroscopy. Mechanical assays were performed to evaluate the effect of plasma and vitamin C on the mechanical strength of the tissue, which showed a positive effect of plasma on the treated tissue compared to the control group. Using pathological and biometric skin tests, an increase in collagen levels, epidermal thickness, and an increase in fibroblasts was observed in rat skin, as well as increased skin elasticity. This study showed the positive effect of using the FEDBD plasma device on the effective parameters in skin rejuvenation.

Keywords: plasma, skin rejuvenation, collagen, epidermal thickness

Procedia PDF Downloads 221
275 Sustainable Environmental Management through the Comparative Study of Two Recreational Parks in Nigeria

Authors: Oluwagbemiga Paul Agboola, Cornelius Olatunji Omojola, Dayo Martins Oyeshomo

Abstract:

The role of a recreational park in human and environmental development has attracted much interest in the recent time. Recreation parks' development could act as an effective planning strategy to enhance environmental sustainability, social cohesiveness, and users' quality of life. Similarly, parks enhance neighbourhood's aesthetics, refresh the air and enhance humans' contact with nature. In this connection, recreation parks create natural surroundings of rural areas for leisure, relaxation, recreation, psychological and physical comfort of the people. The purpose of this paper is to investigate the effectiveness of the two recreational parks' development as a strategy for neighbourhood's environmental improvement, sustainability and the recreationists' cohesiveness. A total number of 158 survey questionnaires were distributed to the tourists at Ikogosi cold and warm spring in Ekiti state as well as Olumirin waterfalls, Erin-Ijesa, Osun State, in South-West, Nigeria. The quantitative results of the analyzed data with Relative Importance Index (RII) revealed that recreation parks provide optimum opportunities for users' social cohesiveness and well-being while parks' sustainable environment could be enhanced base on the provision of essential facilities, services, and future developmental plans. It is recommended that for recreation parks to realize their full potential in environmental sustainability, adequate maintenance and provision of essential facilities becomes imperative.

Keywords: environmental sustainability, neighbourhood development, recreational park, Nigeria

Procedia PDF Downloads 195
274 A Study of the British Security Disembedding Mechanism from a Comparative Political Perspective: Centering on the Bosnia War and the Russian-Ukrainian War

Authors: Yuhong Li, Luyu Mao

Abstract:

Globalization has led to an increasingly interconnected international community and transmitted risks to every corner of the world through the chain of globalization. Security risks arising from international conflicts seem inescapable. Some countries have begun to build their capacity to deal with the globalization of security risks. They establish disembedding security mechanisms that transcend spatial or temporal boundaries and promote security cooperation with countries or regions that are not geographically close. This paper proposes four hypotheses of the phenomenon of "risks and security disembedding" in the post-Cold War international society and uses them to explain The United Kingdom’s behavior in the Bosnian War and the Russo-Ukrainian War. In the Bosnian War, confident in its own security and focused on maintaining European stability, The UK has therefore chosen to be cautious in its use of force in international frameworks such as the EU and to maintain a very limited intervention in Bosnia and Herzegovina's affairs. In contrast, the failure of the EU and NATO’s security mechanism in the Russo-Ukrainian war heightened Britain's anxiety, and the volatile international situation led it to show a strong tendency towards security disembedding, choosing to conclude security communities with extra-territorial states. Analysis suggests that security mechanisms are also the starting point of conflict and that countries will rely more on disembedding mechanisms to counteract the global security risks. The current mechanism of security disembedding occurs as a result of the global proliferation of security perceptions as a symbolic token and the recognition of an expert system of security mechanisms formed by states with similar security perceptions.

Keywords: disembedding mechanism, bosnia war, the russian-ukrainian war, british security strategy

Procedia PDF Downloads 51
273 Bioefficacy of Catharanthus roseus on Reproductive Performance of Red Cotton Bug, Dysdercus koenigii (Heteroptera: Pyrrhocoriedae)

Authors: Sunil Kayesth, Kamal Kumar Gupta

Abstract:

Influence of hexane extract of Catharanthus roseus leaves on reproductive fitness of Dysdercus koenigii was investigated by evaluating mating behaviour, oviposition behaviour and fertility of the treated insects. The volatiles of the plants were extracted in hexane by ‘cold extraction method’. The insects were treated with the extracts by ‘dry film residual method’. Our studies indicated that the treated male showed altered courtship behaviour, less number of mounting attempts, took more time to mate, less percent successful mating, and more disrupted mating. Similarly, the treated female exhibited either mating refusal or neutral behaviour towards courting males. The maximum disruption in the mating was observed in a cross T♂ X T♀, where males and females were treated with Catharanthus extract. The Dysdercus treated with Catharanthus extracts also showed marked reduction in their reproductive success. The treated females laid lesser number of egg batches and eggs in their life span. Catharanthus extract was effective in alteration of the oviposition behaviour. The eggs laid by the mated females were fertile indicating insemination of the mated females. However, the percent hatchability of the eggs laid by the treated females was less than control. The GC-MS analysis of the extract revealed the presence of juvenile hormone mimics, and the intermediates of juvenile hormone biosynthesis. Therefore, some of these compounds individually or synergistically alter reproductive behaviour of Dysdercus.

Keywords: Catharanthus roseus, Dysdercus koenigii, GC-MS analysis, reproductive performance

Procedia PDF Downloads 223
272 The Research on Diesel Bus Emissions in Ulaanbaatar City: Mongolia

Authors: Tsetsegmaa A., Bayarsuren B., Altantsetseg Ts.

Abstract:

To make the best decision on reducing harmful emissions from buses, we need to have a clear understanding of the current state of their actual emissions. The emissions from city buses running on high sulfur fuel, particularly particulate matter (PM) and nitrogen oxides (NOx) from the exhaust gases of conventional diesel engines, have been studied and measured with and without diesel particulate filter (DPF) in Ulaanbaatar city. The study was conducted by using the PEMS (Portable Emissions Measurement System) and gravimetric method in real traffic conditions. The obtained data were used to determine the actual emission rates and to evaluate the effectiveness of the selected particulate filters. Actual road and daily PM emissions from city buses were determined during the warm and cold seasons. A bus with an average daily mileage of 242 km was found to emit 166.155 g of PM into the city's atmosphere on average per day, with 141.3 g in summer and 175.8 g in winter. The actual PM of the city bus is 0.6866 g/km. The concentration of NOx in the exhaust gas averages 1410.94 ppm. The use of DPF reduced the exhaust gas opacity of 24 buses by an average of 97% and filtered a total of 340.4 kg of soot from these buses over a period of six months. Retrofitting an old conventional diesel engine with cassette-type silicon carbide (SiC) DPF, despite the laboriousness of cleaning, can significantly reduce particulate matter emissions. Innovation: First comprehensive road PM and NOx emission dataset and actual road emissions from public buses have been identified. PM and NOx mathematical model equations have been estimated as a function of the bus technical speed and engine revolution with and without DPF.

Keywords: conventional diesel, silicon carbide, real-time onboard measurements, particulate matter, diesel retrofit, fuel sulphur

Procedia PDF Downloads 114
271 The Evaluation of Antioxidant Activity of Aloe Vera (Aloe barbadensis miller)

Authors: R. A. Akande, M. L. Mnisi

Abstract:

Introduction: Aloe vera (Aloe barbadensis miller) flowers are carried in a large candelabra-like flower-head. Aloe barbadensis miller has been known as a traditional herbal medicine for the treatment of many diseases and sicknesses mainly for skin conditions such as sunburns, cold sores and frostbite. It is also used as a fresh food preservative. The main objective of this study is to determine the antioxidant activity of Aloe barbadensis miller. Methodology: The plant material (3g) was separately extracted with 30 mL of solvent with varying polarities (methanol and ethyl acetate)(technical grade, Merck) in 50ml polyester centrifuge tubes. The tubes was be shaken for 30 minutes on a linear shaker and left over night. The supernatant was filtered using a Whitman No. 1 filter paper before being transferred into pre-weighed glass containers. The solvent was allowed to evaporate under a fan in a room to quantify extraction efficacy. The, tin layer chromatography(TLC) plates were prepared and Pasteur pipette was used for spotting each extractant (methanol and ethyl acetate) on the TLC plates and the plate was developed in saturated TLC tank .and dipped in vanillin sulphuric acid mixture and heated at 110 to detect separate compound .and dipped in DDPH in methanol to detect antioxidant. Expected contribution to knowledge: It was observed that different compounds which interact differently with different solvent such as methanol, ethyl acetate having difference polarities were observed. The yellow spots also observed from the plate dipped in DDPH indicate that Aloe barbadensis miller has antioxidant.

Keywords: antioxidant activity, Aloe barbadensis miller, tin layer chromatography, DDPH

Procedia PDF Downloads 421
270 Causes of Deteriorations of Flexible Pavement, Its Condition Rating and Maintenance

Authors: Pooja Kherudkar, Namdeo Hedaoo

Abstract:

There are various causes for asphalt pavement distresses which can develop prematurely or with aging in services. These causes are not limited to aging of bitumen binder but include poor quality materials and construction, inadequate mix design, inadequate pavement structure design considering the traffic and lack of preventive maintenance. There is physical evidence available for each type of pavement distress. Distress in asphalt pavements can be categorized in different distress modes like fracture (cracking and spalling), distortion (permanent deformation and slippage), and disintegration (raveling and potholes). This study shows the importance of severity determination of distresses for the selection of appropriate preventive maintenance treatment. Distress analysis of the deteriorated roads was carried out. Four roads of urban flexible pavements from Pune city was selected as a case study. The roads were surveyed to detect the types, to measure the severity and extent of the distresses. Causes of distresses were investigated. The pavement condition rating values of the roads were calculated. These ranges of ratings were as follows; 1 for poor condition road, 1.1 to 2 for fair condition road and 2.1 to 3 for good condition road. Out of the four roads, two roads were found to be in fair condition and the other two were found in good condition. From the various preventive maintenance treatments like crack seal, fog seal, slurry seal, microsurfacing, surface dressing and thin hot mix/cold mix bituminous overlays, the effective maintenance treatments with respect to the surface condition and severity levels of the existing pavement were recommended.

Keywords: distress analysis, pavement condition rating, preventive maintenance treatments, surface distress measurement

Procedia PDF Downloads 146