Search results for: elliptic curve
1113 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field
Authors: Tun Myat Aung, Ni Ni Hla
Abstract:
This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.cKeywords: discrete logarithm problem, general attacks, elliptic curve, prime field, binary field
Procedia PDF Downloads 2321112 An Attack on the Lucas Based El-Gamal Cryptosystem in the Elliptic Curve Group Over Finite Field Using Greater Common Divisor
Authors: Lee Feng Koo, Tze Jin Wong, Pang Hung Yiu, Nik Mohd Asri Nik Long
Abstract:
Greater common divisor (GCD) attack is an attack that relies on the polynomial structure of the cryptosystem. This attack required two plaintexts differ from a fixed number and encrypted under same modulus. This paper reports a security reaction of Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field under GCD attack. Lucas Based El-Gamal Cryptosystem in the Elliptic Curve group over finite field was exposed mathematically to the GCD attack using GCD and Dickson polynomial. The result shows that the cryptanalyst is able to get the plaintext without decryption by using GCD attack. Thus, the study concluded that it is highly perilous when two plaintexts have a slight difference from a fixed number in the same Elliptic curve group over finite field.Keywords: decryption, encryption, elliptic curve, greater common divisor
Procedia PDF Downloads 2551111 Arithmetic Operations Based on Double Base Number Systems
Authors: K. Sanjayani, C. Saraswathy, S. Sreenivasan, S. Sudhahar, D. Suganya, K. S. Neelukumari, N. Vijayarangan
Abstract:
Double Base Number System (DBNS) is an imminent system of representing a number using two bases namely 2 and 3, which has its application in Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA).The previous binary method representation included only base 2. DBNS uses an approximation algorithm namely, Greedy Algorithm. By using this algorithm, the number of digits required to represent a larger number is less when compared to the standard binary method that uses base 2 algorithms. Hence, the computational speed is increased and time being reduced. The standard binary method uses binary digits 0 and 1 to represent a number whereas the DBNS method uses binary digit 1 alone to represent any number (canonical form). The greedy algorithm uses two ways to represent the number, one is by using only the positive summands and the other is by using both positive and negative summands. In this paper, arithmetic operations are used for elliptic curve cryptography. Elliptic curve discrete logarithm problem is the foundation for most of the day to day elliptic curve cryptography. This appears to be a momentous hard slog compared to digital logarithm problem. In elliptic curve digital signature algorithm, the key generation requires 160 bit of data by usage of standard binary representation. Whereas, the number of bits required generating the key can be reduced with the help of double base number representation. In this paper, a new technique is proposed to generate key during encryption and extraction of key in decryption.Keywords: cryptography, double base number system, elliptic curve cryptography, elliptic curve digital signature algorithm
Procedia PDF Downloads 3951110 Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728
Authors: Siti Noor Farwina Anwar, Hailiza Kamarulhaili
Abstract:
In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field.Keywords: efficiently computable endomorphism, elliptic scalar multiplication, j-invariant 1728, quadratic field
Procedia PDF Downloads 1971109 Improved of Elliptic Curves Cryptography over a Ring
Authors: Abdelhakim Chillali, Abdelhamid Tadmori, Muhammed Ziane
Abstract:
In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.Keywords: elliptic curves, finite ring, cryptography, study
Procedia PDF Downloads 3711108 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications
Authors: A. Andreasyan, C. Connors
Abstract:
The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.Keywords: cryptography, elliptic curve digital signature algorithm, key exchange, network security protocol
Procedia PDF Downloads 1441107 Implementation of Elliptic Curve Cryptography Encryption Engine on a FPGA
Authors: Mohamad Khairi Ishak
Abstract:
Conventional public key crypto systems such as RSA (Ron Rivest, Adi Shamir and Leonard Adleman), DSA (Digital Signature Algorithm), and Elgamal are no longer efficient to be implemented in the small, memory constrained devices. Elliptic Curve Cryptography (ECC), which allows smaller key length as compared to conventional public key crypto systems, has thus become a very attractive choice for many applications. This paper describes implementation of an elliptic curve cryptography (ECC) encryption engine on a FPGA. The system has been implemented in 2 different key sizes, which are 131 bits and 163 bits. Area and timing analysis are provided for both key sizes for comparison. The crypto system, which has been implemented on Altera’s EPF10K200SBC600-1, has a hardware size of 5945/9984 and 6913/9984 of logic cells for 131 bits implementation and 163 bits implementation respectively. The crypto system operates up to 43 MHz, and performs point multiplication operation in 11.3 ms for 131 bits implementation and 14.9 ms for 163 bits implementation. In terms of speed, our crypto system is about 8 times faster than the software implementation of the same system.Keywords: elliptic curve cryptography, FPGA, key sizes, memory
Procedia PDF Downloads 3181106 Cryptanalysis of ID-Based Deniable Authentication Protocol Based On Diffie-Hellman Problem on Elliptic Curve
Authors: Eun-Jun Yoon
Abstract:
Deniable authentication protocol is a new security authentication mechanism which can enable a receiver to identify the true source of a given message, but not to prove the identity of the sender to a third party. In 2013, Kar proposed a secure ID-based deniable authentication protocol whose security is based on computational infeasibility of solving Elliptic Curve Diffie-Hellman Problem (ECDHP). Kar claimed that the proposed protocol achieves properties of deniable authentication, mutual authentication, and message confidentiality. However, this paper points out that Kar's protocol still suffers from sender spoofing attack and message modification attack unlike its claims.Keywords: deniable authentication, elliptic curve cryptography, Diffie-Hellman problem, cryptanalysis
Procedia PDF Downloads 3291105 A Lightweight Authentication and Key Exchange Protocol Design for Smart Homes
Authors: Zhifu Li, Lei Li, Wanting Zhou, Yuanhang He
Abstract:
This paper proposed a lightweight certificate-less authentication and key exchange protocol (Light-CL-PKC) based on elliptic curve cryptography and the Chinese Remainder Theorem for smart home scenarios. Light-CL-PKC can efficiently reduce the computational cost of both sides of authentication by forgoing time-consuming bilinear pair operations and making full use of point-addition and point-multiplication operations on elliptic curves. The authentication and key exchange processes in this system are also completed in a a single round of communication between the two parties. The analysis result demonstrates that it can significantly minimize the communication overhead of more than 32.14% compared with the referenced protocols, while the runtime for both authentication and key exchange have also been significantly reduced.Keywords: authentication, key exchange, certificateless public key cryptography, elliptic curve cryptography
Procedia PDF Downloads 971104 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography
Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo
Abstract:
Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.Keywords: arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s encoding
Procedia PDF Downloads 2041103 Study of Bifurcation Curve with Aspect Ratio at Low Reynolds Number
Authors: Amit K. Singh, Subhankar Sen
Abstract:
The bifurcation curve of separation in steady two-dimensional viscous flow past an elliptic cylinder is studied by varying the angle of incidence (α) with different aspect ratio (ratio of minor to major axis). The solutions are based on numerical investigation, using finite element analysis, of the Navier-Stokes equations for incompressible flow. Results are presented for Reynolds number up to 50 and angle of incidence varies from 0° to 90°. Range of aspect ratio (Ar) is from 0.1 to 1 (in steps of 0.1) and flow is considered as unbounded flow. Bifurcation curve represents the locus of Reynolds numbers (Res) at which flow detaches or separates from the surface of the body at a given α and Ar. In earlier studies, effect of Ar on laminar separation curve or bifurcation curve is limited for Ar = 0.1, 0.2, 0.5 and 0.8. Some results are also available at α = 90° and 45°. The present study attempts to provide a systematic data and clear understanding on the effect of Ar at bifurcation curve and its point of maxima. In addition, issues regarding location of separation angle and maximum ratio of coefficient of lift to drag are studied. We found that nature of curve, separation angle and maximum ratio of lift to drag changes considerably with respect to change in Ar.Keywords: aspect ratio, bifurcation curve, elliptic cylinder, GMRES, stabilized finite-element
Procedia PDF Downloads 3421102 Performance Analysis of Elliptic Curve Cryptography Using Onion Routing to Enhance the Privacy and Anonymity in Grid Computing
Authors: H. Parveen Begam, M. A. Maluk Mohamed
Abstract:
Grid computing is an environment that allows sharing and coordinated use of diverse resources in dynamic, heterogeneous and distributed environment using Virtual Organization (VO). Security is a critical issue due to the open nature of the wireless channels in the grid computing which requires three fundamental services: authentication, authorization, and encryption. The privacy and anonymity are considered as an important factor while communicating over publicly spanned network like web. To ensure a high level of security we explored an extension of onion routing, which has been used with dynamic token exchange along with protection of privacy and anonymity of individual identity. To improve the performance of encrypting the layers, the elliptic curve cryptography is used. Compared to traditional cryptosystems like RSA (Rivest-Shamir-Adelman), ECC (Elliptic Curve Cryptosystem) offers equivalent security with smaller key sizes which result in faster computations, lower power consumption, as well as memory and bandwidth savings. This paper presents the estimation of the performance improvements of onion routing using ECC as well as the comparison graph between performance level of RSA and ECC.Keywords: grid computing, privacy, anonymity, onion routing, ECC, RSA
Procedia PDF Downloads 3961101 Solving 94-Bit ECDLP with 70 Computers in Parallel
Authors: Shunsuke Miyoshi, Yasuyuki Nogami, Takuya Kusaka, Nariyoshi Yamai
Abstract:
Elliptic curve discrete logarithm problem (ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard's rho method to evaluate the security of ECDLP on Barreto-Naehrig (BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers.Keywords: Pollard's rho method, BN curve, Montgomery multiplication
Procedia PDF Downloads 2711100 A Design of Elliptic Curve Cryptography Processor based on SM2 over GF(p)
Authors: Shiji Hu, Lei Li, Wanting Zhou, DaoHong Yang
Abstract:
The data encryption, is the foundation of today’s communication. On this basis, how to improve the speed of data encryption and decryption is always a problem that scholars work for. In this paper, we proposed an elliptic curve crypto processor architecture based on SM2 prime field. In terms of hardware implementation, we optimized the algorithms in different stages of the structure. In finite field modulo operation, we proposed an optimized improvement of Karatsuba-Ofman multiplication algorithm, and shorten the critical path through pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit wide data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between affine coordinate system and Jacobi projective coordinate system. In the parallel scheduling of point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU(dual-core ARM Cortex-A9).Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.
Procedia PDF Downloads 961099 BAN Logic Proof of E-passport Authentication Protocol
Authors: Safa Saoudi, Souheib Yousfi, Riadh Robbana
Abstract:
E-passport is a relatively new electronic document which maintains the passport features and provides better security. It deploys new technologies such as biometrics and Radio Frequency identification (RFID). The international civil aviation organization (ICAO) and the European union define mechanisms and protocols to provide security but their solutions present many threats. In this paper, a new mechanism is presented to strengthen e-passport security and authentication process. We propose a new protocol based on Elliptic curve, identity based encryption and shared secret between entities. Authentication in our contribution is formally proved with BAN Logic verification language. This proposal aims to provide a secure data storage and authentication.Keywords: e-passport, elliptic curve cryptography, identity based encryption, shared secret, BAN Logic
Procedia PDF Downloads 4341098 Integrating the Modbus SCADA Communication Protocol with Elliptic Curve Cryptography
Authors: Despoina Chochtoula, Aristidis Ilias, Yannis Stamatiou
Abstract:
Modbus is a protocol that enables the communication among devices which are connected to the same network. This protocol is, often, deployed in connecting sensor and monitoring units to central supervisory servers in Supervisory Control and Data Acquisition, or SCADA, systems. These systems monitor critical infrastructures, such as factories, power generation stations, nuclear power reactors etc. in order to detect malfunctions and ignite alerts and corrective actions. However, due to their criticality, SCADA systems are vulnerable to attacks that range from simple eavesdropping on operation parameters, exchanged messages, and valuable infrastructure information to malicious modification of vital infrastructure data towards infliction of damage. Thus, the SCADA research community has been active over strengthening SCADA systems with suitable data protection mechanisms based, to a large extend, on cryptographic methods for data encryption, device authentication, and message integrity protection. However, due to the limited computation power of many SCADA sensor and embedded devices, the usual public key cryptographic methods are not appropriate due to their high computational requirements. As an alternative, Elliptic Curve Cryptography has been proposed, which requires smaller key sizes and, thus, less demanding cryptographic operations. Until now, however, no such implementation has been proposed in the SCADA literature, to the best of our knowledge. In order to fill this gap, our methodology was focused on integrating Modbus, a frequently used SCADA communication protocol, with Elliptic Curve based cryptography and develop a server/client application to demonstrate the proof of concept. For the implementation we deployed two C language libraries, which were suitably modify in order to be successfully integrated: libmodbus (https://github.com/stephane/libmodbus) and ecc-lib https://www.ceid.upatras.gr/webpages/faculty/zaro/software/ecc-lib/). The first library provides a C implementation of the Modbus/TCP protocol while the second one offers the functionality to develop cryptographic protocols based on Elliptic Curve Cryptography. These two libraries were combined, after suitable modifications and enhancements, in order to give a modified version of the Modbus/TCP protocol focusing on the security of the data exchanged among the devices and the supervisory servers. The mechanisms we implemented include key generation, key exchange/sharing, message authentication, data integrity check, and encryption/decryption of data. The key generation and key exchange protocols were implemented with the use of Elliptic Curve Cryptography primitives. The keys established by each device are saved in their local memory and are retained during the whole communication session and are used in encrypting and decrypting exchanged messages as well as certifying entities and the integrity of the messages. Finally, the modified library was compiled for the Android environment in order to run the server application as an Android app. The client program runs on a regular computer. The communication between these two entities is an example of the successful establishment of an Elliptic Curve Cryptography based, secure Modbus wireless communication session between a portable device acting as a supervisor station and a monitoring computer. Our first performance measurements are, also, very promising and demonstrate the feasibility of embedding Elliptic Curve Cryptography into SCADA systems, filling in a gap in the relevant scientific literature.Keywords: elliptic curve cryptography, ICT security, modbus protocol, SCADA, TCP/IP protocol
Procedia PDF Downloads 2701097 Exact Solutions of K(N,N)-Type Equations Using Jacobi Elliptic Functions
Authors: Edamana Krishnan, Khalil Al-Ghafri
Abstract:
In this paper, modified K(n,n) and K(n+1,n+1) equations have been solved using mapping methods which give a variety of solutions in terms of Jacobi elliptic functions. The solutions when m approaches 0 and 1, with m as the modulus of the JEFs have also been deduced. The role of constraint conditions has been discussed.Keywords: travelling wave solutions, solitary wave solutions, compactons, Jacobi elliptic functions, mapping methods
Procedia PDF Downloads 3041096 Nonlinear Static Analysis of Laminated Composite Hollow Beams with Super-Elliptic Cross-Sections
Authors: G. Akgun, I. Algul, H. Kurtaran
Abstract:
In this paper geometrically nonlinear static behavior of laminated composite hollow super-elliptic beams is investigated using generalized differential quadrature method. Super-elliptic beam can have both oval and elliptic cross-sections by adjusting parameters in super-ellipse formulation (also known as Lamé curves). Equilibrium equations of super-elliptic beam are obtained using the virtual work principle. Geometric nonlinearity is taken into account using von-Kármán nonlinear strain-displacement relations. Spatial derivatives in strains are expressed with the generalized differential quadrature method. Transverse shear effect is considered through the first-order shear deformation theory. Static equilibrium equations are solved using Newton-Raphson method. Several composite super-elliptic beam problems are solved with the proposed method. Effects of layer orientations of composite material, boundary conditions, ovality and ellipticity on bending behavior are investigated.Keywords: generalized differential quadrature, geometric nonlinearity, laminated composite, super-elliptic cross-section
Procedia PDF Downloads 2941095 Passive Control of Elliptic Jet by Using Triangular and Truncated Tabs
Authors: Saif Akram, E. Rathakrishnan
Abstract:
The mixing promoting efficiency of two identical sharp and truncated vertex triangular tabs offering geometrical blockage of 2.5% each, placed at the exit of a Mach 1.5 elliptic nozzle was studied experimentally. The effectiveness of both the tabs in enhancing the mixing of jets with the ambient air are determined by measuring the Pitot pressure along the jet axis and the jet spread in both the minor and major axes of the elliptic nozzle, covering marginally overexpanded to moderately underexpanded levels at the nozzle exit. The results reveal that both the tabs enhance mixing characteristics of the uncontrolled elliptic jet when placed at minor axis. A core length reduction of 67% is achieved at NPR 3 which is the overexpanded state. Similarly, the core length is reduced by about 67%, 50% and 57% at NPRs of 4, 5 and 6 (underexpanded states) respectively. However, unlike the considerable increment in mixing promoting efficiency by the use of truncated vertex tabs for axisymmetric jets, the effect is not much pronounced for the case of supersonic elliptic jets. The CPD plots for both the cases almost overlap, especially when tabs are placed at minor axis, at all the pressure conditions. While, when the tabs are used at major axis, in the case of overexpanded condition, the sharp vertex triangular tabs act as a better mixing enhancer for the supersonic elliptic jets. For the jet controlled with truncated vertex triangular tabs, the core length reductions are of the same order as those for the sharp vertex triangular tabs. The jet mixing is hardly influenced by the tip effect in case of supersonic elliptic jet.Keywords: elliptic jet, tabs, truncated, triangular
Procedia PDF Downloads 3831094 An Analysis of Non-Elliptic Curve Based Primality Tests
Authors: William Wong, Zakaria Alomari, Hon Ching Lai, Zhida Li
Abstract:
Modern-day information security depends on implementing Diffie-Hellman, which requires the generation of prime numbers. Because the number of primes is infinite, it is impractical to store prime numbers for use, and therefore, primality tests are indispensable in modern-day information security. A primality test is a test to determine whether a number is prime or composite. There are two types of primality tests, which are deterministic tests and probabilistic tests. Deterministic tests are adopting algorithms that provide a definite answer whether a given number is prime or composite. While in probabilistic tests, a probabilistic result would be provided, there is a degree of uncertainty. In this paper, we review three probabilistic tests: the Fermat Primality Test, the Miller-Rabin Test, and the Baillie-PSW Test, as well as one deterministic test, the Agrawal-Kayal-Saxena (AKS) Test. Furthermore, we do an analysis of these tests. All of the reviews discussed are not based on the Elliptic Curve. The analysis demonstrates that, in the majority of real-world scenarios, the Baillie- PSW test’s favorability stems from its typical operational complexity of O(log 3n) and its capacity to deliver accurate results for numbers below 2^64.Keywords: primality tests, Fermat’s primality test, Miller-Rabin primality test, Baillie-PSW primality test, AKS primality test
Procedia PDF Downloads 871093 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator
Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira
Abstract:
True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve
Procedia PDF Downloads 4381092 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition
Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang
Abstract:
Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit-level and digit-level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very-large-scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.Keywords: digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation
Procedia PDF Downloads 3601091 The Application of Variable Coefficient Jacobian elliptic Function Method to Differential-Difference Equations
Authors: Chao-Qing Dai
Abstract:
In modern nonlinear science and textile engineering, nonlinear differential-difference equations are often used to describe some nonlinear phenomena. In this paper, we extend the variable coefficient Jacobian elliptic function method, which was used to find new exact travelling wave solutions of nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, we derive two series of Jacobian elliptic function solutions of the discrete sine-Gordon equation.Keywords: discrete sine-Gordon equation, variable coefficient Jacobian elliptic function method, exact solutions, equation
Procedia PDF Downloads 6671090 Investigating Smoothness: An In-Depth Study of Extremely Degenerate Elliptic Equations
Authors: Zahid Ullah, Atlas Khan
Abstract:
The presented research is dedicated to an extensive examination of the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. This study holds significance in unraveling the complexities inherent in these equations and understanding the smoothness of their solutions. The focus is on analyzing the regularity of results, aiming to contribute to the broader field of mathematical theory. By delving into the intricacies of extremely degenerate elliptic equations, the research seeks to advance our understanding beyond conventional analyses, addressing challenges posed by degeneracy and pushing the boundaries of classical analytical methods. The motivation for this exploration lies in the practical applicability of mathematical models, particularly in real-world scenarios where physical phenomena exhibit characteristics that challenge traditional mathematical modeling. The research aspires to fill gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations, ultimately contributing to both theoretical foundations and practical applications in diverse scientific fields.Keywords: investigating smoothness, extremely degenerate elliptic equations, regularity properties, mathematical analysis, complexity solutions
Procedia PDF Downloads 581089 Efficient Internal Generator Based on Random Selection of an Elliptic Curve
Authors: Mustapha Benssalah, Mustapha Djeddou, Karim Drouiche
Abstract:
The random number generation (RNG) presents a significant importance for the security and the privacy of numerous applications, such as RFID technology and smart cards. Since, the quality of the generated bit sequences is paramount that a weak internal generator for example, can directly cause the entire application to be insecure, and thus it makes no sense to employ strong algorithms for the application. In this paper, we propose a new pseudo random number generator (PRNG), suitable for cryptosystems ECC-based, constructed by randomly selecting points from several elliptic curves randomly selected. The main contribution of this work is the increasing of the generator internal states by extending the set of its output realizations to several curves auto-selected. The quality and the statistical characteristics of the proposed PRNG are validated using the Chi-square goodness of fit test and the empirical Special Publication 800-22 statistical test suite issued by NIST.Keywords: PRNG, security, cryptosystem, ECC
Procedia PDF Downloads 4431088 Exploring the Applications of Modular Forms in Cryptography
Authors: Berhane Tewelday Weldhiwot
Abstract:
This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory
Procedia PDF Downloads 151087 Hohmann Transfer and Bi-Elliptic Hohmann Transfer in TRAPPIST-1 System
Authors: Jorge L. Nisperuza, Wilson Sandoval, Edward. A. Gil, Johan A. Jimenez
Abstract:
In orbital mechanics, an active research topic is the calculation of interplanetary trajectories efficient in terms of energy and time. In this sense, this work concerns the calculation of the orbital elements for sending interplanetary probes in the extrasolar system TRAPPIST-1. Specifically, using the mathematical expressions of the circular and elliptical trajectory parameters, expressions for the flight time and the orbital transfer rate increase between orbits, the orbital parameters and the graphs of the trajectories of Hohmann and Hohmann bi-elliptic for sending a probe from the innermost planet to all the other planets of the studied system, are obtained. The relationship between the orbital transfer rate increments and the relationship between the flight times for the two transfer types is found. The results show that, for all cases under consideration, the Hohmann transfer results to be the least energy and temporary cost, a result according to the theory associated with Hohmann and Hohmann bi-elliptic transfers. Saving in the increase of the speed reaches up to 87% was found, and it happens for the transference between the two innermost planets, whereas the time of flight increases by a factor of up to 6.6 if one makes use of the bi-elliptic transfer, this for the case of sending a probe from the innermost planet to the outermost.Keywords: bi-elliptic Hohmann transfer, exoplanet, extrasolar system, Hohmann transfer, TRAPPIST-1
Procedia PDF Downloads 1921086 Exact Solutions of Discrete Sine-Gordon Equation
Authors: Chao-Qing Dai
Abstract:
Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors
Procedia PDF Downloads 4191085 Approximating Maximum Speed on Road from Curvature Information of Bezier Curve
Authors: M. Yushalify Misro, Ahmad Ramli, Jamaludin M. Ali
Abstract:
Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, the curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use the different approach to finding the best approximation for the curve so that it will resemble highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first the Bezier curve estimates the real shape of the curve which can be verified visually. Even, though, the fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed is acceptable. We verified our result with the manual calculation of the curvature from the map.Keywords: speed estimation, path constraints, reference trajectory, Bezier curve
Procedia PDF Downloads 3741084 Exploring Regularity Results in the Context of Extremely Degenerate Elliptic Equations
Authors: Zahid Ullah, Atlas Khan
Abstract:
This research endeavors to explore the regularity properties associated with a specific class of equations, namely extremely degenerate elliptic equations. These equations hold significance in understanding complex physical systems like porous media flow, with applications spanning various branches of mathematics. The focus is on unraveling and analyzing regularity results to gain insights into the smoothness of solutions for these highly degenerate equations. Elliptic equations, fundamental in expressing and understanding diverse physical phenomena through partial differential equations (PDEs), are particularly adept at modeling steady-state and equilibrium behaviors. However, within the realm of elliptic equations, the subset of extremely degenerate cases presents a level of complexity that challenges traditional analytical methods, necessitating a deeper exploration of mathematical theory. While elliptic equations are celebrated for their versatility in capturing smooth and continuous behaviors across different disciplines, the introduction of degeneracy adds a layer of intricacy. Extremely degenerate elliptic equations are characterized by coefficients approaching singular behavior, posing non-trivial challenges in establishing classical solutions. Still, the exploration of extremely degenerate cases remains uncharted territory, requiring a profound understanding of mathematical structures and their implications. The motivation behind this research lies in addressing gaps in the current understanding of regularity properties within solutions to extremely degenerate elliptic equations. The study of extreme degeneracy is prompted by its prevalence in real-world applications, where physical phenomena often exhibit characteristics defying conventional mathematical modeling. Whether examining porous media flow or highly anisotropic materials, comprehending the regularity of solutions becomes crucial. Through this research, the aim is to contribute not only to the theoretical foundations of mathematics but also to the practical applicability of mathematical models in diverse scientific fields.Keywords: elliptic equations, extremely degenerate, regularity results, partial differential equations, mathematical modeling, porous media flow
Procedia PDF Downloads 71