Search results for: dorsal root ganglion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1217

Search results for: dorsal root ganglion

107 Fluoride Contamination and Effects on Crops in North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

Fluoride contamination in water and its subsequent impact on agricultural practices is a growing concern in various regions worldwide, including North 24 Parganas, West Bengal, India. This study aimed to investigate the extent of fluoride contamination in the region's water sources and evaluate its effects on crop production and quality. A comprehensive survey of water sources, including wells, ponds, and rivers, was conducted to assess the fluoride levels in North 24 Parganas. Water samples were collected and analyzed using standard methods, and the fluoride concentration was determined. The findings revealed significant fluoride contamination in the water sources, surpassing the permissible limits recommended by national and international standards. To assess the effects of fluoride contamination on crops, field experiments were carried out in selected agricultural areas. Various crops commonly cultivated in the region, such as paddy, wheat, vegetables, and fruits, were examined for their growth, yield, and nutritional quality parameters. Additionally, soil samples were collected from the study sites to analyse the fluoride levels and their potential impact on soil health. The results demonstrated the adverse effects of fluoride contamination on crop growth and yield. Reduced plant height, stunted root development, decreased biomass accumulation, and diminished crop productivity were observed in fluoride-affected areas compared to uncontaminated control sites. Furthermore, the nutritional composition of crops, including micronutrients and mineral content, was significantly altered under high fluoride exposure, leading to potential health risks for consumers. The study also assessed the impact of fluoride on soil quality and found a negative correlation between fluoride concentration and soil health indicators, such as pH, organic matter content, and nutrient availability. These findings emphasize the need for sustainable soil management practices to mitigate the harmful effects of fluoride contamination and maintain agricultural productivity. Overall, this study highlights the alarming issue of fluoride contamination in water sources and its detrimental effects on crop production and quality in North 24 Parganas, West Bengal, India. The findings underscore the urgency for implementing appropriate water treatment measures, promoting awareness among farmers and local communities, and adopting sustainable agricultural practices to mitigate fluoride contamination and safeguard the region's agricultural ecosystem.

Keywords: agricultural ecosystem, water treatment, sustainable agricultural, fluoride contamination

Procedia PDF Downloads 51
106 Ecofriendly Synthesis of Au-Ag@AgCl Nanocomposites and Their Catalytic Activity on Multicomponent Domino Annulation-Aromatization for Quinoline Synthesis

Authors: Kanti Sapkota, Do Hyun Lee, Sung Soo Han

Abstract:

Nanocomposites have been widely used in various fields such as electronics, catalysis, and in chemical, biological, biomedical and optical fields. They display broad biomedical properties like antidiabetic, anticancer, antioxidant, antimicrobial and antibacterial activities. Moreover, nanomaterials have been used for wastewater treatment. Particularly, bimetallic hybrid nanocomposites exhibit unique features as compared to their monometallic components. Hybrid nanomaterials not only afford the multifunctionality endowed by their constituents but can also show synergistic properties. In addition, these hybrid nanomaterials have noteworthy catalytic and optical properties. Notably, Au−Ag based nanoparticles can be employed in sensor and catalysis due to their characteristic composition-tunable plasmonic properties. Due to their importance and usefulness, various efforts were developed for their preparation. Generally, chemical methods have been described to synthesize such bimetallic nanocomposites. In such chemical synthesis, harmful and hazardous chemicals cause environmental contamination and increase toxicity levels. Therefore, ecologically benevolent processes for the synthesis of nanomaterials are highly desirable to diminish such environmental and safety concerns. In this regard, here we disclose a simple, cost-effective, external additive free and eco-friendly method for the synthesis of Au-Ag@AgCl nanocomposites using Nephrolepis cordifolia root extract. Au-Ag@AgCl NCs were obtained by the simultaneous reduction of cationic Ag and Au into AgCl in the presence of plant extract. The particle size of 10 to 50 nm was observed with the average diameter of 30 nm. The synthesized nanocomposite was characterized by various modern characterization techniques. For example, UV−visible spectroscopy was used to determine the optical activity of the synthesized NCs, and Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the functional groups present in the biomolecules that were responsible for both reducing and capping agents during the formation of nanocomposites. Similarly, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and energy-dispersive X-ray (EDX) spectroscopy were used to determine crystallinity, size, oxidation states, thermal stability and weight loss of the synthesized nanocomposites. As a synthetic application, the synthesized nanocomposite exhibited excellent catalytic activity for the multicomponent synthesis of biologically interesting quinoline molecules via domino annulation-aromatization reaction of aniline, arylaldehyde, and phenyl acetylene derivatives. Interestingly, the nanocatalyst was efficiently recycled for five times without substantial loss of catalytic properties.

Keywords: nanoparticles, catalysis, multicomponent, quinoline

Procedia PDF Downloads 97
105 The Effect of Data Integration to the Smart City

Authors: Richard Byrne, Emma Mulliner

Abstract:

Smart cities are a vision for the future that is increasingly becoming a reality. While a key concept of the smart city is the ability to capture, communicate, and process data that has long been produced through day-to-day activities of the city, much of the assessment models in place neglect this fact to focus on ‘smartness’ concepts. Although it is true technology often provides the opportunity to capture and communicate data in more effective ways, there are also human processes involved that are just as important. The growing importance with regards to the use and ownership of data in society can be seen by all with companies such as Facebook and Google increasingly coming under the microscope, however, why is the same scrutiny not applied to cities? The research area is therefore of great importance to the future of our cities here and now, while the findings will be of just as great importance to our children in the future. This research aims to understand the influence data is having on organisations operating throughout the smart cities sector and employs a mixed-method research approach in order to best answer the following question: Would a data-based evaluation model for smart cities be more appropriate than a smart-based model in assessing the development of the smart city? A fully comprehensive literature review concluded that there was a requirement for a data-driven assessment model for smart cities. This was followed by a documentary analysis to understand the root source of data integration to the smart city. A content analysis of city data platforms enquired as to the alternative approaches employed by cities throughout the UK and draws on best practice from New York to compare and contrast. Grounded in theory, the research findings to this point formulated a qualitative analysis framework comprised of: the changing environment influenced by data, the value of data in the smart city, the data ecosystem of the smart city and organisational response to the data orientated environment. The framework was applied to analyse primary data collected through the form of interviews with both public and private organisations operating throughout the smart cities sector. The work to date represents the first stage of data collection that will be built upon by a quantitative research investigation into the feasibility of data network effects in the smart city. An analysis into the benefits of data interoperability supporting services to the smart city in the areas of health and transport will conclude the research to achieve the aim of inductively forming a framework that can be applied to future smart city policy. To conclude, the research recognises the influence of technological perspectives in the development of smart cities to date and highlights this as a challenge to introduce theory applied with a planning dimension. The primary researcher has utilised their experience working in the public sector throughout the investigation to reflect upon what is perceived as a gap in practice of where we are today, to where we need to be tomorrow.

Keywords: data, planning, policy development, smart cities

Procedia PDF Downloads 280
104 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis

Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara

Abstract:

Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).

Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy

Procedia PDF Downloads 311
103 The Impacts of Export in Stimulating Economic Growth in Ethiopia: ARDL Model Analysis

Authors: Natnael Debalklie Teshome

Abstract:

The purpose of the study was to empirically investigate the impacts of export performance and its volatility on economic growth in the Ethiopian economy. To do so, time-series data of the sample period from 1974/75 – 2017/18 were collected from databases and annual reports of IMF, WB, NBE, MoFED, UNCTD, and EEA. The extended Cobb-Douglas production function of the neoclassical growth model framed under the endogenous growth theory was used to consider both the performance and instability aspects of export. First, the unit root test was conducted using ADF and PP tests, and data were found in stationery with a mix of I(0) and I(1). Then, the bound test and Wald test were employed, and results showed that there exists long-run co-integration among study variables. All the diagnostic test results also reveal that the model fulfills the criteria of the best-fitted model. Therefore, the ARDL model and VECM were applied to estimate the long-run and short-run parameters, while the Granger causality test was used to test the causality between study variables. The empirical findings of the study reveal that only export and coefficient of variation had significant positive and negative impacts on RGDP in the long run, respectively, while other variables were found to have an insignificant impact on the economic growth of Ethiopia. In the short run, except for gross capital formation and coefficients of variation, which have a highly significant positive impact, all other variables have a strongly significant negative impact on RGDP. This shows exports had a strong, significant impact in both the short-run and long-run periods. However, its positive and statistically significant impact is observed only in the long run. Similarly, there was a highly significant export fluctuation in both periods, while significant commodity concentration (CCI) was observed only in the short run. Moreover, the Granger causality test reveals that unidirectional causality running from export performance to RGDP exists in the long run and from both export and RGDP to CCI in the short run. Therefore, the export-led growth strategy should be sustained and strengthened. In addition, boosting the industrial sector is vital to bring structural transformation. Hence, the government has to give different incentive schemes and supportive measures to exporters to extract the spillover effects of exports. Greater emphasis on price-oriented diversification and specialization on major primary products that the country has a comparative advantage should also be given to reduce value-based instability in the export earnings of the country. The government should also strive to increase capital formation and human capital development via enhancing investments in technology and quality of education to accelerate the economic growth of the country.

Keywords: export, economic growth, export diversification, instability, co-integration, granger causality, Ethiopian economy

Procedia PDF Downloads 35
102 Analysis of Adolescents Birth Rate in Zimbabwe: The Case of High Widening Gap between Rural and Urban Areas, Secondary Analysis from the 2022 National Population and Housing Census

Authors: Mercy Marimirofa, Farai Machinga, Alfred Zvoushe, Tsitsidzaishe Musvosvi

Abstract:

Adolescent Birth rate (ABR) is an important indicator of both gender equality and equity in the country. This is the number of births to women aged between 15 and 19 years per 1000 live births. There has been a decreasing trend in ABR in Zimbabwe since 2014. However, the difference between rural areas and urban areas has continued to widen. A secondary analysis was conducted to assess the differences in ABR between the rural areas of Zimbabwe and the urban areas. This was also done to determine the root causes of high ABR in rural areas compared to urban areas and the impact this may cause to the economic development of the nation. The analysis was done according to geographical characteristics (provinces). A total of 69,335 females aged 10 to 19 years had live births among a total population of 791,914 females aged 15 to 19 years. The total Adolescent Birth rate in Zimbabwe is 87/1000 live births, while in rural areas, it is 114.4/1000 live births compared to urban areas, which is 49.7/1000 live births. A decrease in the ABR trends has been recorded since 2014 from 143/1000 live births among adolescents in rural areas to 97/1000 live births in urban areas. This shows that rural areas still have high rates of ABR compared to their urban counterparts, and the gap is still wide. High ABR is a result of early child marriages, teenage pregnancies as well as poverty. Most of these marriages (46%) are intergenerational relationships and have resulted in an increase in gender-based violence cases among adolescents, poor health outcomes, including pregnancy complications such as eclampsia, Cephalous Pelvic Disproportion (CPD), and obstructed labour. Maternal deaths among adolescence is also high compared to adults. Furthermore, the increase of school dropouts among adolescent girls is on the rise due to teen pregnancies. These challenges are being faced mostly by rural adolescent girls as compared to their urban counterparts. The widening gap in ABR between urban areas and rural areas is a matter of concern and needs to be addressed. There is a need to inform policy, programming, and interventions targeting rural areas to address the challenges and gaps in reducing ABR. This abstract is to inform policymakers on the strategies and resources required to address the challenges currently distressing adolescents. There is a need to improve access to Sexual and Reproductive Health (SRH) Services by adolescents and reduce the age of consent to access SRH services should be reduced from 18 years for ease access to young people to reduce teenage pregnancies. Comprehensive sexuality education, both in-school and out of school, should be strengthened to increase knowledge among young people on sexuality.

Keywords: adolescence birth rate, live birth, teenage pregnancies, SRH services

Procedia PDF Downloads 48
101 Effect of Minimalist Footwear on Running Economy Following Exercise-Induced Fatigue

Authors: Jason Blair, Adeboye Adebayo, Mohamed Saad, Jeannette M. Byrne, Fabien A. Basset

Abstract:

Running economy is a key physiological parameter of an individual’s running efficacy and a valid tool for predicting performance outcomes. Of the many factors known to influence running economy (RE), footwear certainly plays a role owing to its characteristics that vary substantially from model to model. Although minimalist footwear is believed to enhance RE and thereby endurance performance, conclusive research reports are scarce. Indeed, debates remain as to which footwear characteristics most alter RE. The purposes of this study were, therefore, two-fold: (a) to determine whether wearing minimalist shoes results in better RE compared to shod and to identify relationships with kinematic and muscle activation patterns; (b) to determine whether changes in RE with minimalist shoes are still evident following a fatiguing bout of exercise. Well-trained male distance runners (n=10; 29.0 ± 7.5 yrs; 71.0 ± 4.8 kg; 176.3 ± 6.5 cm) partook first in a maximal O₂ uptake determination test (VO₂ₘₐₓ = 61.6 ± 7.3 ml min⁻¹ kg⁻¹) 7 days prior to the experimental sessions. Second, in a fully randomized fashion, an RE test consisting of three 8-min treadmill runs in shod and minimalist footwear were performed prior to and following exercise induced fatigue (EIF). The minimalist and shod conditions were tested with a minimum of 7-day wash-out period between conditions. The RE bouts, interspaced by 2-min rest periods, were run at 2.79, 3.33, and 3.89 m s⁻¹ with a 1% grade. EIF consisted of 7 times 1000 m at 94-97% VO₂ₘₐₓ interspaced with 3-min recovery. Cardiorespiratory, electromyography (EMG), kinematics, rate of perceived exertion (RPE) and blood lactate were measured throughout the experimental sessions. A significant main speed effect on RE (p=0.001) and stride frequency (SF) (p=0.001) was observed. The pairwise comparisons showed that running at 2.79 m s⁻¹ was less economic compared to 3.33, and 3.89 m s⁻¹ (3.56 ± 0.38, 3.41 ± 0.45, 3.40 ± 0.45 ml O₂ kg⁻¹ km⁻¹; respectively) and that SF increased as a function of speed (79 ± 5, 82 ± 5, 84 ± 5 strides min⁻¹). Further, EMG analyses revealed that root mean square EMG significantly increased as a function of speed for all muscles (Biceps femoris, Gluteus maximus, Gastrocnemius, Tibialis anterior, Vastus lateralis). During EIF, the statistical analysis revealed a significant main effect of time on lactate production (from 2.7 ± 5.7 to 11.2 ± 6.2 mmol L⁻¹), RPE scores (from 7.6 ± 4.0 to 18.4 ± 2.7) and peak HR (from 171 ± 30 to 181 ± 20 bpm), expect for the recovery period. Surprisingly, a significant main footwear effect was observed on running speed during intervals (p=0.041). Participants ran faster with minimalist shoes compared to shod (3:24 ± 0:44 min [95%CI: 3:14-3:34] vs. 3:30 ± 0:47 min [95%CI: 3:19-3:41]). Although EIF altered lactate production and RPE scores, no other effect was noticeable on RE, EMG, and SF pre- and post-EIF, except for the expected speed effect. The significant footwear effect on running speed during EIF was unforeseen but could be due to shoe mass and/or heel-toe-drop differences. We also cannot discard the effect of speed on foot-strike pattern and therefore, running performance.

Keywords: exercise-induced fatigue, interval training, minimalist footwear, running economy

Procedia PDF Downloads 214
100 Phylogenetic Inferences based on Morphoanatomical Characters in Plectranthus esculentus N. E. Br. (Lamiaceae) from Nigeria

Authors: Otuwose E. Agyeno, Adeniyi A. Jayeola, Bashir A. Ajala

Abstract:

P. esculentus is indigenous to Nigeria yet no wild relation has been encountered or reported. This has made it difficult to establish proper lineages between the varieties and landraces under cultivation. The present work is the first to determine the apormophy of 135 morphoanatomical characters in organs of 46 accessions drawn from 23 populations of this species based on dicta. The character states were coded in accession x character-state matrices and only 83 were informative and utilised for neighbour joining clustering based on euclidean values, and heuristic search in parsimony analysis using PAST ver. 3.15 software. Compatibility and evolutionary trends between accessions were then explored from values and diagrams produced. The low consistency indices (CI) recorded support monophyly and low homoplasy in this taxon. Agglomerative schedules based on character type and source data sets divided the accessions into mainly 3 clades, each of complexes of accessions. Solenostemon rotundifolius (Poir) J.K Morton was the outgroup (OG) used, and it occurred within the largest clades except when the characters were combined in a data set. The OG showed better compatibility with accessions of populations of landrace Isci, and varieties Riyum and Long’at. Otherwise, its aerial parts are more consistent with those of accessions of variety Bebot. The highly polytomous clades produced due to anatomical data set may be an indication of how stable such characters are in this species. Strict consensus trees with more than 60 nodes outputted showed that the basal nodes were strongly supported by 3 to 17 characters across the data sets, suggesting that populations of this species are more alike. The OG was clearly the first diverging lineage and closely related to accessions of landrace Gwe and variety Bebot morphologically, but different from them anatomically. It was also distantly related to landrace Fina and variety Long’at in terms of root, stem and leaf structural attributes. There were at least 5 other clades with each comprising of complexes of accessions from different localities and terrains within the study area. Spherical stem in cross section, size of vascular bundles at the stem corners as well as the alternate and whorl phyllotaxy are attributes which may have facilitated each other’s evolution in all accessions of the landrace Gwe, and they may be innovative since such states are not characteristic of the larger Lamiaceae, and Plectranthus L’Her in particular. In conclusion, this study has provided valuable information about infraspecific diversity in this taxon. It supports recognition of the varietal statuses accorded to populations of P. esculentus, as well as the hypothesis that the wild gene might have been distributed on the Jos Plateau. However, molecular characterisation of accessions of populations of this species would resolve this problem better.

Keywords: clustering, lineage, morphoanatomical characters, Nigeria, phylogenetics, Plectranthus esculentus, population

Procedia PDF Downloads 110
99 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 196
98 Strategies of Translation: Unlocking the Secret of 'Locksley Hall'

Authors: Raja Lahiani

Abstract:

'Locksley Hall' is a poem that Lord Alfred Tennyson (1809-1892) published in 1842. It is believed to be his first attempt to face as a poet some of the most painful of his experiences, as it is a study of his rising out of sickness into health, conquering his selfish sorrow by faith and hope. So far, in Victorian scholarship as in modern criticism, 'Locksley Hall' has been studied and approached as a canonical Victorian English poem. The aim of this project is to prove that some strategies of translation were used in this poem in such a way as to guarantee its assimilation into the English canon and hence efface to a large extent its Arabic roots. In its relationship with its source text, 'Locksley Hall' is at the same time mimetic and imitative. As part of the terminology used in translation studies, ‘imitation’ means almost the exact opposite of what it means in ordinary English. By adopting an imitative procedure, a translator would do something totally different from the original author, wandering far and freely from the words and sense of the original text. An imitation is thus aimed at an audience which wants the work of the particular translator rather than the work of the original poet. Hallam Tennyson, the poet’s biographer, asserts that 'Locksley Hall' is a simple invention of place, incidents, and people, though he notes that he remembers the poet claiming that Sir William Jones’ prose translation of the Mu‘allaqat (pre-Islamic poems) gave him the idea of the poem. A comparative work would prove that 'Locksley Hall' mirrors a great deal of Tennyson’s biography and hence is not a simple invention of details as asserted by his biographer. It would be challenging to prove that 'Locksley Hall' shares so many details with the Mu‘allaqat, as declared by Tennyson himself, that it needs to be studied as an imitation of the Mu‘allaqat of Imru’ al-Qays and ‘Antara in addition to its being a poem in its own right. Thus, the main aim of this work is to unveil the imitative and mimetic strategies used by Tennyson in his composition of 'Locksley Hall.' It is equally important that this project researches the acculturating assimilative tools used by the poet to root his poem in its Victorian English literary, cultural and spatiotemporal settings. This work adopts a comparative methodology. Comparison is done at different levels. The poem will be contextualized in its Victorian English literary framework. Alien details related to structure, socio-spatial setting, imagery and sound effects shall be compared to Arabic poems from the Mu‘allaqat collection. This would determine whether the poem is a translation, an adaption, an imitation or a genuine work. The ultimate objective of the project is to unveil in this canonical poem a new dimension that has for long been either marginalized or ignored. By proving that 'Locksley Hall' is an imitation of classical Arabic poetry, the project aspires to consolidate its literary value and open up new gates of accessing it.

Keywords: comparative literature, imitation, Locksley Hall, Lord Alfred Tennyson, translation, Victorian poetry

Procedia PDF Downloads 177
97 The Genus Bacillus, Effect on Commercial Crops of Colombia

Authors: L. C. Sánchez, L. C. Corrales, A. G. Lancheros, E. Castañeda, Y. Ariza, L. S. Fuentes, L. Sierra, J. L. Cuervo

Abstract:

The importance of environment friendly alternatives in agricultural processes is the reason why the research group Ceparium, the Colegio Mayor de Cundinamarca University, Colombia, investigated the genus Bacillus and its applicability for improving crops of economic importance in Colombia. In this investigation, we presented a study in which the genus Bacillus plays a leading role as beneficial microorganism. The objective was to identify the biochemical potential of three indigenous species of Bacillus, which were able to carry out actions for biological control against pathogens and pests or promoted growth to improve productivity of crops in Colombia. The procedures were performed in three phases: first, the production of biomass of an indigenous strain and a reference strain starting from culture media for production of spores and toxins were made. Spore count was done in a Neubauer chamber, concentrations of spores of Bacillus sphaericus were prepared and a bioassay was done at the Laboratory of Entomology at the University Jorge Tadeo Lozano of Plutella xylostella larvae, insect pest of crucifers in several Colombian regions. The second phase included the extraction in the liquid state fermentation, a secondary metabolite that has antibiosis action against fungi, call iturin B, and was obtained from strains of Bacillus subtilis. The molecule was identified using High Resolution Chromatography (HPLC) and its biocontrol effect on Fusarium sp fungus causes vascular wilt in economically important plant varieties, was confirmed using testing of antagonism in Petri dish. In the third phase, an initial procedure in that let recover and identify microorganisms of the genus Bacillus from the rhizosphere in two aromatic herbs, Rosmarinus officinalis and Thymus vulgaris L. was used. Subsequently, testing of antagonism against Fusarium sp were made and an assay was done under greenhouse conditions to observe biocontrol and growth promoting action by comparing growth in length and dry weight. In the first experiment, native Bacillus sphaericus was lethal to 92% Plutella xylostella larvae in 10 DDA. In the second experiment, iturin B was identified and biological control of Fusarium sp was demonstrated. In the third study, all strains demonstrated biological control and the B14 strain identified as Bacillus megaterium increased root length and productivity of the two plants in terms of weight. It was concluded that the native microorganisms of the genus Bacillus has a great biochemical potential that provides a beneficial interactions with plants, improve their growth and development and therefore a greater impact on production.

Keywords: genus bacillus, biological control, PGPRs, biochemical potential

Procedia PDF Downloads 415
96 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture

Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz

Abstract:

Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.

Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV

Procedia PDF Downloads 77
95 Stability Analysis of Hossack Suspension Systems in High Performance Motorcycles

Authors: Ciro Moreno-Ramirez, Maria Tomas-Rodriguez, Simos A. Evangelou

Abstract:

A motorcycle's front end links the front wheel to the motorcycle's chassis and has two main functions: the front wheel suspension and the vehicle steering. Up to this date, several suspension systems have been developed in order to achieve the best possible front end behavior, being the telescopic fork the most common one and already subjected to several years of study in terms of its kinematics, dynamics, stability and control. A motorcycle telescopic fork suspension model consists of a couple of outer tubes which contain the suspension components (coil springs and dampers) internally and two inner tubes which slide into the outer ones allowing the suspension travel. The outer tubes are attached to the frame through two triple trees which connect the front end to the main frame through the steering bearings and allow the front wheel to turn about the steering axis. This system keeps the front wheel's displacement in a straight line parallel to the steering axis. However, there exist alternative suspension designs that allow different trajectories of the front wheel with the suspension travel. In this contribution, the authors investigate an alternative front suspension system (Hossack suspension) and its influence on the motorcycle nonlinear dynamics to identify and reduce stability risks that a new suspension systems may introduce in the motorcycle dynamics. Based on an existing high-fidelity motorcycle mathematical model, the front end geometry is modified to accommodate a Hossack suspension system. It is characterized by a double wishbone design that varies the front end geometry on certain maneuverings and, consequently, the machine's behavior/response. It consists of a double wishbone structure directly attached to the chassis. In here, the kinematics of this system and its impact on the motorcycle performance/stability are analyzed and compared to the well known telescopic fork suspension system. The framework of this research is the mathematical modelling and numerical simulation. Full stability analyses are performed in order to understand how the motorcycle dynamics may be affected by the newly introduced front end design. This study is carried out by a combination of nonlinear dynamical simulation and root-loci methods. A modal analysis is performed in order to get a deeper understanding of the different modes of oscillation and how the Hossack suspension system affects them. The results show that different kinematic designs of a double wishbone suspension systems do not modify the general motorcycle's stability. The normal modes properties remain unaffected by the new geometrical configurations. However, these normal modes differ from one suspension system to the other. It is seen that the normal modes behaviour depends on various important dynamic parameters, such as the front frame flexibility, the steering damping coefficient and the centre of mass location.

Keywords: nonlinear mechanical systems, motorcycle dynamics, suspension systems, stability

Procedia PDF Downloads 200
94 Computerized Adaptive Testing for Ipsative Tests with Multidimensional Pairwise-Comparison Items

Authors: Wen-Chung Wang, Xue-Lan Qiu

Abstract:

Ipsative tests have been widely used in vocational and career counseling (e.g., the Jackson Vocational Interest Survey). Pairwise-comparison items are a typical item format of ipsative tests. When the two statements in a pairwise-comparison item measure two different constructs, the item is referred to as a multidimensional pairwise-comparison (MPC) item. A typical MPC item would be: Which activity do you prefer? (A) playing with young children, or (B) working with tools and machines. These two statements aim at the constructs of social interest and investigative interest, respectively. Recently, new item response theory (IRT) models for ipsative tests with MPC items have been developed. Among them, the Rasch ipsative model (RIM) deserves special attention because it has good measurement properties, in which the log-odds of preferring statement A to statement B are defined as a competition between two parts: the sum of a person’s latent trait to which statement A is measuring and statement A’s utility, and the sum of a person’s latent trait to which statement B is measuring and statement B’s utility. The RIM has been extended to polytomous responses, such as preferring statement A strongly, preferring statement A, preferring statement B, and preferring statement B strongly. To promote the new initiatives, in this study we developed computerized adaptive testing algorithms for MFC items and evaluated their performance using simulations and two real tests. Both the RIM and its polytomous extension are multidimensional, which calls for multidimensional computerized adaptive testing (MCAT). A particular issue in MCAT for MPC items is the within-person statement exposure (WPSE); that is, a respondent may keep seeing the same statement (e.g., my life is empty) for many times, which is certainly annoying. In this study, we implemented two methods to control the WPSE rate. In the first control method, items would be frozen when their statements had been administered more than a prespecified times. In the second control method, a random component was added to control the contribution of the information at different stages of MCAT. The second control method was found to outperform the first control method in our simulation studies. In addition, we investigated four item selection methods: (a) random selection (as a baseline), (b) maximum Fisher information method without WPSE control, (c) maximum Fisher information method with the first control method, and (d) maximum Fisher information method with the second control method. These four methods were applied to two real tests: one was a work survey with dichotomous MPC items and the other is a career interests survey with polytomous MPC items. There were three dependent variables: the bias and root mean square error across person measures, and measurement efficiency which was defined as the number of items needed to achieve the same degree of test reliability. Both applications indicated that the proposed MCAT algorithms were successful and there was no loss in measurement proficiency when the control methods were implemented, and among the four methods, the last method performed the best.

Keywords: computerized adaptive testing, ipsative tests, item response theory, pairwise comparison

Procedia PDF Downloads 228
93 Inherent Difficulties in Countering Islamophobia

Authors: Imbesat Daudi

Abstract:

Islamophobia, which is a billion-dollar industry, is widespread, especially in the United States, Europe, India, Israel, and countries that have Muslim minorities at odds with their governmental policies. Hatred of Islam in the West did not evolve spontaneously; it was methodically created. Islamophobia's current format has been designed to spread on its own, find a space in the Western psyche, and resist its eradication. Hatred has been sustained by neoconservative ideologues and their allies, which are supported by the mainstream media. Social scientists have evaluated how ideas spread, why any idea can go viral, and where new ideas find space in our brains. This was possible because of the advances in the computational power of software and computers. Spreading of ideas, including Islamophobia, follows a sine curve; it has three phases: An initial exploratory phase with a long lag period, an explosive phase if ideas go viral, and the final phase when ideas find space in the human psyche. In the initial phase, the ideas are quickly examined in a center in the prefrontal lobe. When it is deemed relevant, it is sent for evaluation to another center of the prefrontal lobe; there, it is critically examined. Once it takes a final shape, the idea is sent as a final product to a center in the occipital lobe. This center cannot critically evaluate ideas; it can only defend them from its critics. Counterarguments, no matter how scientific, are automatically rejected. Therefore, arguments that could be highly effective in the early phases are counterproductive once they are stored in the occipital lobe. Anti-Islamophobic intellectuals have done a very good job of countering Islamophobic arguments. However, they have not been as effective as neoconservative ideologues who have promoted anti-Muslim rhetoric that was based on half-truths, misinformation, or outright lies. The failure is partly due to the support pro-war activists receive from the mainstream media, state institutions, mega-corporations engaged in violent conflicts, and think tanks that provide Islamophobic arguments. However, there are also scientific reasons why anti-Islamophobic thinkers have been less effective. There are different dynamics of spreading ideas once they are stored in the occipital lobe. The human brain is incapable of evaluating further once it accepts ideas as its own; therefore, a different strategy is required to be effective. This paper examines 1) why anti-Islamophobic intellectuals have failed in changing the minds of non-Muslims and 2) the steps of countering hatred. Simply put, a new strategy is needed that can effectively counteract hatred of Islam and Muslims. Islamophobia is a disease that requires strong measures. Fighting hatred is always a challenge, but if we understand why Islamophobia is taking root in the twenty-first century, one can succeed in challenging Islamophobic arguments. That will need a coordinated effort of Intellectuals, writers and the media.

Keywords: islamophobia, Islam and violence, anti-islamophobia, demonization of Islam

Procedia PDF Downloads 24
92 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 109
91 Seed Associated Microbial Communities of Holoparasitic Cistanche Species from Armenia and Portugal

Authors: K. Petrosyan, R. Piwowarczyk, K. Ruraż, S. Thijs, J. Vangronsveld, W. Kaca

Abstract:

Holoparasitic plants are flowering heterotrophic angiosperms which with the help of an absorbing organ - haustorium, attach to another plant, the so-called the host. Due to the different hosts, unusual lifestyle, lack of roots, chlorophylls and photosynthesis, these plants are interesting and unique study objects for global biodiversity. The seeds germination of the parasitic plants also is unique: they germinate only in response to germination stimulants, namely strigolactones produced by the root of an appropriate host. Resistance of the seeds on different environmental conditions allow them to stay viable in the soil for more than 20 years. Among the wide range of plant protection mechanisms the endophytic communities have a specific role. In this way, they have the potential to mitigate the impacts of adverse conditions such as soil salinization. The major objective of our study was to compare the bacterial endo-microbiomes from seeds of two holoparasitic plants from Orobanchaceae family, Cistanche – C. armena (Armenia) and C. phelypaea (Portugal) – from saline habitats different in soil water status. The research aimed to perform how environmental conditions influence on the diversity of the bacterial communities of C. armena and C. phelypaea seeds. This was achieved by comparison of the endophytic microbiomes of two species and isolation of culturable bacteria. A combination of culture-dependent and molecular techniques was employed for the identification of the seed endomicrobiome (culturable and unculturable). Using the V3-V4 hypervariable region of the 16S rRNA gene, four main taxa were identified: Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, but the relative proportion of the taxa was different in each type of seed. Generally, sixteen phyla, 323 genera and 710 bacterial species were identified, mainly Gram negative, halotolerant bacteria with an environmental origin. However, also some unclassified and unexplored taxonomic groups were found in the seeds of both plants. 16S rRNA gene sequencing analysis from both species identified the gram positive, endospore forming, halotolerant and alkaliphile Bacillus spp. which suggests that the endophytic bacteria of examined seeds possess traits that are correlated with the natural habitat of their hosts. The cultivable seed endophytes from C. armena and C. phelypaea were rather similar, notwithstanding the big distances between their growth habitats - Armenia and Portugal. Although the seed endophytic microbiomes of C. armena and C. phelypaea contain a high number of common bacterial taxa, also remarkable differences exist. We demonstrated that the environmental conditions or abiotic stresses influence on diversity of the bacterial communities of holoparasiotic seeds. To the best of our knowledge the research is the first report of endophytes from seeds of holoparasitic Cistanche armena and C. phelypaea plants.

Keywords: microbiome, parasitic plant, salinity, seeds

Procedia PDF Downloads 50
90 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates

Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc

Abstract:

Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.

Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS

Procedia PDF Downloads 333
89 Investigation of Cavitation in a Centrifugal Pump Using Synchronized Pump Head Measurements, Vibration Measurements and High-Speed Image Recording

Authors: Simon Caba, Raja Abou Ackl, Svend Rasmussen, Nicholas E. Pedersen

Abstract:

It is a challenge to directly monitor cavitation in a pump application during operation because of a lack of visual access to validate the presence of cavitation and its form of appearance. In this work, experimental investigations are carried out in an inline single-stage centrifugal pump with optical access. Hence, it gives the opportunity to enhance the value of CFD tools and standard cavitation measurements. Experiments are conducted using two impellers running in the same volute at 3000 rpm and the same flow rate. One of the impellers used is optimized for lower NPSH₃% by its blade design, whereas the other one is manufactured using a standard casting method. The cavitation is detected by pump performance measurements, vibration measurements and high-speed image recordings. The head drop and the pump casing vibration caused by cavitation are correlated with the visual appearance of the cavitation. The vibration data is recorded in an axial direction of the impeller using accelerometers recording at a sample rate of 131 kHz. The vibration frequency domain data (up to 20 kHz) and the time domain data are analyzed as well as the root mean square values. The high-speed recordings, focusing on the impeller suction side, are taken at 10,240 fps to provide insight into the flow patterns and the cavitation behavior in the rotating impeller. The videos are synchronized with the vibration time signals by a trigger signal. A clear correlation between cloud collapses and abrupt peaks in the vibration signal can be observed. The vibration peaks clearly indicate cavitation, especially at higher NPSHA values where the hydraulic performance is not affected. It is also observed that below a certain NPSHA value, the cavitation started in the inlet bend of the pump. Above this value, cavitation occurs exclusively on the impeller blades. The impeller optimized for NPSH₃% does show a lower NPSH₃% than the standard impeller, but the head drop starts at a higher NPSHA value and is more gradual. Instabilities in the head drop curve of the optimized impeller were observed in addition to a higher vibration level. Furthermore, the cavitation clouds on the suction side appear more unsteady when using the optimized impeller. The shape and location of the cavitation are compared to 3D fluid flow simulations. The simulation results are in good agreement with the experimental investigations. In conclusion, these investigations attempt to give a more holistic view on the appearance of cavitation by comparing the head drop, vibration spectral data, vibration time signals, image recordings and simulation results. Data indicates that a criterion for cavitation detection could be derived from the vibration time-domain measurements, which requires further investigation. Usually, spectral data is used to analyze cavitation, but these investigations indicate that the time domain could be more appropriate for some applications.

Keywords: cavitation, centrifugal pump, head drop, high-speed image recordings, pump vibration

Procedia PDF Downloads 154
88 Influence of Laser Treatment on the Growth of Sprouts of Different Wheat Varieties

Authors: N. Bakradze, T. Dumbadze, N. Gagelidze, L. Amiranashvili, A. D. L. Batako

Abstract:

Cereals are considered as a strategic product in human life and it demand is increasing with the growth of world population. There is always shortage of cereals in various areas of the globe. For example, Georgia own production meets only 15-20% of the demand for grain, despite the fact that the country is considered one of the main centers of wheat origin. In Georgia, there are 14 types of wheat and more than 150 subspecies, and 40 subspecies of common wheat. Increasing wheat production is important for the country. One of the ways to solve the problem is to develop and implement new, environmentally and economically acceptable technologies. Such technologies include pre-sowing treatment of seed with a laser and associative nitrogen-fixing of the Azospirillum brasilensse bacteria. In the region there are Dika and Lomtagora which are among the most common in Georgia. Dika is a frost-resistant wheat, with a high ability to adapt to the environment, resistant to falling and it is sown in highlands. Dicka excellent properties are due to its strong immunity to fungal diseases; Dicka grains are rich in protein and lysine. Lomtagora 126 differs with its winter and drought resistance, and, it has a great ability to germinate. Lomtagora is characterized by a strong root system and a high budding capacity. It is an early variety, fall-resistant, easy to thresh and suitable for mechanized harvesting with large and red grains. The plant is moderately resistant to fungal diseases. This paper presents some preliminary experimental results where, a continuous CO2 laser at a power of 25-40 W/cm2 was used to radiate grains at a flow rate of 10-15 cm/sec. The treatment was carried out on grains of the Triticum aestivum L. var. of Lutescens (local variety name - Lomtagora 126), and Triticum carthlicum Nevski (local variety name - Dika). Here the grains were treated with Azospirillum brasilensse isolate (108-109 CFU / ml), which was isolated from the rhizosphere of wheat. It was observed that the germination of the wheat was not significantly influenced by either laser or bacteria treatment. In the case of the variety Lomtagora 126, when irradiated at an angle of 90°, it slightly improved the growth within 38 days of sawing, and in the case of irradiation at an angle of 90°+1, by 23%. The treatment of seeds with Azospirillum brazilense in both irradiated and non-irradiated variants led to an improvement in the growth of ssprouts. However, in the case of treatment with azospiril alone - by 22%, and with joint treatment of seeds with azospiril and irradiation - by 29%. In the case of the Dika wheat, the irradiation only led to an increase in growth by 8-9%, and the combine treatment of seeds with azospiril and irradiation - by 10-15%, in comparison with the control. Thus, the combine treatment of wheat of different varieties provided the best effect on the growth. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) (Grant number CARYS 19-573)

Keywords: laser treatment, Azospirillum brasilensse, seeds, wheat varieties, Lomtagora, Dika

Procedia PDF Downloads 114
87 Exploring the Motivations That Drive Paper Use in Clinical Practice Post-Electronic Health Record Adoption: A Nursing Perspective

Authors: Sinead Impey, Gaye Stephens, Lucy Hederman, Declan O'Sullivan

Abstract:

Continued paper use in the clinical area post-Electronic Health Record (EHR) adoption is regularly linked to hardware and software usability challenges. Although paper is used as a workaround to circumvent challenges, including limited availability of a computer, this perspective does not consider the important role paper, such as the nurses’ handover sheet, play in practice. The purpose of this study is to confirm the hypothesis that paper use post-EHR adoption continues as paper provides both a cognitive tool (that assists with workflow) and a compensation tool (to circumvent usability challenges). Distinguishing the different motivations for continued paper-use could assist future evaluations of electronic record systems. Methods: Qualitative data were collected from three clinical care environments (ICU, general ward and specialist day-care) who used an electronic record for at least 12 months. Data were collected through semi-structured interviews with 22 nurses. Data were transcribed, themes extracted using an inductive bottom-up coding approach and a thematic index constructed. Findings: All nurses interviewed continued to use paper post-EHR adoption. While two distinct motivations for paper use post-EHR adoption were confirmed by the data - paper as a cognitive tool and paper as a compensation tool - further finding was that there was an overlap between the two uses. That is, paper used as a compensation tool could also be adapted to function as a cognitive aid due to its nature (easy to access and annotate) or vice versa. Rather than present paper persistence as having two distinctive motivations, it is more useful to describe it as presenting on a continuum with compensation tool and cognitive tool at either pole. Paper as a cognitive tool referred to pages such as nurses’ handover sheet. These did not form part of the patient’s record, although information could be transcribed from one to the other. Findings suggest that although the patient record was digitised, handover sheets did not fall within this remit. These personal pages continued to be useful post-EHR adoption for capturing personal notes or patient information and so continued to be incorporated into the nurses’ work. Comparatively, the paper used as a compensation tool, such as pre-printed care plans which were stored in the patient's record, appears to have been instigated in reaction to usability challenges. In these instances, it is expected that paper use could reduce or cease when the underlying problem is addressed. There is a danger that as paper affords nurses a temporary information platform that is mobile, easy to access and annotate, its use could become embedded in clinical practice. Conclusion: Paper presents a utility to nursing, either as a cognitive or compensation tool or combination of both. By fully understanding its utility and nuances, organisations can avoid evaluating all incidences of paper use (post-EHR adoption) as arising from usability challenges. Instead, suitable remedies for paper-persistence can be targeted at the root cause.

Keywords: cognitive tool, compensation tool, electronic record, handover sheet, nurse, paper persistence

Procedia PDF Downloads 408
86 Potential Impacts of Climate Change on Hydrological Droughts in the Limpopo River Basin

Authors: Nokwethaba Makhanya, Babatunde J. Abiodun, Piotr Wolski

Abstract:

Climate change possibly intensifies hydrological droughts and reduces water availability in river basins. Despite this, most research on climate change effects in southern Africa has focused exclusively on meteorological droughts. This thesis projects the potential impact of climate change on the future characteristics of hydrological droughts in the Limpopo River Basin (LRB). The study uses regional climate model (RCM) measurements (from the Coordinated Regional Climate Downscaling Experiment, CORDEX) and a combination of hydrological simulations (using the Soil and Water Assessment Tool Plus model, SWAT+) to predict the impacts at four global warming levels (GWLs: 1.5℃, 2.0℃, 2.5℃, and 3.0℃) under the RCP8.5 future climate scenario. The SWAT+ model was calibrated and validated with a streamflow dataset observed over the basin, and the sensitivity of model parameters was investigated. The performance of the SWAT+LRB model was verified using the Nash-Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square Error (RMSE), and coefficient of determination (R²). The Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) have been used to detect meteorological droughts. The Soil Water Index (SSI) has been used to define agricultural drought, while the Water Yield Drought Index (WYLDI), the Surface Run-off Index (SRI), and the Streamflow Index (SFI) have been used to characterise hydrological drought. The performance of the SWAT+ model simulations over LRB is sensitive to the parameters CN2 (initial SCS runoff curve number for moisture condition II) and ESCO (soil evaporation compensation factor). The best simulation generally performed better during the calibration period than the validation period. In calibration and validation periods, NSE is ≤ 0.8, while PBIAS is ≥ ﹣80.3%, RMSE ≥ 11.2 m³/s, and R² ≤ 0.9. The simulations project a future increase in temperature and potential evapotranspiration over the basin, but they do not project a significant future trend in precipitation and hydrological variables. However, the spatial distribution of precipitation reveals a projected increase in precipitation in the southern part of the basin and a decline in the northern part of the basin, with the region of reduced precipitation projected to increase with GWLs. A decrease in all hydrological variables is projected over most parts of the basin, especially over the eastern part of the basin. The simulations predict meteorological droughts (i.e., SPEI and SPI), agricultural droughts (i.e., SSI), and hydrological droughts (i.e., WYLDI, SRI) would become more intense and severe across the basin. SPEI-drought has a greater magnitude of increase than SPI-drought, and agricultural and hydrological droughts have a magnitude of increase between the two. As a result, this research suggests that future hydrological droughts over the LRB could be more severe than the SPI-drought projection predicts but less severe than the SPEI-drought projection. This research can be used to mitigate the effects of potential climate change on basin hydrological drought.

Keywords: climate change, CORDEX, drought, hydrological modelling, Limpopo River Basin

Procedia PDF Downloads 102
85 Improved Food Security and Alleviation of Cyanide Intoxication through Commercialization and Utilization of Cassava Starch by Tanzania Industries

Authors: Mariam Mtunguja, Henry Laswai, Yasinta Muzanilla, Joseph Ndunguru

Abstract:

Starchy tuberous roots of cassava provide food for people but also find application in various industries. Recently there has been the focus of concentrated research efforts to fully exploit its potential as a sustainable multipurpose crop. High starch yield is the important trait for commercial cassava production for the starch industries. Furthermore, cyanide present in cassava root poses a health challenge in the use of cassava for food. Farming communities where cassava is a staple food, prefer bitter (high cyanogenic) varieties as protection from predators and thieves. As a result, food insecure farmers prefer growing bitter cassava. This has led to cyanide intoxication to this farming communities. Cassava farmers can benefit from marketing cassava to starch producers thereby improving their income and food security. This will decrease dependency on cassava as staple food as a result of increased income and be able to afford other food sources. To achieve this, adequate information is required on the right cassava cultivars and appropriate harvesting period so as to maximize cassava production and profitability. This study aimed at identifying suitable cassava cultivars and optimum time of harvest to maximize starch production. Six commonly grown cultivars were identified and planted in a complete random block design and further analysis was done to assess variation in physicochemical characteristics, starch yield and cyanogenic potentials across three environments. The analysis showed that there is a difference in physicochemical characteristics between landraces (p ≤ 0.05), and can be targeted to different industrial applications. Among landraces, dry matter (30-39%), amylose (11-19%), starch (74-80%) and reducing sugars content (1-3%) varied when expressed on a dry weight basis (p ≤ 0.05); however, only one of the six genotypes differed in crystallinity and mean starch granule particle size, while glucan chain distribution and granule morphology were the same. In contrast, the starch functionality features measured: swelling power, solubility, syneresis, and digestibility differed (p ≤ 0.05). This was supported by Partial least square discriminant analysis (PLS-DA), which highlighted the divergence among the cassavas based on starch functionality, permitting suggestions for the targeted uses of these starches in diverse industries. The study also illustrated genotypic difference in starch yield and cyanogenic potential. Among landraces, Kiroba showed potential for maximum starch yield (12.8 t ha-1) followed by Msenene (12.3 t ha-1) and third was Kilusungu (10.2 t ha-1). The cyanide content of cassava landraces was between 15 and 800 ppm across all trial sites. GGE biplot analysis further confirmed that Kiroba was a superior cultivar in terms of starch yield. Kilusungu had the highest cyanide content and average starch yield, therefore it can also be suitable for use in starch production.

Keywords: cyanogen, cassava starch, food security, starch yield

Procedia PDF Downloads 195
84 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp

Authors: Ali Mohammed Ali Lmbash

Abstract:

The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.

Keywords: smart architecture, Hatay Camp, sustainability, machine learning.

Procedia PDF Downloads 11
83 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 145
82 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation

Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen

Abstract:

Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.

Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling

Procedia PDF Downloads 56
81 Modelling of Groundwater Resources for Al-Najaf City, Iraq

Authors: Hayder H. Kareem, Shunqi Pan

Abstract:

Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.

Keywords: Al-Najaf city, conceptual modelling, groundwater, unconfined aquifer, visual MODFLOW

Procedia PDF Downloads 176
80 Mindfulness and the Purpose of Being in the Present

Authors: Indujeeva Keerthila Peiris

Abstract:

The secular view of mindfulness has some connotation to the original meaning of mindfulness mentioned in the Theravada Buddhist texts (Pāli Canon), but there is a substantial difference in the meaning of the two. Secular Mindfulness Based Interventions (MBI) focus on stilling the mind, which may provide short-term benefits and help individuals to deal with physical pain, grief, and distress. However, as with many popular educational innovations, the foundational values of mindfulness strategies have been distorted and subverted in a number of instances in which ‘McMindfulness’ programmes have been implemented with a view to reducing mindfulness mediation as a self-help technique that is easily misappropriated for the exclusive pursuit of corporate objectives, employee pacification, and commercial profit. The intention of this paper is not to critique the misappropriations of mindfulness. Instead, to go back to the root source and bring insights from the Buddhist Pāli Canon and its associated teachings on mindfulness in its own terms. In the Buddha’s discourses, as preserved in the Pāli Canon, there is nothing more significant than the understanding and practice of ‘Satipatthãna’. The Satipatthāna Sutta , the ‘Discourse on the Establishment of Mindfulness,’ opens with a proclamation highlighting both the purpose of this training and its methodology. The right practice of mindfulness is the gateway to understanding the Buddha’s teaching. However, although this concept is widely discussed among the Dhamma practitioners, it is the least understood one of them all. The purpose of this paper is to understand deeper meaning of mindfulness as it was originally intended by the Teacher. The natural state of mind is that it wanders. It wanders into the past, the present, and the future. One’s ability to hold attention to a mind object (emotion, thought, feeling, sensation, sense impression) called ‘concentration’. The intentional concentration process does not lead to wisdom. However, the development of wisdom starts when the mind is calm, concentrated, and unified. The practice of insight contemplation aims at gaining a direct understanding of the real nature of phenomena. According to the Buddha’s teaching, there are three basic facts of all existence: 1) impermanence (anicca in Pāli) ; 2) fabrication (also commonly known as suffering, unsatisfactoriness, sankhara or dukka in Pāli); 3) not-self (insubstantiality or impersonality, annatta in Pāli ). The entire Buddhist doctrine is based on these three facts. The problem is our ignorance covers reality. It is not that a person sees the emptiness of them or that we try to see the emptiness of our experience by conceptually thinking that they are empty. It is an experiential outcome that happens when the cause-and- effect overrides the self-view (sakkaya dhitti), and ignorance is known as ignorance and eradicated once and for all. Therefore, the right view (samma dhitti) is the starting point of the path, not ethical conduct (sila) or samadhi (jhana). In order to develop the right view, we need to first listen to the correct Dhamma and possess Yoniso manasikara (right comprehension) to know the five aggregates as five aggregates.

Keywords: mindfulness, spirituality, buddhism, pali canon

Procedia PDF Downloads 51
79 Anaerobic Soil Disinfestation: Feasible Alternative to Soil Chemical Fumigants

Authors: P. Serrano-Pérez, M. C. Rodríguez-Molina, C. Palo, E. Palo, A. Lacasa

Abstract:

Phytophthora nicotianae is the principal causal agent of root and crown rot disease of red pepper plants in Extremadura (Western Spain). There is a need to develop a biologically-based method of soil disinfestation that facilitates profitable and sustainable production without the use of chemical fumigants. Anaerobic Soil Disinfestation (ASD), as well know as biodisinfestation, has been shown to control a wide range of soil-borne pathogens and nematodes in numerous crop production systems. This method implies soil wetting, incorporation of a easily decomposable carbon-rich organic amendment and covering with plastic film for several weeks. ASD with rapeseed cake (var. Tocatta, a glucosinolates-free variety) used as C-source was assayed in spring 2014, before the pepper crop establishment. The field experiment was conducted at the Agricultural Research Centre Finca La Orden (Southwestern Spain) and the treatments were: rapeseed cake (RCP); rapeseed cake without plastic cover (RC); control non-amendment (CP) and control non-amendment without plastic cover (C). The experimental design was a randomized complete block design with four replicates and a plot size of 5 x 5 m. On 26 March, rapeseed cake (1 kg·m-2) was incorporated into the soil with a rotovator. Biological probes with the inoculum were buried at 15 and 30-cm depth (biological probes were previously prepared with 100 g of disinfected soil inoculated with chlamydospores (chlam) of P. nicotianae P13 isolate [100 chlam·g-1 of soil] and wrapped in agryl cloth). Sprinkler irrigation was run until field capacity and the corresponding plots were covered with transparent plastic (PE 0.05 mm). On 6 May plastics were removed, the biological probes were dug out and a bioassay was established. One pepper seedling at the 2 to 4 true-leaves stage was transplanted in the soil from each biological probe. Plants were grown in a climatic chamber and disease symptoms were recorded every week during 2 months. Fragments of roots and crown of symptomatic plants were analyzed on NARPH media and soil from rizospheres was analyzed using carnation petals as baits. Results of “survival” were expressed as the percentage of soil samples where P. nicotianae was detected and results of “infectivity” were expressed as the percentage of diseased plants. No differences were detected in deep effect. Infectivity of P. nicotianae chlamydospores was successfully reduced in RCP treatment (4.2% of infectivity) compared with the controls (41.7% of infectivity). The pattern of survival was similar to infectivity observed by the bioassay: 21% of survival in RCP; 79% in CP; 83% in C and 87% in RC. Although ASD may be an effective alternative to chemical fumigants to pest management, more research is necessary to show their impact on the microbial community and chemistry of the soil.

Keywords: biodisinfestation, BSD, soil fumigant alternatives, organic amendments

Procedia PDF Downloads 193
78 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models

Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg

Abstract:

Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.

Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction

Procedia PDF Downloads 287