Search results for: direct and indirect tensile test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12793

Search results for: direct and indirect tensile test

12523 A Development Model of Factors Affecting Decision Making to Select Successor in Family Business of Thailand

Authors: Polvasut Mahaiamsiri, Piraphong Foosiri

Abstract:

The purpose of this research is to explore the model of factors affecting decision making to select successor in family business of Thailand. A Structural Equation Model (SEM) was created from relevant theories and researches. Consequently, examine and analyse, the causal relation factors of Succession Plan, Recruitment Process and Strategic Planning, whether they have direct or indirect effects on Decision Making to Select Successor in family business. Units of analysis are selected from the family business, totalling 300 sampling. Population sampling is current owners or CEO from the percentage of six district areas in Thailand with multi-stage sampling. A set of questionnaires is used to collect data. An analysis of structural equation modelling (SEM) technique using AMOS 21 program is conducted to test the hypotheses and confirmatory factor analysis is performed and shows that these variables can be tested. The finding of this study revealed that these factors are separate constructs that combine to determine decision making to select successors.

Keywords: succession plan, family business, recruitment process, strategic planning, decision making to select successor

Procedia PDF Downloads 167
12522 Effects of Accelerated Environment Aging on the Mechanical Properties of a Coir Fiber Reinforced Polyester Composite

Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez

Abstract:

Coir natural fiber reinforced polyester composites were exposed to an accelerated environment aging in order to study the influence on the mechanical properties. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. A physical and mechanical characterization was necessary to found the best behavior between three types of coconut. Composites were fabricated by hand lay-up technique and samples were cut by water jet technique. An accelerated aging test simulates environmental climate conditions in a hygrothermal and ultraviolet chamber. Samples were exposed to the UV/moisture rich environment for 500 and 1000 hours. The tests were performed in accordance with ASTM G154. An additional water absorption test was carried out by immersing specimens in a water bath. Mechanical behaviors of the composites were tested by tensile, flexural and impact test according to ASTM standards, after aging and compared with unaged composite specimens. It was found that accelerated environment aging affects mechanical properties in comparison with unaged ones. Tensile and flexural strength were lower after aging, meantime elongation at break and flexural deflection increased. Impact strength was found that reduced after aging. Other result revealed that the percentage of moisture uptake increased with aging. This results showed that composite materials reinforced with natural fibers required an improvement adding a protective barrier to reduce water absorption and increase UV resistance.

Keywords: coir fiber, polyester composites, environmental aging, mechanical properties

Procedia PDF Downloads 250
12521 Characterization of Cement Concrete Pavement

Authors: T. B. Anil Kumar, Mallikarjun Hiremath, V. Ramachandra

Abstract:

The present experimental investigation deals with the quality performance analysis of cement concrete with 0, 15 and 25% fly ash and 0, 0.2, 0.4 and 0.6% of polypropylene fibers by weight of cement. The various test parameters like workability, unit weight, compressive strength, flexural strength, split tensile strength and abrasion resistance are detailed in the analysis. The compressive strength of M40 grade concrete attains higher value by the replacement of cement by 15% fly ash and at 0.4% PP after 28 and 56 days of curing. Higher flexural strength of concrete was observed by the replacement of cement by 15% fly ash with 0.2% PP after 28 and 56 days of curing. Similarly, split tensile strength value also increases and attains higher value by the replacement of cement by 15% fly ash with 0.4% PP after 28 and 56 days of curing. The percentage of wear gets reduced to 30 to 33% by the addition of fibers at 0.2%, 0.4% and 0.6% in cement concrete replaced by 15 and 25% fly ash. Hence, it is found that the pavement thickness gets reduced up to 20% when compared with plain concrete slab by the 15% fly ash treated with 0.2% PP fibers and also reduced up to 27% of surface course cost.

Keywords: cement, fly ash, polypropylene fiber, pavement design, cost analysis

Procedia PDF Downloads 371
12520 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 277
12519 Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate

Authors: Yongyu Duo, Xiaogang Liu, Qingrui Yue

Abstract:

The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure.

Keywords: PCA, CFRP plate, interface treatment form, normal pressure, friction, coupling action

Procedia PDF Downloads 51
12518 Testing Causal Model of Depression Based on the Components of Subscales Lifestyle with Mediation of Social Health

Authors: Abdolamir Gatezadeh, Jamal Daghaleh

Abstract:

The lifestyle of individuals is important and determinant for the status of psychological and social health. Recently, especially in developed countries, the relationship between lifestyle and mental illnesses, including depression, has attracted the attention of many people. In order to test the causal model of depression based on lifestyle with mediation of social health in the study, basic and applied methods were used in terms of objective and descriptive-field as well as the data collection. Methods: This study is a basic research type and is in the framework of correlational plans. In this study, the population includes all adults in Ahwaz city. A randomized, multistage sampling of 384 subjects was selected as the subjects. Accordingly, the data was collected and analyzed using structural equation modeling. Results: In data analysis, path analysis indicated the confirmation of the assumed model fit of research. This means that subscales lifestyle has a direct effect on depression and subscales lifestyle through the mediation of social health which in turn has an indirect effect on depression. Discussion and conclusion: According to the results of the research, the depression can be used to explain the components of the lifestyle and social health.

Keywords: depression, subscales lifestyle, social health, causal model

Procedia PDF Downloads 135
12517 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride

Authors: Farzaneh Shayeganfar, Ali Ramazani

Abstract:

Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.

Keywords: surface plasmon, hot carrier, strain engineering, valley polariton

Procedia PDF Downloads 86
12516 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment

Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi

Abstract:

Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.

Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering

Procedia PDF Downloads 274
12515 Evaluation of Tensile Strength of Natural Fibres Reinforced Epoxy Composites Using Fly Ash as Filler Material

Authors: Balwinder Singh, Veerpaul Kaur Mann

Abstract:

A composite material is formed by the combination of two or more phases or materials. Natural minerals-derived Basalt fiber is a kind of fiber being introduced in the polymer composite industry due to its good mechanical properties similar to synthetic fibers and low cost, environment friendly. Also, there is a rising trend towards the use of industrial wastes as fillers in polymer composites with the aim of improving the properties of the composites. The mechanical properties of the fiber-reinforced polymer composites are influenced by various factors like fiber length, fiber weight %, filler weight %, filler size, etc. Thus, a detailed study has been done on the characterization of short-chopped Basalt fiber-reinforced polymer matrix composites using fly ash as filler. Taguchi’s L9 orthogonal array has been used to develop the composites by considering fiber length (6, 9 and 12 mm), fiber weight % (25, 30 and 35 %) and filler weight % (0, 5 and 10%) as input parameters with their respective levels and a thorough analysis on the mechanical characteristics (tensile strength and impact strength) has been done using ANOVA analysis with the help of MINITAB14 software. The investigation revealed that fiber weight is the most significant parameter affecting tensile strength, followed by fiber length and fiber weight %, respectively, while impact characterization showed that fiber length is the most significant factor, followed by fly ash weight, respectively. Introduction of fly ash proved to be beneficial in both the characterization with enhanced values upto 5% fly ash weight. The present study on the natural fibres reinforced epoxy composites using fly ash as filler material to study the effect of input parameters on the tensile strength in order to maximize tensile strength of the composites. Fabrication of composites based on Taguchi L9 orthogonal array design of experiments by using three factors fibre type, fibre weight % and fly ash % with three levels of each factor. The Optimization of composition of natural fibre reinforces composites using ANOVA for obtaining maximum tensile strength on fabricated composites revealed that the natural fibres along with fly ash can be successfully used with epoxy resin to prepare polymer matrix composites with good mechanical properties. Paddy- Paddy fibre gives high elasticity to the fibre composite due to presence of approximately hexagonal structure of cellulose present in paddy fibre. Coir- Coir fibre gives less tensile strength than paddy fibre as Coir fibre is brittle in nature when it pulls breakage occurs showing less tensile strength. Banana- Banana fibre has the least tensile strength in comparison to the paddy & coir fibre due to less cellulose content. Higher fibre weight leads to reduction in tensile strength due to increased nuclei of air pockets. Increasing fly ash content reduces tensile strength due to nonbonding of fly ash particles with natural fibre. Fly ash is also not very strong as compared to the epoxy resin leading to reduction in tensile strength.

Keywords: tensile strength and epoxy resin. basalt Fiber, taguchi, polymer matrix, natural fiber

Procedia PDF Downloads 23
12514 Prediction of Unsaturated Permeability Functions for Clayey Soil

Authors: F. Louati, H. Trabelsi, M. Jamei

Abstract:

Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media.

Keywords: desiccation, cracks, permeability, unsaturated hydraulic flow, simulation

Procedia PDF Downloads 271
12513 Rheological Model for Describing Spunlace Nonwoven Behavior

Authors: Sana Ridene, Soumaya Sayeb, Houda Helali, Mohammed Ben Hassen

Abstract:

Nonwoven structures have a range of applications which include Medical, filtration, geotextile and recently this unconventional fabric is finding a niche in fashion apparel. In this paper, a modified form of Vangheluwe rheological model is used to describe the mechanical behavior of nonwovens fabrics in uniaxial tension. This model is an association in parallel of three Maxwell elements characterized by damping coefficients η1, η2 and η3 and E1, E2, E3 elastic modulus and a nonlinear spring C. The model is verified experimentally with two types of nonwovens (50% viscose /50% Polyester) and (40% viscose/60% Polyester) and a range of three square weights values. Comparative analysis of the theoretical model and the experimental results of tensile test proofs a high correlation between them. The proposed model can fairly well replicate the behavior of nonwoven fabrics during relaxation and sample traction. This allowed us to predict the mechanical behavior in tension and relaxation of fabrics starting only from their technical parameters (composition and weight).

Keywords: mechanical behavior, tensile strength, relaxation, rheological model

Procedia PDF Downloads 379
12512 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: linear low density polyethylene, nanocomposite, organoclay, plasticizer

Procedia PDF Downloads 262
12511 Effect of Chemical Treatment on Mechanical Properties of KENAF Fiber Reinforced Unsaturated Polyester Composites

Authors: S. S. Abdullahi, H. Musa, A. A. Salisu, A. Ismaila, A. H. Birniwa

Abstract:

In this study the treated and untreated kenaf fiber reinforced unsaturated polyester conventional composites were prepared. Hand lay-up technique was used with dump-bell shaped mold. The kenaf bast fiber was retted enzymatically, washed, dried and combed with a nylon brush. A portion of the kenaf fiber was mercerized and treated with benzoylchloride prior to composite fabrication. Untreated kenaf fiber was also used to prepare the composites to serve as control. The cured composites were subjected to various mechanical testes, such as hardness test, impact test and tensile strength test. The results obtained indicated an increase in all the parameters tested with the fiber treatment. This is because the lignin, hemi-celluloses, pectin and other impurities were removed during alkaline treatment (i.e mercerization). This shows that, the durability of the natural cellulosic fibers to different composite applications can be achieved via fiber treatments.

Keywords: composite, kenaf fibre, reinforce, retted

Procedia PDF Downloads 492
12510 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment

Authors: Chaiwat Tantarangsee

Abstract:

The purposes of this study are: 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.

Keywords: coded indirect corrective feedback, error correction, error treatment, frequent English writing errors

Procedia PDF Downloads 210
12509 Efficacy of Music for Improving Language in Children with Special Needs

Authors: Louisa Han Lin Tan, Poh Sim Kang, Wei Ming Loi, Susan Jane Rickard Liow

Abstract:

The efficacy of music for improving speech and language has been shown across ages and diagnoses. Across the world, the wide range of therapy settings and increasing number of children diagnosed with special needs demand more cost and time effective service delivery. However, research exploring co-treatment models on children other than those with Autism Spectrum Disorder remains sparse. The aim of this research was to determine the efficacy of music for improving language in children with special needs, and generalizability of therapy effects. 25 children (7 to 12 years) were split into three groups – A, B and control. A cross-over design with direct therapy (storytelling) with or without music, and indirect therapy was applied with two therapy phases lasting 6 sessions each. Therapy targeted three prepositions in each phase. Baseline language abilities were assessed, with re-assessment after each phase. The introduction of music in therapy led to significantly greater improvement (p=.046, r=.53) in associated language abilities, with case studies showing greater effectiveness in developmentally appropriate target prepositions. However, improvements were not maintained once direct therapy ceased. As such, the incorporation of music could lead to greater efficiency and effectiveness of language therapy in children with special needs, but sustainability and generalizability of therapy effects both require further exploration.

Keywords: music, language therapy, children, special needs

Procedia PDF Downloads 436
12508 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy

Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah

Abstract:

This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.

Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio

Procedia PDF Downloads 256
12507 Ethical Leadership Mediates Subordinates’ Likeness for Leader and Affective Commitment to Squads among Police Cadets

Authors: Odunayo O. Oluwafemi, Valentine A. Mebu

Abstract:

There is a blur as to whether subordinates’ sheer fondness for a leader or the ethical behaviours demonstrated by such a leader is what engenders subordinates’ affective commitment to the group. This study aimed to depict and clarify that perceived ethical leadership by subordinates outweighs their likeness for a leader in determining their level of affective commitment to the group using a sample of police cadets. Subordinate cadets were asked to rate the ethical leadership behaviours displayed by their cadet Leaders; their likeness for their leaders and also rate their own affective commitment to their squads (N = 252, Mean Age = 22.70, Age range = 17 to 29 years, SD = 2.264, 75% males). A mediation analysis was conducted to test hypotheses. Results showed that there was a significant indirect effect between likeness for leaders and affective commitment through ethical leadership behaviour (b = .734, 95% BCa CI [.413, 1.146], p = .000); and a nonsignificant direct effect between likeness for leader and subordinates’ affective commitment (b = .526, 95% BCa CI [-.106, 1.157], p = .10), this indicated a full mediation. The results strongly suggested that the positive relationship between subordinates’ likeness for their leaders and their affective commitment to the squad is produced by perceived leaders’ ethical behaviours. Therefore, leaders should exhibit and prioritize ethical behaviours over the need to be liked by their subordinates to guarantee their affective commitment to group goals and aspirations.

Keywords: affective commitment, ethical leadership, leader cadets, likeness for leader, subordinate cadets

Procedia PDF Downloads 148
12506 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 177
12505 Biomechanical Assessment of Esophageal Elongation

Authors: Marta Kozuń, Krystian Toczewski, Sylwester Gerus, Justyna Wolicka, Kamila Boberek, Jarosław Filipiak, Dariusz Patkowski

Abstract:

Long gap esophageal atresia is a congenital defect and is a challenge for pediatric surgeons all over the world. There are different surgical techniques in use to treat atresia. One of them is esophageal elongation but the optimal suture placement technique to achieve maximum elongation with low-risk complications is still unknown. The aim of the study was to characterize the process of esophageal elongation from the biomechanical point of view. Esophagi of white Pekin Duck was used as a model based on the size of this animal which is similar to a newborn (2.5-4kg). The specimens were divided into two groups: the control group (CG) and the group with sutures (SG). The esophagi of the control group were mounted in the grips of the MTS Tytron 250 testing machine and tensile test until rupture was performed. The loading speed during the test was 10mm/min. Then the SG group was tested. Each esophagus was cut into two equal parts and that were fused together using surgical sutures. The distance between both esophagus parts was 20mm. Ten both ends were mounted on the same testing machine and the tensile test with the same parameters was conducted. For all specimens, force and elongation were recorded. The biomechanical properties, i.e., the maximal force and maximal elongation, were determined on the basis of force-elongation curves. The maximal elongation was determined at the point of maximal force. The force achieved with the suture group was 10.1N±1.9N and 50.3N±11.6N for the control group. The highest elongation was also obtained for the control group: 18mm±3mm vs. 13.5mm ±2.4mm for the suture group. The presented study expands the knowledge of elongation of esophagi. It is worth emphasizing that the duck esophagus differs from the esophagus of a newborn, i.e., its wall lacks striated muscle cells. This is why the parts of animal esophagi used in the research are may characterized by different biomechanical properties in comparison with newborn tissue.

Keywords: long gap atresia treatment, esophageal elongation, biomechanical properties, soft tissue

Procedia PDF Downloads 72
12504 An Analysis of Illocutioary Act in Martin Luther King Jr.'s Propaganda Speech Entitled 'I Have a Dream'

Authors: Mahgfirah Firdaus Soberatta

Abstract:

Language cannot be separated from human life. Humans use language to convey ideas, thoughts, and feelings. We can use words for different things for example like asserted, advising, promise, give opinions, hopes, etc. Propaganda is an attempt which seeks to obtain stable behavior to adopt everyone to his everyday life. It also controls the thoughts and attitudes of individuals in social settings permanent. In this research, the writer will discuss about the speech act in a propaganda speech delivered by Martin Luther King Jr. in Washington at Lincoln Memorial on August 28, 1963. 'I Have a Dream' is a public speech delivered by American civil rights activist MLK, he calls from an end to racism in USA. In this research, the writer uses Searle theory to analyze the types of illocutionary speech act that used by Martin Luther King Jr. in his propaganda speech. In this research, the writer uses a qualitative method described in descriptive, because the research wants to describe and explain the types of illocutionary speech acts used by Martin Luther King Jr. in his propaganda speech. The findings indicate that there are five types of speech acts in Martin Luther King Jr. speech. MLK also used direct speech and indirect speech in his propaganda speech. However, direct speech is the dominant speech act that MLK used in his propaganda speech. It is hoped that this research is useful for the readers to enrich their knowledge in a particular field of pragmatic speech acts.

Keywords: speech act, propaganda, Martin Luther King Jr., speech

Procedia PDF Downloads 411
12503 Government Intervention in Land Market

Authors: Waqar Ahmad Bajwa

Abstract:

In the land market, there are two kinds of government intervention. First one is the control of development and second is the supply of land. In the both intervention Government has a lot of benefits. In development control the government designation of conservation areas and the effects of growth controls which may increase the price of land. On other hand Government also apply charge fee on land. The second type of intervention is to increase the supply of land, either by direct action or indirect action, as in the Pakistan, by obligatory purchase or important domain.

Keywords: supply of control, control of development, charge fee, land control

Procedia PDF Downloads 234
12502 The Impact of Financial Risk on Banks’ Financial Performance: A Comparative Study of Islamic Banks and Conventional Banks in Pakistan

Authors: Mohammad Yousaf Safi Mohibullah Afghan

Abstract:

The study made on Islamic and conventional banks scrutinizes the risks interconnected with credit and liquidity on the productivity performance of Islamic and conventional banks that operate in Pakistan. Among the banks, only 4 Islamic and 18 conventional banks have been selected to enrich the result of our study on Islamic banks performance in connection to conventional banks. The selection of the banks to the panel is based on collecting quarterly unbalanced data ranges from the first quarter of 2007 to the last quarter of 2017. The data are collected from the Bank’s web sites and State Bank of Pakistan. The data collection is carried out based on Delta-method test. The mentioned test is used to find out the empirical results. In the study, while collecting data on the banks, the return on assets and return on equity have been major factors that are used assignificant proxies in determining the profitability of the banks. Moreover, another major proxy is used in measuring credit and liquidity risks, the loan loss provision to total loan and the ratio of liquid assets to total liability. Meanwhile, with consideration to the previous literature, some other variables such as bank size, bank capital, bank branches, and bank employees have been used to tentatively control the impact of those factors whose direct and indirect effects on profitability is understood. In conclusion, the study emphasizes that credit risk affects return on asset and return on equity positively, and there is no significant difference in term of credit risk between Islamic and conventional banks. Similarly, the liquidity risk has a significant impact on the bank’s profitability, though the marginal effect of liquidity risk is higher for Islamic banks than conventional banks.

Keywords: islamic & conventional banks, performance return on equity, return on assets, pakistan banking sectors, profitibility

Procedia PDF Downloads 129
12501 Quality of Life Among People with Mental Illness Attending a Psychiatric Outpatient Clinic in Ethiopia: A Structural Equation Model

Authors: Wondale Getinet Alemu, Lillian Mwanri, Clemence Due, Telake Azale, Anna Ziersch

Abstract:

Background: Mental illness is one of the most severe, chronic, and disabling public health problems that affect patients' Quality of life (QoL). Improving the QoL for people with mental illness is one of the most critical steps in stopping disease progression and avoiding complications of mental illness. Therefore, we aimed to assess the QoL and its determinants in patients with mental illness in outpatient clinics in Northwest Ethiopia in 2023. Methods: A facility-based cross-sectional study was conducted among people with mental illness in an outpatient clinic in Ethiopia. The sampling interval was decided by dividing the total number of study participants who had a follow-up appointment during the data collection period (2400) by the total sample size of 638, with the starting point selected by lottery method. The interviewer-administered WHOQOL BREF-26 tool was used to measure the QoL of people with mental illness. The domains and Health-Related Quality of Life (HRQoL) were identified. The indirect and direct effects of variables were calculated using structural equation modeling with SPSS-28 and Amos-28 software. A p-value of < 0.05 and a 95% CI were used to evaluate statistical significance. Results: A total of 636 (99.7%) participants responded and completed the WHOQOL-BREF questionnaire. The mean score of overall HRQoL of people with mental illness in the outpatient clinic was (49.6 ± 10 Sd). The highest QoL was found in the physical health domain (50.67 ±9.5 Sd), and the lowest mean QoL was found in the psychological health domain (48.41±10 Sd). Rural residents, drug nonadherence, suicidal ideation, not getting counseling, moderate or severe subjective severity, the family does not participate in patient care, and a family history of mental illness had an indirect negative effect on HRQoL. Alcohol use and psychological health domain had a direct positive effect on QoL. Furthermore, objective severity of illness, having low self-esteem, and having a history of mental illness in the family had both direct and indirect effects on QoL. Furthermore, sociodemographic factors (residence, educational status, marital status), social support-related factors (self-esteem, family not participating in patient care), substance use factors (alcohol use, tobacco use,) and clinical factors (objective and subjective severity of illness, not getting counseling, suicidal ideation, number of episodes, comorbid illness, family history of mental illness, poor drug adherence) directly and indirectly affected QoL. Conclusions: In this study, the QoL of people with mental illness was poor, with the psychological health domain being the most affected. Sociodemographic factors, social support-related factors, drug use factors, and clinical factors directly and indirectly, affect QoL through the mediator variables of physical health domains, psychological health domains, social relation health domains, and environmental health domains. In order to improve the QoL of people with mental illnesses, we recommend that emphasis be given to addressing the scourge of mental health, including the development of policy and practice drivers that address the above-identified factors.

Keywords: quality of life, mental wellbeing, mental illness, mental disorder, Ethiopia

Procedia PDF Downloads 38
12500 Determining Full Stage Creep Properties from Miniature Specimen Creep Test

Authors: W. Sun, W. Wen, J. Lu, A. A. Becker

Abstract:

In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive  regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.

Keywords: creep damage property, miniature specimen, inverse approach, finite element modeling

Procedia PDF Downloads 206
12499 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment: The Case of Reading and Writing English for Academic Purposes II

Authors: Chaiwat Tantarangsee

Abstract:

The purposes of this study are 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.

Keywords: coded indirect corrective feedback, error correction, error treatment, English writing

Procedia PDF Downloads 277
12498 Influencing Factors and Mechanism of Patient Engagement in Healthcare: A Survey in China

Authors: Qing Wu, Xuchun Ye, Kirsten Corazzini

Abstract:

Objective: It is increasingly recognized that patients’ rational and meaningful engagement in healthcare could make important contributions to their health care and safety management. However, recent evidence indicated that patients' actual roles in healthcare didn’t match their desired roles, and many patients reported a less active role than desired, which suggested that patient engagement in healthcare may be influenced by various factors. This study aimed to analyze influencing factors on patient engagement and explore the influence mechanism, which will be expected to contribute to the strategy development of patient engagement in healthcare. Methods: On the basis of analyzing the literature and theory study, the research framework was developed. According to the research framework, a cross-sectional survey was employed using the behavior and willingness of patient engagement in healthcare questionnaire, Chinese version All Aspects of Health Literacy Scale, Facilitation of Patient Involvement Scale and Wake Forest Physician Trust Scale, and other influencing factor related scales. A convenience sample of 580 patients was recruited from 8 general hospitals in Shanghai, Jiangsu Province, and Zhejiang Province. Results: The results of the cross-sectional survey indicated that the mean score for the patient engagement behavior was (4.146 ± 0.496), and the mean score for the willingness was (4.387 ± 0.459). The level of patient engagement behavior was inferior to their willingness to be involved in healthcare (t = 14.928, P < 0.01). The influencing mechanism model of patient engagement in healthcare was constructed by the path analysis. The path analysis revealed that patient attitude toward engagement, patients’ perception of facilitation of patient engagement and health literacy played direct prediction on the patients’ willingness of engagement, and standard estimated values of path coefficient were 0.341, 0.199, 0.291, respectively. Patients’ trust in physician and the willingness of engagement played direct prediction on the patient engagement, and standard estimated values of path coefficient were 0.211, 0.641, respectively. Patient attitude toward engagement, patients’ perception of facilitation and health literacy played indirect prediction on patient engagement, and standard estimated values of path coefficient were 0.219, 0.128, 0.187, respectively. Conclusions: Patients engagement behavior did not match their willingness to be involved in healthcare. The influencing mechanism model of patient engagement in healthcare was constructed. Patient attitude toward engagement, patients’ perception of facilitation of engagement and health literacy posed indirect positive influence on patient engagement through the patients’ willingness of engagement. Patients’ trust in physician and the willingness of engagement had direct positive influence on the patient engagement. Patient attitude toward engagement, patients’ perception of physician facilitation of engagement and health literacy were the factors influencing the patients’ willingness of engagement. The results of this study provided valuable evidence on guiding the development of strategies for promoting patient rational and meaningful engagement in healthcare.

Keywords: healthcare, patient engagement, influencing factor, the mechanism

Procedia PDF Downloads 127
12497 Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector

Authors: Kkochorong Park, Keun Cheon Kim, Hyoban Lee, Eun Ju Lee, Bongsoo Kim

Abstract:

Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism.

Keywords: DNA, gene delivery, nanoinjector, nanowire

Procedia PDF Downloads 248
12496 ANFIS Based Technique to Estimate Remnant Life of Power Transformer by Predicting Furan Contents

Authors: Priyesh Kumar Pandey, Zakir Husain, R. K. Jarial

Abstract:

Condition monitoring and diagnostic is important for testing of power transformer in order to estimate the remnant life. Concentration of furan content in transformer oil can be a promising indirect measurement of the aging of transformer insulation. The oil gets contaminated mainly due to ageing. The present paper introduces adaptive neuro fuzzy technique to correlate furanic compounds obtained by high performance liquid chromatography (HPLC) test and remnant life of the power transformer. The results are obtained by conducting HPLC test at TIFAC-CORE lab, NIT Hamirpur on thirteen power transformer oil samples taken from Himachal State Electricity Board, India.

Keywords: adaptive neuro fuzzy technique, furan compounds, remnant life, transformer oil

Procedia PDF Downloads 435
12495 Integration of Virtual Learning of Induction Machines for Undergraduates

Authors: Rajesh Kumar, Puneet Aggarwal

Abstract:

In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.

Keywords: block rotor test, DC test, no load test, virtual environment, voltage source inverter

Procedia PDF Downloads 328
12494 Effect of Using Crumb Rubber with Warm-Mix-Asphalt Additive in Laboratory and Field Aging

Authors: Mustafa Akpolat, Baha Vural Kök

Abstract:

Using a waste material such as crumb rubber (CR) obtained by waste tires has become an important issue in respect to sustainability. However, the CR modified mixture also requires high manufacture temperature as a polymer modified mixture. For this reason in this study, it is intended to produce a CR modified mixture with warm mix asphalt additives in the same mixture. Asphalt mixtures produced by pure, 10%CR, 10%CR+3% Sasobit and 10%CR+0.7% Evotherm were subjected to aging procedure in the laboratory and the field. The indirect tensile repeated tests were applied to aged and original specimens. It was concluded that the fatigue life of the mixtures increased significantly with the increase of aging time. CR+Sasobit modified mixture aged at the both field and laboratory gave the highest load cycle among the mixtures.

Keywords: crumb rubber, warm mix asphalt, aging, fatigue

Procedia PDF Downloads 376