Search results for: differential algebraic equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2994

Search results for: differential algebraic equations

2784 A Trapezoidal-Like Integrator for the Numerical Solution of One-Dimensional Time Dependent Schrödinger Equation

Authors: Johnson Oladele Fatokun, I. P. Akpan

Abstract:

In this paper, the one-dimensional time dependent Schrödinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff ordinary differential equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10-4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable.

Keywords: Schrodinger’s equation, partial differential equations, method of lines (MOL), stiff ODE, trapezoidal-like integrator

Procedia PDF Downloads 384
2783 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems

Authors: Adamu S. Salawu, Ibrahim O. Isah

Abstract:

Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.

Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation

Procedia PDF Downloads 101
2782 Dynamical Systems and Fibonacci Numbers

Authors: Vandana N. Purav

Abstract:

The Dynamical systems concept is a mathematical formalization for any fixed rule that describes the time dependence of a points position in its ambient space. e.g. pendulum of a clock, the number of fish each spring in a lake, the number of rabbits spring in an enclosure, etc. The Dynamical system theory used to describe the complex nature that is dynamical systems with differential equations called continuous dynamical system or dynamical system with difference equations called discrete dynamical system. The concept of dynamical system has its origin in Newtonian mechanics.

Keywords: dynamical systems, Fibonacci numbers, Newtonian mechanics, discrete dynamical system

Procedia PDF Downloads 467
2781 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging

Authors: Mohammad Esmaeilpour

Abstract:

One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.

Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions

Procedia PDF Downloads 443
2780 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 275
2779 On the Zeros of the Degree Polynomial of a Graph

Authors: S. R. Nayaka, Putta Swamy

Abstract:

Graph polynomial is one of the algebraic representations of the Graph. The degree polynomial is one of the simple algebraic representations of graphs. The degree polynomial of a graph G of order n is the polynomial Deg(G, x) with the coefficients deg(G,i) where deg(G,i) denotes the number of vertices of degree i in G. In this article, we investigate the behavior of the roots of some families of Graphs in the complex field. We investigate for the graphs having only integral roots. Further, we characterize the graphs having single roots or having real roots and behavior of the polynomial at the particular value is also obtained.

Keywords: degree polynomial, regular graph, minimum and maximum degree, graph operations

Procedia PDF Downloads 215
2778 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space

Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi

Abstract:

This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.

Keywords: transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space

Procedia PDF Downloads 408
2777 Effects of Variable Viscosity on Radiative MHD Flow in a Porous Medium Between Twovertical Wavy Walls

Authors: A. B. Disu, M. S. Dada

Abstract:

This study was conducted to investigate two dimensional heat transfer of a free convective-radiative MHD (Magneto-hydrodynamics) flow with temperature dependent viscosity and heat source of a viscous incompressible fluid in a porous medium between two vertical wavy walls. The fluid viscosity is assumed to vary as an exponential function of temperature. The flow is assumed to consist of a mean part and a perturbed part. The perturbed quantities were expressed in terms of complex exponential series of plane wave equation. The resultant differential equations were solved by Differential Transform Method (DTM). The numerical computations were presented graphically to show the salient features of the fluid flow and heat transfer characteristics. The skin friction and Nusselt number were also analyzed for various governing parameters.

Keywords: differential transform method, MHD free convection, porous medium, two dimensional radiation, two wavy walls

Procedia PDF Downloads 421
2776 Analytic Solutions of Solitary Waves in Three-Level Unbalanced Dense Media

Authors: Sofiane Grira, Hichem Eleuch

Abstract:

We explore the analytical soliton-pair solutions for unbalanced coupling between the two coherent lights and the atomic transitions in a dissipative three-level system in lambda configuration. The two allowed atomic transitions are interacting resonantly with two laser fields. For unbalanced coupling, it is possible to derive an explicit solution for non-linear differential equations describing the soliton-pair propagation in this three-level system with the same velocity. We suppose that the spontaneous emission rates from the excited state to both ground states are the same. In this work, we focus on such case where we consider the coupling between the transitions and the optical fields are unbalanced. The existence conditions for the soliton-pair propagations are determined. We will show that there are four possible configurations of the soliton-pair pulses. Two of them can be interpreted as a couple of solitons with same directions of polarization and the other two as soliton-pair with opposite directions of polarization. Due to the fact that solitons have stable shapes while propagating in the considered media, they are insensitive to noise and dispersion. Our results have potential applications in data transfer with the soliton-pair pulses, where a dissipative three-level medium could be a realistic model for the optical communication media.

Keywords: non-linear differential equations, solitons, wave propagations, optical fiber

Procedia PDF Downloads 103
2775 Going beyond Elementary Algebraic Identities: The Expectation of a Gifted Child, an Indian Scenario

Authors: S. R. Santhanam

Abstract:

A gifted child is one who gives evidence of creativity, good memory, rapid learning. In mathematics, a teacher often comes across some gifted children and they exhibit the following characteristics: unusual alertness, enjoying solving problems, getting bored on repetitions, self-taught, going beyond what teacher taught, ask probing questions, connecting unconnected concepts, vivid imagination, readiness for research work, perseverance of a topic. There are two main areas of research carried out on them: 1)identifying gifted children, 2) interacting and channelizing them. A lack of appropriate recognition will lead the gifted child demotivated. One of the main findings is if proper attention and nourishment are not given then it leads a gifted child to become depressed, underachieving, fail to reach their full potential and sometimes develop negative attitude towards school and study. After identifying them, a mathematics teacher has to develop them into a fall fledged achiever. The responsibility of the teacher is enormous. The teacher has to be resourceful and patient. But interacting with them one finds a lot of surprises and awesomeness. The elementary algebraic identities like (a+b)(a-b)=a²-b², expansion of like (a+b)²(a-b)² and others are taught to students, of age group 13-15 in India. An average child will be satisfied with a single proof and immediate application of these identities. But a gifted child expects more from the teacher and at one stage after a little training will surpass the teacher also. In this short paper, the author shares his experience regarding teaching algebraic identities to gifted children. The following problem was given to a set of 10 gifted children of the specified age group: If a natural number ‘n’ to expressed as the sum of the two squares, will 2n also be expressed as the sum of two squares? An investigation has been done on what multiples of n satisfying the criterion. The attempts of the gifted children were consolidated and conclusion was drawn. A second problem was given to them as: can two natural numbers be found such that the difference of their square is 3? After a successful solution, more situations were analysed. As a third question, the finding of the sign of an algebraic expression in three variables was analysed. As an example: if a,b,c are real and unequal what will be sign of a²+4b²+9c²-4ab-12bc-6ca? Apart from an expression as a perfect square what other methods can be employed to prove an algebraic expression as positive negative or non negative has been analysed. Expressions like 4x²+2y²+13y²-2xy-4yz-6zx were given, and the children were asked to find the sign of the expression for all real values of x,y and z. In all investigations, only basic algebraic identities were used. As a next probe, a divisibility problem was initiated. When a,b,c are natural numbers such that a+b+c is at least 6, and if a+b+c is divisible by 6 then will 6 divide a³+b³+c³. The gifted children solved it in two different ways.

Keywords: algebraic identities, gifted children, Indian scenario, research

Procedia PDF Downloads 159
2774 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 328
2773 Annular Axi-Symmetric Stagnation Flow of Electrically Conducting Fluid on a Moving Cylinder in the Presence of Axial Magnetic Field

Authors: Deva Kanta Phukan

Abstract:

An attempt is made where an electrically conducting fluid is injected from a fixed outer cylindrical casing onto an inner moving cylindrical rod. A magnetic field is applied parallel to the axis of the cylindrical rod. The basic governing set of partial differential equations for conservation of mass and momentum are reduced to a set of non-linear ordinary differential equation by introducing similarity transformation, which are integrated numerically. A perturbation solution for the case of large magnetic parameter is derived for constant Reynolds number.

Keywords: annular axi-symmetric stagnation flow, conducting fluid, magnetic field, moving cylinder

Procedia PDF Downloads 373
2772 Closed Form Solution for 4-D Potential Integrals for Arbitrary Coplanar Polygonal Surfaces

Authors: Damir Latypov

Abstract:

A closed-form solution for 4-D double surface integrals arising in boundary integrals equations of a potential theory is obtained for arbitrary coplanar polygonal surfaces. The solution method is based on the construction of exact differential forms followed by the application of Stokes' theorem for each surface integral. As a result, the 4-D double surface integral is reduced to a 2-D double line integral. By an appropriate change of variables, the integrand is transformed into a separable function of integration variables. The closed-form solutions to the corresponding 1-D integrals are readily available in the integration tables. Previously closed-form solutions were known only for the case of coincident triangle surfaces and coplanar rectangles. Solutions for these cases were obtained by surface-specific ad-hoc methods, while the present method is general. The method also works for non-polygonal surfaces. As an example, we compute in closed form the 4-D integral for the case of coincident surfaces in the shape of a circular disk. For an arbitrarily shaped surface, the proposed method provides an efficient quadrature rule. Extensions of the method for non-coplanar surfaces and other than 1/R integral kernels are also discussed.

Keywords: boundary integral equations, differential forms, integration, stokes' theorem

Procedia PDF Downloads 280
2771 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 56
2770 Diagnosis of Static Eccentricity in 400 kW Induction Machine Based on the Analysis of Stator Currents

Authors: Saleh Elawgali

Abstract:

Current spectrums of a four pole-pair, 400 kW induction machine were calculated for the cases of full symmetry and static eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, were included. The spectrums included refer to both calculated and measured currents.

Keywords: diagnostic, harmonic, induction machine, spectrum

Procedia PDF Downloads 493
2769 Incomplete Existing Algebra to Support Mathematical Computations

Authors: Ranjit Biswas

Abstract:

The existing subject Algebra is incomplete to support mathematical computations being done by scientists of all areas: Mathematics, Physics, Statistics, Chemistry, Space Science, Cosmology etc. even starting from the era of great Einstein. A huge hidden gap in the subject ‘Algebra’ is unearthed. All the scientists today, including mathematicians, physicists, chemists, statisticians, cosmologists, space scientists, and economists, even starting from the great Einstein, are lucky that they got results without facing any contradictions or without facing computational errors. Most surprising is that the results of all scientists, including Nobel Prize winners, were proved by them by doing experiments too. But in this paper, it is rigorously justified that they all are lucky. An algebraist can define an infinite number of new algebraic structures. The objective of the work in this paper is not just for the sake of defining a distinct algebraic structure, but to recognize and identify a major gap of the subject ‘Algebra’ lying hidden so far in the existing vast literature of it. The objective of this work is to fix the unearthed gap. Consequently, a different algebraic structure called ‘Region’ has been introduced, and its properties are studied.

Keywords: region, ROR, RORR, region algebra

Procedia PDF Downloads 20
2768 Output Voltage Analysis of CMOS Colpitts Oscillator with Short Channel Device

Authors: Maryam Ebrahimpour, Amir Ebrahimi

Abstract:

This paper presents the steady-state amplitude analysis of MOS Colpitts oscillator with short channel device. The proposed method is based on a large signal analysis and the nonlinear differential equations that govern the oscillator circuit behaviour. Also, the short channel effects are considered in the proposed analysis and analytical equations for finding the steady-state oscillation amplitude are derived. The output voltage calculated from this analysis is in excellent agreement with simulations for a wide range of circuit parameters.

Keywords: colpitts oscillator, CMOS, electronics, circuits

Procedia PDF Downloads 321
2767 Q-Efficient Solutions of Vector Optimization via Algebraic Concepts

Authors: Elham Kiyani

Abstract:

In this paper, we first introduce the concept of Q-efficient solutions in a real linear space not necessarily endowed with a topology, where Q is some nonempty (not necessarily convex) set. We also used the scalarization technique including the Gerstewitz function generated by a nonconvex set to characterize these Q-efficient solutions. The algebraic concepts of interior and closure are useful to study optimization problems without topology. Studying nonconvex vector optimization is valuable since topological interior is equal to algebraic interior for a convex cone. So, we use the algebraic concepts of interior and closure to define Q-weak efficient solutions and Q-Henig proper efficient solutions of set-valued optimization problems, where Q is not a convex cone. Optimization problems with set-valued maps have a wide range of applications, so it is expected that there will be a useful analytical tool in optimization theory for set-valued maps. These kind of optimization problems are closely related to stochastic programming, control theory, and economic theory. The paper focus on nonconvex problems, the results are obtained by assuming generalized non-convexity assumptions on the data of the problem. In convex problems, main mathematical tools are convex separation theorems, alternative theorems, and algebraic counterparts of some usual topological concepts, while in nonconvex problems, we need a nonconvex separation function. Thus, we consider the Gerstewitz function generated by a general set in a real linear space and re-examine its properties in the more general setting. A useful approach for solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the replacement of a vector optimization problem by a suitable scalar problem which tends to be an optimization problem with a real valued objective function. The Gerstewitz function is well known and widely used in optimization as the basis of the scalarization. The essential properties of the Gerstewitz function, which are well known in the topological framework, are studied by using algebraic counterparts rather than the topological concepts of interior and closure. Therefore, properties of the Gerstewitz function, when it takes values just in a real linear space are studied, and we use it to characterize Q-efficient solutions of vector problems whose image space is not endowed with any particular topology. Therefore, we deal with a constrained vector optimization problem in a real linear space without assuming any topology, and also Q-weak efficient and Q-proper efficient solutions in the senses of Henig are defined. Moreover, by means of the Gerstewitz function, we provide some necessary and sufficient optimality conditions for set-valued vector optimization problems.

Keywords: algebraic interior, Gerstewitz function, vector closure, vector optimization

Procedia PDF Downloads 192
2766 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator

Procedia PDF Downloads 43
2765 Numerical Solution of Momentum Equations Using Finite Difference Method for Newtonian Flows in Two-Dimensional Cartesian Coordinate System

Authors: Ali Ateş, Ansar B. Mwimbo, Ali H. Abdulkarim

Abstract:

General transport equation has a wide range of application in Fluid Mechanics and Heat Transfer problems. In this equation, generally when φ variable which represents a flow property is used to represent fluid velocity component, general transport equation turns into momentum equations or with its well known name Navier-Stokes equations. In these non-linear differential equations instead of seeking for analytic solutions, preferring numerical solutions is a more frequently used procedure. Finite difference method is a commonly used numerical solution method. In these equations using velocity and pressure gradients instead of stress tensors decreases the number of unknowns. Also, continuity equation, by integrating the system, number of equations is obtained as number of unknowns. In this situation, velocity and pressure components emerge as two important parameters. In the solution of differential equation system, velocities and pressures must be solved together. However, in the considered grid system, when pressure and velocity values are jointly solved for the same nodal points some problems confront us. To overcome this problem, using staggered grid system is a referred solution method. For the computerized solutions of the staggered grid system various algorithms were developed. From these, two most commonly used are SIMPLE and SIMPLER algorithms. In this study Navier-Stokes equations were numerically solved for Newtonian flow, whose mass or gravitational forces were neglected, for incompressible and laminar fluid, as a hydro dynamically fully developed region and in two dimensional cartesian coordinate system. Finite difference method was chosen as the solution method. This is a parametric study in which varying values of velocity components, pressure and Reynolds numbers were used. Differential equations were discritized using central difference and hybrid scheme. The discritized equation system was solved by Gauss-Siedel iteration method. SIMPLE and SIMPLER were used as solution algorithms. The obtained results, were compared for central difference and hybrid as discritization methods. Also, as solution algorithm, SIMPLE algorithm and SIMPLER algorithm were compared to each other. As a result, it was observed that hybrid discritization method gave better results over a larger area. Furthermore, as computer solution algorithm, besides some disadvantages, it can be said that SIMPLER algorithm is more practical and gave result in short time. For this study, a code was developed in DELPHI programming language. The values obtained in a computer program were converted into graphs and discussed. During sketching, the quality of the graph was increased by adding intermediate values to the obtained result values using Lagrange interpolation formula. For the solution of the system, number of grid and node was found as an estimated. At the same time, to indicate that the obtained results are satisfactory enough, by doing independent analysis from the grid (GCI analysis) for coarse, medium and fine grid system solution domain was obtained. It was observed that when graphs and program outputs were compared with similar studies highly satisfactory results were achieved.

Keywords: finite difference method, GCI analysis, numerical solution of the Navier-Stokes equations, SIMPLE and SIMPLER algoritms

Procedia PDF Downloads 362
2764 Optimality Conditions for Weak Efficient Solutions Generated by a Set Q in Vector Spaces

Authors: Elham Kiyani, S. Mansour Vaezpour, Javad Tavakoli

Abstract:

In this paper, we first introduce a new distance function in a linear space not necessarily endowed with a topology. The algebraic concepts of interior and closure are useful to study optimization problems without topology. So, we define Q-weak efficient solutions generated by the algebraic interior of a set Q, where Q is not necessarily convex. Studying nonconvex vector optimization is valuable since, for a convex cone K in topological spaces, we have int(K)=cor(K), which means that topological interior of a convex cone K is equal to the algebraic interior of K. Moreover, we used the scalarization technique including the distance function generated by the vectorial closure of a set to characterize these Q-weak efficient solutions. Scalarization is a useful approach for solving vector optimization problems. This technique reduces the optimization problem to a scalar problem which tends to be an optimization problem with a real-valued objective function. For instance, Q-weak efficient solutions of vector optimization problems can be characterized and computed as solutions of appropriate scalar optimization problems. In the convex case, linear functionals can be used as objective functionals of the scalar problems. But in the nonconvex case, we should present a suitable objective function. It is the aim of this paper to present a new distance function that be useful to obtain sufficient and necessary conditions for Q-weak efficient solutions of general optimization problems via scalarization.

Keywords: weak efficient, algebraic interior, vector closure, linear space

Procedia PDF Downloads 196
2763 An Equivalence between a Harmonic Form and a Closed Co-Closed Differential Form in L^Q and Non-L^Q Spaces

Authors: Lina Wu, Ye Li

Abstract:

An equivalent relation between a harmonic form and a closed co-closed form is established on a complete non-compact manifold. This equivalence has been generalized for a differential k-form ω from Lq spaces to non-Lq spaces when q=2 in the context of p-balanced growth where p=2. Especially for a simple differential k-form on a complete non-compact manifold, the equivalent relation has been verified with the extended scope of q for from finite q-energy in Lq spaces to infinite q-energy in non-Lq spaces when with 2-balanced growth. Generalized Hadamard Theorem, Cauchy-Schwarz Inequality, and Calculus skills including Integration by Parts as well as Convergent Series have been applied as estimation techniques to evaluate growth rates for a differential form. In particular, energy growth rates as indicated by an appropriate power range in a selected test function lead to a balance between a harmonic differential form and a closed co-closed differential form. Research ideas and computational methods in this paper could provide an innovative way in the study of broadening Lq spaces to non-Lq spaces with a wide variety of infinite energy growth for a differential form.

Keywords: closed forms, co-closed forms, harmonic forms, L^q spaces, p-balanced growth, simple differential k-forms

Procedia PDF Downloads 422
2762 Solution of Some Boundary Value Problems of the Generalized Theory of Thermo-Piezoelectricity

Authors: Manana Chumburidze

Abstract:

We have considered a non-classical model of dynamical problems for a conjugated system of differential equations arising in thermo-piezoelectricity, which was formulated by Toupin – Mindlin. The basic concepts and the general theory of solvability for isotropic homogeneous elastic media is considered. They are worked by using the methods the Laplace integral transform, potential method and singular integral equations. Approximate solutions of mixed boundary value problems for finite domain, bounded by the some closed surface are constructed. They are solved in explicitly by using the generalized Fourier's series method.

Keywords: thermo-piezoelectricity, boundary value problems, Fourier's series, isotropic homogeneous elastic media

Procedia PDF Downloads 439
2761 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method

Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene

Abstract:

This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.

Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems

Procedia PDF Downloads 229
2760 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation

Authors: Ayan Chakraborty, BV. Rathish Kumar

Abstract:

Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.

Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional

Procedia PDF Downloads 152
2759 Stability Analysis of Stagnation-Point Flow past a Shrinking Sheet in a Nanofluid

Authors: Amin Noor, Roslinda Nazar, Norihan Md. Arifin

Abstract:

In this paper, a numerical and theoretical study has been performed for the stagnation-point boundary layer flow and heat transfer towards a shrinking sheet in a nanofluid. The mathematical nanofluid model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Numerical results are obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction Φ, the shrinking parameter λ and the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that solutions do not exist for larger shrinking rates and dual (upper and lower branch) solutions exist when λ < -1.0. A stability analysis has been performed to show which branch solutions are stable and physically realizable. It is also found that the upper branch solutions are stable while the lower branch solutions are unstable.

Keywords: heat transfer, nanofluid, shrinking sheet, stability analysis, stagnation-point flow

Procedia PDF Downloads 351
2758 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing

Procedia PDF Downloads 280
2757 Simulation of I–V Characteristics of Lateral PIN Diode on Polysilicon Films

Authors: Abdelaziz Rabhi, Mohamed Amrani, Abderrazek Ziane, Nabil Belkadi, Abdelraouf Hocini

Abstract:

In this paper, a bedimensional simulation program of the electric characteristics of reverse biased lateral polysilicon PIN diode is presented. In this case we have numerically solved the system of partial differential equations formed by Poisson's equation and both continuity equations that take into account the effect of impact ionization. Therefore we will obtain the current-voltage characteristics (I-V) of the reverse-biased structure which may include the effect of breakdown.The geometrical model assumes that the polysilicon layer is composed by a succession of defined mean grain size crystallites, separated by lateral grain boundaries which are parallel to the metallurgic junction.

Keywords: breakdown, polycrystalline silicon, PIN, grain, impact ionization

Procedia PDF Downloads 340
2756 Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump

Authors: Nur Dayana Khairunnisa Rosli, Seripah Awang Kechil

Abstract:

Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids.

Keywords: heat transfer, power-law fluids, rotating disk, suction or injection, temperature jump, velocity slip

Procedia PDF Downloads 237
2755 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, thermophoresis, diffusiophoresis, Brownian motion

Procedia PDF Downloads 388