Search results for: curved stretching sheet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 797

Search results for: curved stretching sheet

527 Effect of Using Baffles Inside Spiral Micromixer

Authors: Delara Soltani, Sajad Alimohammadi, Tim Persoons

Abstract:

Microfluidic technology reveals a new area of research in drug delivery, biomedical diagnostics, and the food and chemical industries. Mixing is an essential part of microfluidic devices. There is a need for fast and homogeneous mixing in microfluidic devices. On the other hand, mixing is difficult to achieve in microfluidic devices because of the size and laminar flow in these devices. In this study, a hybrid passive micromixer of a curved channel with obstacles inside the channel is designed. The computational fluid dynamic method is employed to solve governing equations. The results show that using obstacles can improve mixing efficiency in spiral micromixers. the effects of Reynolds number, number, and position of baffles are investigated. In addition, the effect of baffles on pressure drop is presented. this novel micromixer has the potential to utilize in microfluidic devices.

Keywords: CFD, micromixer, microfluidics, spiral, reynolds number

Procedia PDF Downloads 61
526 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 193
525 Adding Protelium Gas Sensor for Smartphone to Reduce Explosion in Indonesia

Authors: Alfi Al Fahreizy

Abstract:

By using LPG (Liquid Protelium Gas), it is very difficult to detect gas leak. Consequently, there is so many incident of gas leak that makes explosion which is occurred in many regions of Indonesia. In this paper, the researcher tries to overcome with it by adding gas sensor for LPG in a smartphone. The aim is to choose the best sensor and how to use it . The methode is to choose sensor by selecting from sensor data sheet qualitatively by giving grade from 1 to 5. Flow chart is shown to make best steps notification that possible to implemented in smartphone.

Keywords: energy conversion, gas leak, smartphone, explosion, LPG

Procedia PDF Downloads 517
524 Petrology, Geochemistry and Formation Conditions of Metaophiolites of the Loki Crystalline Massif (the Caucasus)

Authors: Irakli Gamkrelidze, David Shengelia, Tamara Tsutsunava, Giorgi Chichinadze, Giorgi Beridze, Ketevan Tedliashvili, Tamara Tsamalashvili

Abstract:

The Loki crystalline massif crops out in the Caucasian region and the geological retrospective represent the northern marginal part of the Baiburt-Sevanian terrain (island arc), bordering with the Paleotethys oceanic basin in the north. The pre-Alpine basement of the massif is built up of Lower-Middle Paleozoic metamorphic complex (metasedimentary and metabasite rocks), Upper Devonian quartz-diorites and Late Variscan granites. Earlier metamorphic complex was considered as an indivisible set including suites with different degree of metamorphism. Systematic geologic, petrologic and geochemical investigations of the massif’s rocks suggest the different conception on composition, structure and formation conditions of the massif. In particular, there are two main rock types in the Loki massif: the oldest autochthonous series of gneissic quartz-diorites and cutting them granites. The massif is flanked on its western side by a volcano-sedimentary sequence, metamorphosed to low-T facies. Petrologic, metamorphic and structural differences in this sequence prove the existence of a number of discrete units (overthrust sheets). One of them, the metabasic sheet represents the fragment of ophiolite complex. It comprises transition types of the second and third layers of the Paleooceanic crust: the upper noncumulated part of the third layer gabbro component and the following lowest part of the parallel diabase dykes of the second layer. The ophiolites are represented by metagabbros, metagabbro-diabases, metadiabases and amphibolite schists. According to the content of petrogenic components and additive elements in metabasites is stated that the protolith of metabasites belongs to petrochemical type of tholeiitic series of basalts. The parental magma of metaophiolites is of E-MORB composition, and by petrochemical parameters, it is very close to the composition of intraplate basalts. The dykes of hypabissal leucocratic siliceous and medium magmatic rocks associated with the metaophiolite sheet form the separate complex. They are granitoids with the extremely low content of CaO and quartz-diorite porphyries. According to various petrochemical parameters, these rocks have mixed characteristics. Their formation took place in spreading conditions or in the areas of manifestation of plumes most likely of island arc type. The metamorphism degree of the metaophiolites corresponds to a very low stage of green schist facies. The rocks of the metaophiolite complex are obducted from the Paleotethys Ocean. Geological and paleomagnetic data show that the primary location of the ocean is supposed to be to the north of the Loki crystalline massif.

Keywords: the Caucasus, crystalline massif, ophiolites, tectonic sheet

Procedia PDF Downloads 252
523 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran

Authors: Nasser Hosseini

Abstract:

Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.

Keywords: corn (KSC704), output and input, energy efficiency, Khoy city

Procedia PDF Downloads 410
522 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound

Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner

Abstract:

Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.

Keywords: filler, flowability, jute fiber, nonwoven, sheet molding compound

Procedia PDF Downloads 307
521 Analysis of Control by Flattening of the Welded Tubes

Authors: Hannachi Med Tahar, H. Djebaili, B. Daheche

Abstract:

In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal.

Keywords: flattening, destructive testing, tube drafts, finished tube, Castem 2001

Procedia PDF Downloads 419
520 Developing a Sustainable Business Model for Platform-Based Applications in Small and Medium-Sized Enterprise Sawmills: A Systematic Approach

Authors: Franziska Mais, Till Gramberg

Abstract:

The paper presents the development of a sustainable business model for a platform-based application tailored for sawing companies in small and medium-sized enterprises (SMEs). The focus is on the integration of sustainability principles into the design of the business model to ensure a technologically advanced, legally sound, and economically efficient solution. Easy2IoT is a research project that aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements, and potential solutions for smart services are derived. The structuring of the business ecosystem within the application plays a central role, whereby the roles of the partners, the management of the IT infrastructure and services, as well as the design of a sustainable operator model are considered. The business model is developed using the value proposition canvas, whereby a detailed analysis of the requirements for the business model is carried out, taking sustainability into account. This includes coordination with the business model patterns, according to Gassmann, and integration into a business model canvas for the Easy2IoT product. Potential obstacles and problems are identified and evaluated in order to formulate a comprehensive and sustainable business model. In addition, sustainable payment models and distribution channels are developed. In summary, the article offers a well-founded insight into the systematic development of a sustainable business model for platform-based applications in SME sawmills, with a particular focus on the synergy of ecological responsibility and economic efficiency.

Keywords: business model, sustainable business model, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 30
519 Data about Loggerhead Sea Turtle (Caretta caretta) and Green Turtle (Chelonia mydas) in Vlora Bay, Albania

Authors: Enerit Sacdanaku, Idriz Haxhiu

Abstract:

This study was conducted in the area of Vlora Bay, Albania. Data about Sea Turtles Caretta caretta and Chelonia mydas, belonging to two periods of time (1984–1991; 2008–2014) are given. All data gathered were analyzed using recent methodologies. For all turtles captured (as by catch), the Curve Carapace Length (CCL) and Curved Carapace Width (CCW) were measured. These data were statistically analyzed, where the mean was 67.11 cm for CCL and 57.57 cm for CCW of all individuals studied (n=13). All untagged individuals of marine turtles were tagged using metallic tags (Stockbrand’s titanium tag) with an Albanian address. Sex was determined and resulted that 45.4% of individuals were females, 27.3% males and 27.3% juveniles. All turtles were studied for the presence of the epibionts. The area of Vlora Bay is used from marine turtles (Caretta caretta) as a migratory corridor to pass from the Mediterranean to the northern part of the Adriatic Sea.

Keywords: Caretta caretta, Chelonia mydas, CCL, CCW, tagging, Vlora Bay

Procedia PDF Downloads 151
518 Regulation of Water Balance of the Plant from the Different Geo-Environmental Locations

Authors: Astghik R. Sukiasyan

Abstract:

Under the drought stress condition, the plants would grow slower. Temperature is one of the most important abiotic factors which suppress the germination processes. However, the processes of transpiration are regulated directly by the cell water, which followed to an increase in volume of vacuoles. During stretching under the influence of water pressure, the cell goes into the state of turgor. In our experiments, lines of the semi-dental sweet maize of Armenian population from various zones of growth under mild and severe drought stress were tested. According to results, the value of the water balance of the plant cells may reflect the ability of plants to adapt to drought stress. It can be assumed that the turgor allows evaluating the number of received dissolved substance in cell.

Keywords: turgor, drought stress, plant growth, Armenian Zea Maize Semidentata

Procedia PDF Downloads 225
517 MRI Compatible Fresnel Zone Plates made of Polylactic Acid

Authors: Daniel Tarrazó-Serrano, Sergio Pérez-López, Sergio Castiñeira-Ibáñez, Pilar Candelas, Constanza Rubio

Abstract:

Zone Plates (ZPs) are used in many areas of physics where planar fabrication is advantageous in comparison with conventional curved lenses. There are several types of ZPs, such as the well-known Fresnel ZPs or the more recent Fractal ZPs and Fibonacci ZPs. The material selection of the lens plays a very important role in the beam modulation control. This work presents a comparison between two Fresnel ZP made from different materials in the ultrasound domain: Polylactic Acid (PLA) and brass. PLA is the most common material used in commercial 3D-printers due to its high design flexibility and low cost. Numerical simulations based on Finite Element Method (FEM) and experimental results are shown, and they prove that the focusing capabilities of brass ZPs and PLA ZPs are similar. For this reason, PLA is proposed as a Magnetic Resonance Imaging (MRI) compatible material with great potential for therapeutic ultrasound focusing applications.

Keywords: FZP, PLA, focus, ultrasound, MRI

Procedia PDF Downloads 172
516 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming

Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter

Abstract:

High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.

Keywords: hyperelastic, anisotropic, polymer film, thermoforming

Procedia PDF Downloads 593
515 Phase Transition of Aqueous Ternary (THF + Polyvinylpyrrolidone + H2O) System as Revealed by Terahertz Time-Domain Spectroscopy

Authors: Hyery Kang, Dong-Yeun Koh, Yun-Ho Ahn, Huen Lee

Abstract:

Determination of the behavior of clathrate hydrate with inhibitor in the THz region will provide useful information about hydrate plug control in the upstream of the oil and gas industry. In this study, terahertz time-domain spectroscopy (THz-TDS) revealed the inhibition of the THF clathrate hydrate system with dosage of polyvinylpyrrolidone (PVP) with three different molecular weights. Distinct footprints of phase transition in the THz region (0.4–2.2 THz) were analyzed and absorption coefficients and real part of refractive indices are obtained in the temperature range of 253 K to 288 K. Along with the optical properties, ring breathing and stretching modes for different molecular weights of PVP in THF hydrate are analyzed by Raman spectroscopy.

Keywords: clathrate hydrate, terahertz spectroscopy, tetrahydrofuran, inhibitor

Procedia PDF Downloads 307
514 Out-of-Plane Free Vibrations of Circular Rods

Authors: Faruk Firat Çalim, Nurullah Karaca, Hakan Tacettin Türker

Abstract:

In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.

Keywords: circular rod, out-of-plane free vibration analysis, transfer matrix method

Procedia PDF Downloads 275
513 Improving Paper Mechanical Properties and Printing Quality by Using Carboxymethyl Cellulose as a Strength Agent

Authors: G. N. Simonian, R. F. Basalah, F. T. Abd El Halim, F. F. Abd El Latif, A. M. Adel, A. M. El Shafey.

Abstract:

Carboxymethyl cellulose (CMC) is an anionic water soluble polymer that has been introduced in paper coating as a strength agent. One of the main objectives of this research is to investigate the influence of CMC concentration in improving the strength properties of paper fiber. In this work, we coated the paper sheets; Xerox paper sheets by different concentration of carboxymethyl cellulose solution (0.1, 0.5, 1, 1.5, 2, 3%) w/v. The mechanical properties; breaking length and tearing resistance (tear factor) were measured for the treated and untreated paper specimens. The retained polymer in the coated paper samples were also calculated. The more the concentration of the coating material; CMC increases, the more the mechanical properties; breaking length and tear factor increases. It can be concluded that CMC enhance the improvement of the mechanical properties of paper sheets result in increasing paper stability. The aim of the present research was also to study the effects on the vessel element structure and vessel picking tendency of the coated paper sheets. In addition to the improved strength properties of the treated sheet, a significant decrease in the vessel picking tendency was expected whereas refining of the original paper sheets (untreated paper sheets) improved mainly the bonding ability of fibers, CMC effectively enhanced the bonding of vessels as well. Moreover, film structures were formed in the fibrillated areas of the coated paper specimens, and they were concluded to reinforce the bonding within the sheet. Also, fragmentation of vessel elements through CMC modification was found to be important and results in a decreasing picking tendency which reflects in a good printability. Moreover, Scanning – Electron Microscope (SEM) images are represented to specifically explain the improved bonding ability of vessels and fibers after CMC modification. Finally, CMC modification enhance paper mechanical properties and print quality.

Keywords: carboxymethyl cellulose (CMC), breaking length, tear factor, vessel picking, printing, concentration

Procedia PDF Downloads 391
512 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200

Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira

Abstract:

Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.

Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback

Procedia PDF Downloads 204
511 Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling

Authors: M. Hosseini, N. Ghorbani Amirabad, M. Zhian

Abstract:

Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake.

Keywords: rocking mechanism, see-saw motion, finite element analysis, hysteretic behavior

Procedia PDF Downloads 385
510 Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands

Authors: Ayla Roberta Galaco, Juliana Fonseca De Lima, Osvaldo Antonio Serra

Abstract:

Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS.

Keywords: isostructural, lanthanoids, lanthanoids organic frameworks (LOFs), metal organic frameworks (MOFs), thermogravimetry, X-Ray diffraction

Procedia PDF Downloads 222
509 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models

Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel

Abstract:

In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.

Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids

Procedia PDF Downloads 339
508 Promoting Creative and Critical Thinking in Mathematics

Authors: Ana Maria Reis D'Azevedo Breda, Catarina Maria Neto da Cruz

Abstract:

The Japanese art of origami provides a rich context for designing exploratory mathematical activities for children and young people. By folding a simple sheet of paper, fascinating and surprising planar and spatial configurations emerge. Equally surprising is the unfolding process, which also produces striking patterns. The procedure of folding, unfolding, and folding again allows the exploration of interesting geometric patterns. When adequately and systematically done, we may deduce some of the mathematical rules ruling origami. As the child/youth folds the sheet of paper repeatedly, he can physically observe how the forms he obtains are transformed and how they relate to the pattern of the corresponding unfolding, creating space for the understanding/discovery of mathematical principles regulating the folding-unfolding process. As part of a 2023 Summer Academy organized by a Portuguese university, a session entitled “Folding, Thinking and Generalizing” took place. Twenty-three students attended the session, all enrolled in the 2nd cycle of Portuguese Basic Education and aged between 10 and 12 years old. The main focus of this session was to foster the development of critical cognitive and socio-emotional skills among these young learners using origami. These skills included creativity, critical analysis, mathematical reasoning, collaboration, and communication. Employing a qualitative, descriptive, and interpretative analysis of data collected during the session through field notes and students’ written productions, our findings reveal that structured origami-based activities not only promote student engagement with mathematical concepts in a playful and interactive but also facilitate the development of socio-emotional skills, which include collaboration and effective communication between participants. This research highlights the value of integrating origami into educational practices, highlighting its role in supporting comprehensive cognitive and emotional learning experiences.

Keywords: skills, origami rules, active learning, hands-on activities

Procedia PDF Downloads 43
507 Graphene Transistors Based Microwave Amplifiers

Authors: Pejman Hosseinioun, Ali Safari, Hamed Sarbazi

Abstract:

Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers.

Keywords: graphene, microwave FETs, microwave amplifiers, transistors

Procedia PDF Downloads 461
506 Thermoelectric Generators as Alternative Source for Electric Power

Authors: L. C. Ding, Bradley G. Orr, K. Rahauoi, S. Truza, A. Date, A. Akbarzadeh

Abstract:

The research on thermoelectric has been a blooming field of research for the latest decade, owing to large amount of heat source available to be harvested, being eco-friendly and static in operation. This paper provides the performance of thermoelectric generator (TEG) with bulk material of bismuth telluride, Bi2Te3. Later, the performance of the TEGs is evaluated by considering attaching the TEGs on a plastic (polyethylene sheet) in contrast to the common method of attaching the TEGs on the metal surface.

Keywords: electric power, heat transfer, renewable energy, thermoelectric generator

Procedia PDF Downloads 247
505 Use of Metamaterials Structures to Reduce the SAR in the Human Head

Authors: Hafawa Messaoudi, Taoufik Aguili

Abstract:

Due to the rapid growth in the use of wireless communication systems, there has been a recent increase in public concern regarding the exposure of humans to Radio Frequency (RF) electromagnetic radiation. This is particularly evident in the case of mobile telephone handsets. Previously, the insertion of a ferrite sheet between the antenna and the human head, the use of conductive materials (such as aluminum), the use of metamaterials (SRR), frequency selective surface (FSS), and electromagnetic band gap (EBG) structures to design high performance devices were proposed as methods of reducing the SAR value. This paper aims to provide an investigation of the effectiveness of various available Specific Absorption Rate (SAR) reduction solutions.

Keywords: EBG, HIS, metamaterials, SAR reduction

Procedia PDF Downloads 494
504 Mg AZ31B Alloy Processed through ECASD

Authors: P. Fernández-Morales, D. Peláez, C. Isaza, J. M. Meza, E. Mendoza

Abstract:

Mg AZ31B alloy sheets were processed through equal-channel angular sheet drawing (ECASD) process, following the route A and C at room temperature and varying the processing speed. SEM was used to analyze the microstructure. The grain size was refined and presence of twins was observed. Vickers microhardness and tensile testing were carried out to evaluate the mechanical properties, showing in general; a remarkable increase in the first pass and slight increases during subsequent passes and, that the route C produces better uniform properties distribution through the thickness of the samples.

Keywords: ECASD, Mg Alloy, mechanical properties, microstructure

Procedia PDF Downloads 323
503 Segmentation along the Strike-slip Fault System of the Chotts Belt, Southern Tunisia

Authors: Abdelkader Soumaya, Aymen Arfaoui, Noureddine Ben Ayed, Ali Kadri

Abstract:

The Chotts belt represents the southernmost folded structure in the Tunisian Atlas domain. It is dominated by inherited deep extensional E-W trending fault zones, which are reactivated as strike-slip faults during the Cenozoic compression. By examining the geological maps at different scales and based on the fieldwork data, we propose new structural interpretations for the geometries and fault kinematics in the Chotts chain. A set of ENE-WSW right-lateral en echelon folds, with curved shapes and steeply inclined southern limbs, is visible in the map view of this belt. These asymmetric tight anticlines are affected by E-W trending fault segments linked by local bends and stepovers. The revealed kinematic indicators along one of these E-W striated faults (Tafferna segment), such as breccias and gently inclined slickenlines (N094, 80N, 15°W pitch angles), show direct evidence of dextral strike-slip movement. The calculated stress tensors from corresponding faults slip data reveal an overall strike-slip tectonic regime with reverse component and NW-trending sub-horizontal σ1 axis ranking between N130 to N150. From west to east, we distinguished several types of structures along the segmented dextral fault system of the Chotts Range. The NE-SW striking fold-thrust belt (~25 km-long) between two continuously linked E-W fault segments (NW of Tozeur town) has been suggested as a local restraining bend. The central part of the Chotts chain is occupied by the ENE-striking Ksar Asker anticlines (Taferna, Torrich, and Sif Laham), which are truncated by a set of E-W strike-slip fault segments. Further east, the fault segments of Hachichina and Sif Laham connected across the NW-verging asymmetric fold-thrust system of Bir Oum Ali, which can be interpreted as a left-stepping contractional bend (~20 km-long). The oriental part of the Chotts belt corresponds to an array of subparallel E-W oriented fault segments (i.e., Beidha, Bouloufa, El Haidoudi-Zemlet El Beidha) with similar lengths (around 10 km). Each of these individual separated segments is associated with curved ENE-trending en echelon right-stepping anticlines. These folds are affected by a set of conjugate R and R′ shear-type faults indicating a dextral strike-lip motion. In addition, the relay zones between these E-W overstepping fault segments define local releasing stepovers dominated by NW-SE subsidiary faults. Finally, the Chotts chain provides well-exposed examples of strike-slip tectonics along E-W distributed fault segments. Each fault zone shows a typical strike-slip architecture, including parallel fault segments connecting via local stepovers or bends. Our new structural interpretations for this region reveal a great influence of the E-W deep fault segments on regional tectonic deformations and stress field during the Cenozoic shortening.

Keywords: chotts belt, tunisian atlas, strike-slip fault, stepovers, fault segments

Procedia PDF Downloads 42
502 Feeling Sorry for Some Creditors

Authors: Hans Tjio, Wee Meng Seng

Abstract:

The interaction of contract and property has always been a concern in corporate and commercial law, where there are internal structures created that may not match the externally perceived image generated by the labels attached to those structures. We will focus, in particular, on the priority structures created by affirmative asset partitioning, which have increasingly come under challenge by those attempting to negotiate around them. The most prominent has been the AT1 bonds issued by Credit Suisse which were wiped out before its equity when the troubled bank was acquired by UBS. However, this should not have come as a surprise to those whose “bonds” had similarly been “redeemed” upon the occurrence of certain reference events in countries like Singapore, Hong Kong and Taiwan during their Minibond crisis linked to US sub-prime defaults. These were derivatives classified as debentures and sold as such. At the same time, we are again witnessing “liabilities” seemingly ranking higher up the balance sheet ladder, finding themselves lowered in events of default. We will examine the mechanisms holders of perpetual securities or preference shares have tried to use to protect themselves. This is happening against a backdrop that sees a rise in the strength of private credit and inter-creditor conflicts. The restructuring regime of the hybrid scheme in Singapore now, while adopting the absolute priority rule in Chapter 11 as the quid pro quo for creditor cramdown, does not apply to shareholders and so exempts them from cramdown. Complicating the picture further, shareholders are not exempted from cramdown in the Dutch scheme, but it adopts a relative priority rule. At the same time, the important UK Supreme Court decision in BTI 2014 LLC v Sequana [2022] UKSC 25 has held that directors’ duties to take account of creditor interests are activated only when a company is almost insolvent. All this has been complicated by digital assets created by businesses. Investors are quite happy to have them classified as property (like a thing) when it comes to their transferability, but then when the issuer defaults to have them seen as a claim on the business (as a choice in action), that puts them at the level of a creditor. But these hidden interests will not show themselves on an issuer’s balance sheet until it is too late to be considered and yet if accepted, may also prevent any meaningful restructuring.

Keywords: asset partitioning, creditor priority, restructuring, BTI v Sequana, digital assets

Procedia PDF Downloads 39
501 The Study on Mechanical Properties of Graphene Using Molecular Mechanics

Authors: I-Ling Chang, Jer-An Chen

Abstract:

The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Keywords: energy minimization, fracture, graphene, molecular mechanics

Procedia PDF Downloads 369
500 Design of a Dual Polarized Resonator Antenna for Mobile Communication System

Authors: N. Fhafhiem, P. Krachodnok, R. Wongsan

Abstract:

This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 – 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane.

Keywords: metamaterial, electromagnetic band gap, dual polarization, resonator antenna

Procedia PDF Downloads 360
499 Investigating the Difference in Stability of Various Isomeric Hydrogen Bonded Dimers

Authors: Mohamed Ayoub

Abstract:

The structures and energetics of various isomeric hydrogen bonded dimers, such as (FH…OC, FH…CO), (FH…CNH, FH…NCH), (FH…N2O, FH…ON2), and (FH…NHCO, FH…OCNH) have been investigated using DFT B3LYP with aug-cc-pVTZ basis set and by natural bond orbital (NBO) analysis. For each isomeric pair we calculated: H-bond energy (ΔEB…H), charge-transfer (QCT), where B is atom bearing lone-pairs in CO, CNH, NCH, N2O, and NHCO, H-bond distances (RB…H), the elongation of HF bond (ΔRHF) and the red-shift of HF stretching frequency (ΔVHF). We conclude that the principle difference in the relative stability between each isomeric pair is attributed to distinctive interaction of carbon and oxygen lone pairs of CO, carbon and nitrogen lone-pairs of CNH and NCH, and nitrogen and oxygen lone pairs of N2O and NHCO into the unfilled antibond on HF (σ*HF).

Keywords: charge transfer, computational chemistry, isomeric hydrogen bond, natural bond orbital

Procedia PDF Downloads 215
498 Biodegradable Elastic Polymers Are Used to Create Stretchable Piezoresistive Strain Sensors

Authors: Mostafa Vahdani, Mohsen Asadnia, Shuying Wu

Abstract:

Huge amounts of e-waste are being produced by the rapidly expanding use of electronics; the majority of this material is either burned or dumped directly in landfills since recycling would either be impracticable or too expensive. Degradable and environmentally friendly materials are therefore seen as the answer to this urgent problem. Here, we create strain sensors that are biodegradable, robust, and incredibly flexible using thin films of sodium carboxymethyl cellulose (NaCMC), glycerol, and polyvinyl alcohol (PVA). Due to the creation of many inter- or intramolecular hydrogen bonds, the polymer blends (NaCMC/PVA/glycerol) exhibit a failure strain of up to 330% and negligible hysteresis when exposed to cyclic stretching-releasing. What's more intriguing is that the sensors can degrade completely in deionized water at a temperature of 95 °C in about 25 minutes. This project illustrates a novel method for developing wearable electronics that are environmentally beneficial.

Keywords: degradable, stretchable, strain sensors, wearable electronics.

Procedia PDF Downloads 59