Search results for: cryptographic protocols
706 HPPDFIM-HD: Transaction Distortion and Connected Perturbation Approach for Hierarchical Privacy Preserving Distributed Frequent Itemset Mining over Horizontally-Partitioned Dataset
Authors: Fuad Ali Mohammed Al-Yarimi
Abstract:
Many algorithms have been proposed to provide privacy preserving in data mining. These protocols are based on two main approaches named as: the perturbation approach and the Cryptographic approach. The first one is based on perturbation of the valuable information while the second one uses cryptographic techniques. The perturbation approach is much more efficient with reduced accuracy while the cryptographic approach can provide solutions with perfect accuracy. However, the cryptographic approach is a much slower method and requires considerable computation and communication overhead. In this paper, a new scalable protocol is proposed which combines the advantages of the perturbation and distortion along with cryptographic approach to perform privacy preserving in distributed frequent itemset mining on horizontally distributed data. Both the privacy and performance characteristics of the proposed protocol are studied empirically.Keywords: anonymity data, data mining, distributed frequent itemset mining, gaussian perturbation, perturbation approach, privacy preserving data mining
Procedia PDF Downloads 504705 Exploring the Applications of Modular Forms in Cryptography
Authors: Berhane Tewelday Weldhiwot
Abstract:
This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory
Procedia PDF Downloads 15704 Cryptographic Protocol for Secure Cloud Storage
Authors: Luvisa Kusuma, Panji Yudha Prakasa
Abstract:
Cloud storage, as a subservice of infrastructure as a service (IaaS) in Cloud Computing, is the model of nerworked storage where data can be stored in server. In this paper, we propose a secure cloud storage system consisting of two main components; client as a user who uses the cloud storage service and server who provides the cloud storage service. In this system, we propose the protocol schemes to guarantee against security attacks in the data transmission. The protocols are login protocol, upload data protocol, download protocol, and push data protocol, which implement hybrid cryptographic mechanism based on data encryption before it is sent to the cloud, so cloud storage provider does not know the user's data and cannot analysis user’s data, because there is no correspondence between data and user.Keywords: cloud storage, security, cryptographic protocol, artificial intelligence
Procedia PDF Downloads 356703 Design and Implementation of a Hardened Cryptographic Coprocessor with 128-bit RISC-V Core
Authors: Yashas Bedre Raghavendra, Pim Vullers
Abstract:
This study presents the design and implementation of an abstract cryptographic coprocessor, leveraging AMBA(Advanced Microcontroller Bus Architecture) protocols - APB (Advanced Peripheral Bus) and AHB (Advanced High-performance Bus), to enable seamless integration with the main CPU(Central processing unit) and enhance the coprocessor’s algorithm flexibility. The primary objective is to create a versatile coprocessor that can execute various cryptographic algorithms, including ECC(Elliptic-curve cryptography), RSA(Rivest–Shamir–Adleman), and AES (Advanced Encryption Standard) while providing a robust and secure solution for modern secure embedded systems. To achieve this goal, the coprocessor is equipped with a tightly coupled memory (TCM) for rapid data access during cryptographic operations. The TCM is placed within the coprocessor, ensuring quick retrieval of critical data and optimizing overall performance. Additionally, the program memory is positioned outside the coprocessor, allowing for easy updates and reconfiguration, which enhances adaptability to future algorithm implementations. Direct links are employed instead of DMA(Direct memory access) for data transfer, ensuring faster communication and reducing complexity. The AMBA-based communication architecture facilitates seamless interaction between the coprocessor and the main CPU, streamlining data flow and ensuring efficient utilization of system resources. The abstract nature of the coprocessor allows for easy integration of new cryptographic algorithms in the future. As the security landscape continues to evolve, the coprocessor can adapt and incorporate emerging algorithms, making it a future-proof solution for cryptographic processing. Furthermore, this study explores the addition of custom instructions into RISC-V ISE (Instruction Set Extension) to enhance cryptographic operations. By incorporating custom instructions specifically tailored for cryptographic algorithms, the coprocessor achieves higher efficiency and reduced cycles per instruction (CPI) compared to traditional instruction sets. The adoption of RISC-V 128-bit architecture significantly reduces the total number of instructions required for complex cryptographic tasks, leading to faster execution times and improved overall performance. Comparisons are made with 32-bit and 64-bit architectures, highlighting the advantages of the 128-bit architecture in terms of reduced instruction count and CPI. In conclusion, the abstract cryptographic coprocessor presented in this study offers significant advantages in terms of algorithm flexibility, security, and integration with the main CPU. By leveraging AMBA protocols and employing direct links for data transfer, the coprocessor achieves high-performance cryptographic operations without compromising system efficiency. With its TCM and external program memory, the coprocessor is capable of securely executing a wide range of cryptographic algorithms. This versatility and adaptability, coupled with the benefits of custom instructions and the 128-bit architecture, make it an invaluable asset for secure embedded systems, meeting the demands of modern cryptographic applications.Keywords: abstract cryptographic coprocessor, AMBA protocols, ECC, RSA, AES, tightly coupled memory, secure embedded systems, RISC-V ISE, custom instructions, instruction count, cycles per instruction
Procedia PDF Downloads 67702 NFC Communications with Mutual Authentication Based on Limited-Use Session Keys
Authors: Chalee Thammarat
Abstract:
Mobile phones are equipped with increased short-range communication functionality called Near Field Communication (or NFC for short). NFC needs no pairing between devices but suitable for little amounts of data in a very restricted area. A number of researchers presented authentication techniques for NFC communications, however, they still lack necessary authentication, particularly mutual authentication and security qualifications. This paper suggests a new authentication protocol for NFC communication that gives mutual authentication between devices. The mutual authentication is a one of property, of security that protects replay and man-in-the-middle (MitM) attack. The proposed protocols deploy a limited-use offline session key generation and use of distribution technique to increase security and make our protocol lightweight. There are four sub-protocols: NFCAuthv1 is suitable for identification and access control and NFCAuthv2 is suitable for the NFC-enhanced phone by a POS terminal for digital and physical goods and services.Keywords: cryptographic protocols, NFC, near field communications, security protocols, mutual authentication, network security
Procedia PDF Downloads 428701 Non-Interactive XOR Quantum Oblivious Transfer: Optimal Protocols and Their Experimental Implementations
Authors: Lara Stroh, Nikola Horová, Robert Stárek, Ittoop V. Puthoor, Michal Mičuda, Miloslav Dušek, Erika Andersson
Abstract:
Oblivious transfer (OT) is an important cryptographic primitive. Any multi-party computation can be realised with OT as a building block. XOR oblivious transfer (XOT) is a variant where the sender Alice has two bits, and a receiver, Bob, obtains either the first bit, the second bit, or their XOR. Bob should not learn anything more than this, and Alice should not learn what Bob has learned. Perfect quantum OT with information-theoretic security is known to be impossible. We determine the smallest possible cheating probabilities for unrestricted dishonest parties in non-interactive quantum XOT protocols using symmetric pure states and present an optimal protocol which outperforms classical protocols. We also "reverse" this protocol so that Bob becomes the sender of a quantum state and Alice the receiver who measures it while still implementing oblivious transfer from Alice to Bob. Cheating probabilities for both parties stay the same as for the unreversed protocol. We optically implemented both the unreversed and the reversed protocols and cheating strategies, noting that the reversed protocol is easier to implement.Keywords: oblivious transfer, quantum protocol, cryptography, XOR
Procedia PDF Downloads 126700 Management and Agreement Protocol in Computer Security
Authors: Abdulameer K. Hussain
Abstract:
When dealing with a cryptographic system we note that there are many activities performed by parties of this cryptographic system and the most prominent of these activities is the process of agreement between the parties involved in the cryptographic system on how to deal and perform the cryptographic system tasks to be more secure, more confident and reliable. The most common agreement among parties is a key agreement and other types of agreements. Despite the fact that there is an attempt from some quarters to find other effective agreement methods but these methods are limited to the traditional agreements. This paper presents different parameters to perform more effectively the task of the agreement, including the key alternative, the agreement on the encryption method used and the agreement to prevent the denial of the services. To manage and achieve these goals, this method proposes the existence of an control and monitoring entity to manage these agreements by collecting different statistical information of the opinions of the authorized parties in the cryptographic system. These statistics help this entity to take the proper decision about the agreement factors. This entity is called Agreement Manager (AM).Keywords: agreement parameters, key agreement, key exchange, security management
Procedia PDF Downloads 419699 Quantum Cryptography: Classical Cryptography Algorithms’ Vulnerability State as Quantum Computing Advances
Authors: Tydra Preyear, Victor Clincy
Abstract:
Quantum computing presents many computational advantages over classical computing methods due to the utilization of quantum mechanics. The capability of this computing infrastructure poses threats to standard cryptographic systems such as RSA and AES, which are designed for classical computing environments. This paper discusses the impact that quantum computing has on cryptography, while focusing on the evolution from classical cryptographic concepts to quantum and post-quantum cryptographic concepts. Standard Cryptography is essential for securing data by utilizing encryption and decryption methods, and these methods face vulnerability problems due to the advancement of quantum computing. In order to counter these vulnerabilities, the methods that are proposed are quantum cryptography and post-quantum cryptography. Quantum cryptography uses principles such as the uncertainty principle and photon polarization in order to provide secure data transmission. In addition, the concept of Quantum key distribution is introduced to ensure more secure communication channels by distributing cryptographic keys. There is the emergence of post-quantum cryptography which is used for improving cryptographic algorithms in order to be more secure from attacks by classical and quantum computers. Throughout this exploration, the paper mentions the critical role of the advancement of cryptographic methods to keep data integrity and privacy safe from quantum computing concepts. Future research directions that would be discussed would be more effective cryptographic methods through the advancement of technology.Keywords: quantum computing, quantum cryptography, cryptography, data integrity and privacy
Procedia PDF Downloads 21698 Structuring Taiwanese Elementary School English Teachers' Professional Dialogue about Teaching and Learning through Protocols
Authors: Chin-Wen Chien
Abstract:
Protocols are tools that help teachers inquire into the teaching and professional learning during the professional dialogue. This study focused on the integration of protocols into elementary school English teachers’ professional dialogue and discussed the influence of protocols on teachers’ teaching and learning. Based on the analysis of documents, observations, and interviews, this study concluded that with the introduction of protocols to elementary school English teachers, three major protocols were used during their professional dialogue. These protocols led the teachers to gain professional learning in content knowledge and pedagogical content knowledge. However, the facilitators’ lack of experience in using protocols led to interruptions during the professional dialogue. Suggestions for effective protocol-based professional dialogue are provided.Keywords: protocols, professional learning, professional dialogue, classroom practice
Procedia PDF Downloads 381697 Classifying and Analysis 8-Bit to 8-Bit S-Boxes Characteristic Using S-Box Evaluation Characteristic
Authors: Muhammad Luqman, Yusuf Kurniawan
Abstract:
S-Boxes is one of the linear parts of the cryptographic algorithm. The existence of S-Box in the cryptographic algorithm is needed to maintain non-linearity of the algorithm. Nowadays, modern cryptographic algorithms use an S-Box as a part of algorithm process. Despite the fact that several cryptographic algorithms today reuse theoretically secure and carefully constructed S-Boxes, there is an evaluation characteristic that can measure security properties of S-Boxes and hence the corresponding primitives. Analysis of an S-Box usually is done using manual mathematics calculation. Several S-Boxes are presented as a Truth Table without any mathematical background algorithm. Then, it’s rather difficult to determine the strength of Truth Table S-Box without a mathematical algorithm. A comprehensive analysis should be applied to the Truth Table S-Box to determine the characteristic. Several important characteristics should be owned by the S-Boxes, they are Nonlinearity, Balancedness, Algebraic degree, LAT, DAT, differential delta uniformity, correlation immunity and global avalanche criterion. Then, a comprehensive tool will be present to automatically calculate the characteristics of S-Boxes and determine the strength of S-Box. Comprehensive analysis is done on a deterministic process to produce a sequence of S-Boxes characteristic and give advice for a better S-Box construction.Keywords: cryptographic properties, Truth Table S-Boxes, S-Boxes characteristic, deterministic process
Procedia PDF Downloads 362696 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 12695 On the Analysis of Pseudorandom Partial Quotient Sequences Generated from Continued Fractions
Authors: T. Padma, Jayashree S. Pillai
Abstract:
Random entities are an essential component in any cryptographic application. The suitability of a number theory based novel pseudorandom sequence called Pseudorandom Partial Quotient Sequence (PPQS) generated from the continued fraction expansion of irrational numbers, in cryptographic applications, is analyzed in this paper. An approach to build the algorithm around a hard mathematical problem has been considered. The PQ sequence is tested for randomness and its suitability as a cryptographic key by performing randomness analysis, key sensitivity and key space analysis, precision analysis and evaluating the correlation properties is established.Keywords: pseudorandom sequences, key sensitivity, correlation, security analysis, randomness analysis, sensitivity analysis
Procedia PDF Downloads 589694 The Complexity of Testing Cryptographic Devices on Input Faults
Authors: Alisher Ikramov, Gayrat Juraev
Abstract:
The production of logic devices faces the occurrence of faults during manufacturing. This work analyses the complexity of testing a special type of logic device on inverse, adhesion, and constant input faults. The focus of this work is on devices that implement cryptographic functions. The complexity values for the general case faults and for some frequently occurring subsets were determined and proved in this work. For a special case, when the length of the text block is equal to the length of the key block, the complexity of testing is proven to be asymptotically half the complexity of testing all logic devices on the same types of input faults.Keywords: complexity, cryptographic devices, input faults, testing
Procedia PDF Downloads 224693 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City
Authors: Khadija Raissi, Bechir Ben Gouissem
Abstract:
In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3
Procedia PDF Downloads 295692 Generation of Symmetric Key Using Randomness of Hash Function
Authors: Sai Charan Kamana, Harsha Vardhan Nakkina, B.R. Chandavarkar
Abstract:
In a highly secure and robust key generation process, a key role is played by randomness and random numbers when current real-world cryptosystems are observed. Most of the present-day cryptographic protocols depend upon the Random Number Generators (RNG), Pseudo-Random Number Generator (PRNG). These protocols often use noisy channels such as Disk seek time, CPU temperature, Mouse pointer movement, Fan noise to obtain true random values. Despite being cost-effective, these noisy channels may need additional hardware devices to continuously communicate with them. On the other hand, Hash functions are Pseudo-Random (because of their requirements). So, they are a good replacement for these noisy channels and have low hardware requirements. This paper discusses, some of the key generation methodologies, and their drawbacks. This paper explains how hash functions can be used in key generation, how to combine Key Derivation Functions with hash functions.Keywords: key derivation, hash based key derivation, password based key derivation, symmetric key derivation
Procedia PDF Downloads 159691 Introduction to Multi-Agent Deep Deterministic Policy Gradient
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents
Procedia PDF Downloads 21690 Red Green Blue Image Encryption Based on Paillier Cryptographic System
Authors: Mamadou I. Wade, Henry C. Ogworonjo, Madiha Gul, Mandoye Ndoye, Mohamed Chouikha, Wayne Patterson
Abstract:
In this paper, we present a novel application of the Paillier cryptographic system to the encryption of RGB (Red Green Blue) images. In this method, an RGB image is first separated into its constituent channel images, and the Paillier encryption function is applied to each of the channels pixel intensity values. Next, the encrypted image is combined and compressed if necessary before being transmitted through an unsecured communication channel. The transmitted image is subsequently recovered by a decryption process. We performed a series of security and performance analyses to the recovered images in order to verify their robustness to security attack. The results show that the proposed image encryption scheme produces highly secured encrypted images.Keywords: image encryption, Paillier cryptographic system, RBG image encryption, Paillier
Procedia PDF Downloads 237689 Achieving Better Security by Using Nonlinear Cellular Automata as a Cryptographic Primitive
Authors: Swapan Maiti, Dipanwita Roy Chowdhury
Abstract:
Nonlinear functions are essential in different cryptoprimitives as they play an important role on the security of the cipher designs. Rule 30 was identified as a powerful nonlinear function for cryptographic applications. However, an attack (MS attack) was mounted against Rule 30 Cellular Automata (CA). Nonlinear rules as well as maximum period CA increase randomness property. In this work, nonlinear rules of maximum period nonlinear hybrid CA (M-NHCA) are studied and it is shown to be a better crypto-primitive than Rule 30 CA. It has also been analysed that the M-NHCA with single nonlinearity injection proposed in the literature is vulnerable against MS attack, whereas M-NHCA with multiple nonlinearity injections provide maximum length cycle as well as better cryptographic primitives and they are also secure against MS attack.Keywords: cellular automata, maximum period nonlinear CA, Meier and Staffelbach attack, nonlinear functions
Procedia PDF Downloads 312688 Mechanism for Network Security via Routing Protocols Estimated with Network Simulator 2 (NS-2)
Authors: Rashid Mahmood, Muhammad Sufyan, Nasir Ahmed
Abstract:
The MANETs have lessened transportation and decentralized network. There are numerous basis of routing protocols. We derived the MANETs protocol into three major categories like Reactive, Proactive and hybrid. In these protocols, we discussed only some protocols like Distance Sequenced Distance Vector (DSDV), Ad hoc on Demand Distance Vector (AODV) and Dynamic Source Routing (DSR). The AODV and DSR are both reactive type of protocols. On the other hand, DSDV is proactive type protocol here. We compare these routing protocols for network security estimated by network simulator (NS-2). In this dissertation some parameters discussed such as simulation time, packet size, number of node, packet delivery fraction, push time and speed etc. We will construct all these parameters on routing protocols under suitable conditions for network security measures.Keywords: DSDV, AODV, DSR NS-2, PDF, push time
Procedia PDF Downloads 432687 Software Quality Assurance in Network Security using Cryptographic Techniques
Authors: Sidra Shabbir, Ayesha Manzoor, Mehreen Sirshar
Abstract:
The use of the network communication has imposed serious threats to the security of assets over the network. Network security is getting more prone to active and passive attacks which may result in serious consequences to data integrity, confidentiality and availability. Various cryptographic techniques have been proposed in the past few years to combat with the concerned problem by ensuring quality but in order to have a fully secured network; a framework of new cryptosystem was needed. This paper discusses certain cryptographic techniques which have shown far better improvement in the network security with enhanced quality assurance. The scope of this research paper is to cover the security pitfalls in the current systems and their possible solutions based on the new cryptosystems. The development of new cryptosystem framework has paved a new way to the widespread network communications with enhanced quality in network security.Keywords: cryptography, network security, encryption, decryption, integrity, confidentiality, security algorithms, elliptic curve cryptography
Procedia PDF Downloads 732686 Decoding the Structure of Multi-Agent System Communication: A Comparative Analysis of Protocols and Paradigms
Authors: Gulshad Azatova, Aleksandr Kapitonov, Natig Aminov
Abstract:
Multiagent systems have gained significant attention in various fields, such as robotics, autonomous vehicles, and distributed computing, where multiple agents cooperate and communicate to achieve complex tasks. Efficient communication among agents is a crucial aspect of these systems, as it directly impacts their overall performance and scalability. This scholarly work provides an exploration of essential communication elements and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of these protocols across various scenarios. The research also sheds light on emerging trends within communication protocols for multiagent systems, including the incorporation of machine learning methods and the adoption of blockchain-based solutions to ensure secure communication. These trends provide valuable insights into the evolving landscape of multiagent systems and their communication protocols.Keywords: communication, multi-agent systems, protocols, consensus
Procedia PDF Downloads 72685 Routing Metrics and Protocols for Wireless Mesh Networks
Authors: Samira Kalantary, Zohre Saatzade
Abstract:
Wireless Mesh Networks (WMNs) are low-cost access networks built on cooperative routing over a backbone composed of stationary wireless routers. WMNs must deal with the highly unstable wireless medium. Thus, routing metrics and protocols are evolving by designing algorithms that consider link quality to choose the best routes. In this work, we analyse the state of the art in WMN metrics and propose taxonomy for WMN routing protocols. Performance measurements of a wireless mesh network deployed using various routing metrics are presented and corroborate our analysis.Keywords: wireless mesh networks, routing protocols, routing metrics, bioinformatics
Procedia PDF Downloads 452684 Decentralised Edge Authentication in the Industrial Enterprise IoT Space
Authors: C. P. Autry, A.W. Roscoe
Abstract:
Authentication protocols based on public key infrastructure (PKI) and trusted third party (TTP) are no longer adequate for industrial scale IoT networks thanks to issues such as low compute and power availability, the use of widely distributed and commercial off-the-shelf (COTS) systems, and the increasingly sophisticated attackers and attacks we now have to counter. For example, there is increasing concern about nation-state-based interference and future quantum computing capability. We have examined this space from first principles and have developed several approaches to group and point-to-point authentication for IoT that do not depend on the use of a centralised client-server model. We emphasise the use of quantum resistant primitives such as strong cryptographic hashing and the use multi-factor authentication.Keywords: authentication, enterprise IoT cybersecurity, PKI/TTP, IoT space
Procedia PDF Downloads 168683 Data Security in Cloud Storage
Authors: Amir Rashid
Abstract:
Today is the world of innovation and Cloud Computing is becoming a day to day technology with every passing day offering remarkable services and features on the go with rapid elasticity. This platform took business computing into an innovative dimension where clients interact and operate through service provider web portals. Initially, the trust relationship between client and service provider remained a big question but with the invention of several cryptographic paradigms, it is becoming common in everyday business. This research work proposes a solution for building a cloud storage service with respect to Data Security addressing public cloud infrastructure where the trust relationship matters a lot between client and service provider. For the great satisfaction of client regarding high-end Data Security, this research paper propose a layer of cryptographic primitives combining several architectures in order to achieve the goal. A survey has been conducted to determine the benefits for such an architecture would provide to both clients/service providers and recent developments in cryptography specifically by cloud storage.Keywords: data security in cloud computing, cloud storage architecture, cryptographic developments, token key
Procedia PDF Downloads 293682 Integrating the Modbus SCADA Communication Protocol with Elliptic Curve Cryptography
Authors: Despoina Chochtoula, Aristidis Ilias, Yannis Stamatiou
Abstract:
Modbus is a protocol that enables the communication among devices which are connected to the same network. This protocol is, often, deployed in connecting sensor and monitoring units to central supervisory servers in Supervisory Control and Data Acquisition, or SCADA, systems. These systems monitor critical infrastructures, such as factories, power generation stations, nuclear power reactors etc. in order to detect malfunctions and ignite alerts and corrective actions. However, due to their criticality, SCADA systems are vulnerable to attacks that range from simple eavesdropping on operation parameters, exchanged messages, and valuable infrastructure information to malicious modification of vital infrastructure data towards infliction of damage. Thus, the SCADA research community has been active over strengthening SCADA systems with suitable data protection mechanisms based, to a large extend, on cryptographic methods for data encryption, device authentication, and message integrity protection. However, due to the limited computation power of many SCADA sensor and embedded devices, the usual public key cryptographic methods are not appropriate due to their high computational requirements. As an alternative, Elliptic Curve Cryptography has been proposed, which requires smaller key sizes and, thus, less demanding cryptographic operations. Until now, however, no such implementation has been proposed in the SCADA literature, to the best of our knowledge. In order to fill this gap, our methodology was focused on integrating Modbus, a frequently used SCADA communication protocol, with Elliptic Curve based cryptography and develop a server/client application to demonstrate the proof of concept. For the implementation we deployed two C language libraries, which were suitably modify in order to be successfully integrated: libmodbus (https://github.com/stephane/libmodbus) and ecc-lib https://www.ceid.upatras.gr/webpages/faculty/zaro/software/ecc-lib/). The first library provides a C implementation of the Modbus/TCP protocol while the second one offers the functionality to develop cryptographic protocols based on Elliptic Curve Cryptography. These two libraries were combined, after suitable modifications and enhancements, in order to give a modified version of the Modbus/TCP protocol focusing on the security of the data exchanged among the devices and the supervisory servers. The mechanisms we implemented include key generation, key exchange/sharing, message authentication, data integrity check, and encryption/decryption of data. The key generation and key exchange protocols were implemented with the use of Elliptic Curve Cryptography primitives. The keys established by each device are saved in their local memory and are retained during the whole communication session and are used in encrypting and decrypting exchanged messages as well as certifying entities and the integrity of the messages. Finally, the modified library was compiled for the Android environment in order to run the server application as an Android app. The client program runs on a regular computer. The communication between these two entities is an example of the successful establishment of an Elliptic Curve Cryptography based, secure Modbus wireless communication session between a portable device acting as a supervisor station and a monitoring computer. Our first performance measurements are, also, very promising and demonstrate the feasibility of embedding Elliptic Curve Cryptography into SCADA systems, filling in a gap in the relevant scientific literature.Keywords: elliptic curve cryptography, ICT security, modbus protocol, SCADA, TCP/IP protocol
Procedia PDF Downloads 270681 Performance Comparison of Reactive, Proactive and Hybrid Routing Protocols in Wireless Ad Hoc Networks
Authors: Kumar Manoj, Ramesh Kumar, Kumari Arti, Kumar Prashant
Abstract:
Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper we compare AODV, DSDV, DSR and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyses these routing protocols by extensive simulations in OPNET simulator and show that how pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, data traffic sent, throughput, retransmission attempts.Keywords: MANET, AODV, DSDV, DSR, ZRP
Procedia PDF Downloads 678680 Performance Analysis and Energy Consumption of Routing Protocol in Manet Using Grid Topology
Authors: Vivek Kumar Singh, Tripti Singh
Abstract:
An ad hoc wireless network consists of mobile networks which creates an underlying architecture for communication without the help of traditional fixed-position routers. Ad-hoc On-demand Distance Vector (AODV) is a routing protocol used for Mobile Ad hoc Network (MANET). Nevertheless, the architecture must maintain communication routes although the hosts are mobile and they have limited transmission range. There are different protocols for handling the routing in the mobile environment. Routing protocols used in fixed infrastructure networks cannot be efficiently used for mobile ad-hoc networks, so that MANET requires different protocols. This paper presents the performance analysis of the routing protocols used various parameter-patterns with Two-ray model.Keywords: AODV, packet transmission rate, pause time, ZRP, QualNet 6.1
Procedia PDF Downloads 827679 Antibiotic Guideline Adherence
Authors: I. A. Harris, J. M. Naylor
Abstract:
Antibiotic guidelines are published in order to reduce the risk of perioperative infection in orthopaedics. We surveyed 20 orthopaedic hospitals in Australia to determine their protocols for antibiotic prophylaxis around joint replacement surgery. We tested the protocols against Australian guidelines. We found that less than half of all protocols adhered to Australian guidelines. This indicates that current practice may lead to increased infection rates and increased antibiotic resistance.Keywords: antibiotics, practice guidelines, orthopaedic surgery, joint replacement
Procedia PDF Downloads 500678 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: fingerprint, template protection, bio-cryptography, minutiae protection
Procedia PDF Downloads 169677 Wireless Sensor Network Energy Efficient and QoS-Aware MAC Protocols: A Survey
Authors: Bashir Abdu Muzakkari, Mohamad Afendee Mohamad, Mohd Fadzil Abdul Kadir
Abstract:
Wireless Sensor Networks (WSNs) is an aggregation of several tiny, low-cost sensor nodes, spatially distributed to monitor physical or environmental status. WSN is constantly changing because of the rapid technological advancements in sensor elements such as radio, battery and operating systems. The Medium Access Control (MAC) protocols remain very vital in the WSN because of its role in coordinating communication amongst the sensors. Other than battery consumption, packet collision, network lifetime and latency are factors that largely depend on WSN MAC protocol and these factors have been widely treated in recent days. In this paper, we survey some latest proposed WSN Contention-based, Scheduling-based and Hybrid MAC protocols while presenting an examination, correlation of advantages and limitations of each protocol. Concentration is directed towards investigating the treatment of Quality of Service (QoS) performance metrics within these particular protocols. The result shows that majority of the protocols leaned towards energy conservation. We, therefore, believe that other performance metrics of guaranteed QoS such as latency, throughput, packet loss, network and bandwidth availability may play a critical role in the design of future MAC protocols for WSNs.Keywords: WSN, QoS, energy consumption, MAC protocol
Procedia PDF Downloads 398