Search results for: compute shaders
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 333

Search results for: compute shaders

183 Sundarban as a Buffer against Storm Surge Flooding

Authors: Mohiuddin Sakib, Fatin Nihal, Anisul Haque, Munsur Rahman, Mansur Ali

Abstract:

Sundarban, the largest mangrove forest in the world, is known to act as a buffer against the cyclone and storm surge. Theoretically, Sundarban absorbs the initial thrust of the wind and acts to ‘resist’ the storm surge flooding. The role of Sundarban was evident during the cyclone Sidr when the Sundarban solely defended the initial thrust of the cyclonic wind and the resulting storm surge inundation. In doing this, Sundarban sacrificed 30% of its plant habitats. Although no scientific study has yet been conducted, it is generally believed that Sundarban will continuously play its role as a buffer against the cyclone when landfall of the cyclone is at or close to the Sundarban. Considering these facts, the present study mainly focused on a scientific insight into the role of Sundarban as a buffer against the present-day cyclone and storm surge and also its probable role on the impacts of future storms of similar nature but with different landfall locations. The Delft 3D dashboard and flow model are applied to compute the resulting inundation due to cyclone induced storm surge. The results show that Sundarban indeed acts as a buffer against the storm surge inundation when cyclone landfall is at or close to Sundarban.

Keywords: buffer, Mangrove forest, Sidr, landfall, roughness

Procedia PDF Downloads 367
182 CNN-Based Compressor Mass Flow Estimator in Industrial Aircraft Vapor Cycle System

Authors: Justin Reverdi, Sixin Zhang, Saïd Aoues, Fabrice Gamboa, Serge Gratton, Thomas Pellegrini

Abstract:

In vapor cycle systems, the mass flow sensor plays a key role for different monitoring and control purposes. However, physical sensors can be inaccurate, heavy, cumbersome, expensive, or highly sensitive to vibrations, which is especially problematic when embedded into an aircraft. The conception of a virtual sensor, based on other standard sensors, is a good alternative. This paper has two main objectives. Firstly, a data-driven model using a convolutional neural network is proposed to estimate the mass flow of the compressor. We show that it significantly outperforms the standard polynomial regression model (thermodynamic maps) in terms of the standard MSE metric and engineer performance metrics. Secondly, a semi-automatic segmentation method is proposed to compute the engineer performance metrics for real datasets, as the standard MSE metric may pose risks in analyzing the dynamic behavior of vapor cycle systems.

Keywords: deep learning, convolutional neural network, vapor cycle system, virtual sensor

Procedia PDF Downloads 27
181 Assessing the Role of Human Mobility on Malaria Transmission in South Sudan

Authors: A. Y. Mukhtar, J. B. Munyakazi, R. Ouifki

Abstract:

Over the past few decades, the unprecedented increase in mobility has raised considerable concern about the relationship between mobility and vector-borne diseases and malaria in particular. Thus, one can claim that human mobility is one of the contributing factors to the resurgence of malaria. To assess human mobility on malaria burden among hosts, we formulate a movement-based model on a network of patches. We then extend human multi-group SEIAR deterministic epidemic models into a system of stochastic differential equations (SDEs). Our quantitative stochastic model which is expressed in terms of average rates of movement between compartments is fitted to time-series data (weekly malaria data of 2011 for each patch) using the maximum likelihood approach. Using the metapopulation (multi-group) model, we compute and analyze the basic reproduction number. The result shows that human movement is sufficient to preserve malaria disease firmness in the patches with the low transmission. With these results, we concluded that the sensitivity of malaria to the human mobility is turning to be greatly important over the implications of future malaria control in South Sudan.

Keywords: basic reproduction number, malaria, maximum likelihood, movement, stochastic model

Procedia PDF Downloads 113
180 Probabilistic Modeling of Post-Liquefaction Ground Deformation

Authors: Javad Sadoghi Yazdi, Robb Eric S. Moss

Abstract:

This paper utilizes a probabilistic liquefaction triggering method for modeling post-liquefaction ground deformation. This cone penetration test CPT-based liquefaction triggering is employed to estimate the factor of safety against liquefaction (FSL) and compute the maximum cyclic shear strain (γmax). The study identifies a maximum PL value of 90% across various relative densities, which challenges the decrease from 90% to 70% as relative density decreases. It reveals that PL ranges from 5% to 50% for volumetric strain (εvol) less than 1%, while for εvol values between 1% and 3.2%, PL spans from 50% to 90%. The application of the CPT-based simplified liquefaction triggering procedures has been employed in previous researches to estimate liquefaction ground-failure indices, such as the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN). However, several studies have been conducted to highlight the variability in liquefaction probability calculations, suggesting a more accurate depiction of liquefaction likelihood. Consequently, the utilization of these simplified methods may not offer practical efficiency. This paper further investigates the efficacy of various established liquefaction vulnerability parameters, including LPI and LSN, in explaining the observed liquefaction-induced damage within residential zones of Christchurch, New Zealand using results from CPT database.

Keywords: cone penetration test (CPT), liquefaction, postliquefaction, ground failure

Procedia PDF Downloads 33
179 Towards an Adversary-Aware ML-Based Detector of Spam on Twitter Hashtags

Authors: Niddal Imam, Vassilios G. Vassilakis

Abstract:

After analysing messages posted by health-related spam campaigns in Twitter Arabic hashtags, we found that these campaigns use unique hijacked accounts (we call them adversarial hijacked accounts) as adversarial examples to fool deployed ML-based spam detectors. Existing ML-based models build a behaviour profile for each user to detect hijacked accounts. This approach is not applicable for detecting spam in Twitter hashtags since they are computationally expensive. Hence, we propose an adversary-aware ML-based detector, which includes a newly designed feature (avg posts) to improve the detection of spam tweets posted by the adversarial hijacked accounts at a tweet-level in trending hashtags. The proposed detector was designed considering three key points: robustness, adaptability, and interpretability. The new feature leverages the account’s temporal patterns (i.e., account age and number of posts). It is faster to compute compared to features discussed in the literature and improves the accuracy of detecting the identified hijacked accounts by 73%.

Keywords: Twitter spam detection, adversarial examples, evasion attack, adversarial concept drift, account hijacking, trending hashtag

Procedia PDF Downloads 42
178 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC

Authors: Qiang Zhang, Chun Yuan

Abstract:

Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).

Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel

Procedia PDF Downloads 374
177 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation

Authors: Sopheak Sorn, Kwok Yip Szeto

Abstract:

Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.

Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio

Procedia PDF Downloads 389
176 Effect of Channel Variation of Two-Dimensional Water Tunnel to Study Fluid Dynamics Phenomenon

Authors: Rizka Yunita, Mas Aji Rizki Wijayanto

Abstract:

Computational fluid dynamics (CFD) is the solution to explain how fluid dynamics behavior. In this work, we obtain the effect of channel width of two-dimensional fluid visualization. Using a horizontal water tunnel and flowing soap film, we got a visualization of continuous film that can be observe a graphical overview of the flow that occurs on a space or field in which the fluid flow. The horizontal water tunnel we used, divided into three parts, expansion area, parallel area that used to test the data, and contraction area. The width of channel is the boundary of parallel area with the originally width of 7.2 cm, and the variation of channel width we observed is about 1 cm and its times. To compute the velocity, vortex shedding, and other physical parameters of fluid, we used the cyclinder circular as an obstacle to create a von Karman vortex in fluid and analyzed that phenomenon by using Particle Imaging Velocimetry (PIV) method and comparing Reynolds number and Strouhal number from the visualization we got. More than width the channel, the film is more turbulent and have a separation zones that occurs of uncontinuous flowing fluid.

Keywords: flow visualization, width of channel, vortex, Reynolds number, Strouhal number

Procedia PDF Downloads 348
175 Implementation of Integer Sub-Decomposition Method on Elliptic Curves with J-Invariant 1728

Authors: Siti Noor Farwina Anwar, Hailiza Kamarulhaili

Abstract:

In this paper, we present the idea of implementing the Integer Sub-Decomposition (ISD) method on elliptic curves with j-invariant 1728. The ISD method was proposed in 2013 to compute scalar multiplication in elliptic curves, which remains to be the most expensive operation in Elliptic Curve Cryptography (ECC). However, the original ISD method only works on integer number field and solve integer scalar multiplication. By extending the method into the complex quadratic field, we are able to solve complex multiplication and implement the ISD method on elliptic curves with j-invariant 1728. The curve with j-invariant 1728 has a unique discriminant of the imaginary quadratic field. This unique discriminant of quadratic field yields a unique efficiently computable endomorphism, which later able to speed up the computations on this curve. However, the ISD method needs three endomorphisms to be accomplished. Hence, we choose all three endomorphisms to be from the same imaginary quadratic field as the curve itself, where the first endomorphism is the unique endomorphism yield from the discriminant of the imaginary quadratic field.

Keywords: efficiently computable endomorphism, elliptic scalar multiplication, j-invariant 1728, quadratic field

Procedia PDF Downloads 172
174 Machine Learning Assisted Performance Optimization in Memory Tiering

Authors: Derssie Mebratu

Abstract:

As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.

Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM

Procedia PDF Downloads 71
173 Recommender System Based on Mining Graph Databases for Data-Intensive Applications

Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi

Abstract:

In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.

Keywords: graph databases, NLP, recommendation systems, similarity metrics

Procedia PDF Downloads 77
172 An Optimal Control Model to Determine Body Forces of Stokes Flow

Authors: Yuanhao Gao, Pin Lin, Kees Weijer

Abstract:

In this paper, we will determine the external body force distribution with analysis of stokes fluid motion using mathematical modelling and numerical approaching. The body force distribution is regarded as the unknown variable and could be determined by the idea of optimal control theory. The Stokes flow motion and its velocity are generated by given forces in a unit square domain. A regularized objective functional is built to match the numerical result of flow velocity with the generated velocity data. So that the force distribution could be determined by minimizing the value of objective functional, which is also the difference between the numerical and experimental velocity. Then after utilizing the Lagrange multiplier method, some partial differential equations are formulated consisting the optimal control system to solve. Finite element method and conjugate gradient method are used to discretize equations and deduce the iterative expression of target body force to compute the velocity numerically and body force distribution. Programming environment FreeFEM++ supports the implementation of this model.

Keywords: optimal control model, Stokes equation, finite element method, conjugate gradient method

Procedia PDF Downloads 372
171 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink

Authors: Bandari Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement

Keywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet

Procedia PDF Downloads 246
170 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures

Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat

Abstract:

In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.

Keywords: association rules, clustering, similarity measure, statistical approaches

Procedia PDF Downloads 294
169 GPU Accelerated Fractal Image Compression for Medical Imaging in Parallel Computing Platform

Authors: Md. Enamul Haque, Abdullah Al Kaisan, Mahmudur R. Saniat, Aminur Rahman

Abstract:

In this paper, we have implemented both sequential and parallel version of fractal image compression algorithms using CUDA (Compute Unified Device Architecture) programming model for parallelizing the program in Graphics Processing Unit for medical images, as they are highly similar within the image itself. There is several improvements in the implementation of the algorithm as well. Fractal image compression is based on the self similarity of an image, meaning an image having similarity in majority of the regions. We take this opportunity to implement the compression algorithm and monitor the effect of it using both parallel and sequential implementation. Fractal compression has the property of high compression rate and the dimensionless scheme. Compression scheme for fractal image is of two kinds, one is encoding and another is decoding. Encoding is very much computational expensive. On the other hand decoding is less computational. The application of fractal compression to medical images would allow obtaining much higher compression ratios. While the fractal magnification an inseparable feature of the fractal compression would be very useful in presenting the reconstructed image in a highly readable form. However, like all irreversible methods, the fractal compression is connected with the problem of information loss, which is especially troublesome in the medical imaging. A very time consuming encoding process, which can last even several hours, is another bothersome drawback of the fractal compression.

Keywords: accelerated GPU, CUDA, parallel computing, fractal image compression

Procedia PDF Downloads 305
168 Reducing Total Harmonic Content of 9-Level Inverter by Use of Cuckoo Algorithm

Authors: Mahmoud Enayati, Sirous Mohammadi

Abstract:

In this paper, a novel procedure to find the firing angles of the multilevel inverters of supply voltage and, consequently, to decline the total harmonic distortion (THD), has been presented. In order to eliminate more harmonics in the multilevel inverters, its number of levels can be lessened or pulse width modulation waveform, in which more than one switching occur in each level, be used. Both cases complicate the non-algebraic equations and their solution cannot be performed by the conventional methods for the numerical solution of nonlinear equations such as Newton-Raphson method. In this paper, Cuckoo algorithm is used to compute the optimal firing angle of the pulse width modulation voltage waveform in the multilevel inverter. These angles should be calculated in such a way that the voltage amplitude of the fundamental frequency be generated while the total harmonic distortion of the output voltage be small. The simulation and theoretical results for the 9-levels inverter offer the high applicability of the proposed algorithm to identify the suitable firing angles for declining the low order harmonics and generate a waveform whose total harmonic distortion is very small and it is almost a sinusoidal waveform.

Keywords: evolutionary algorithms, multilevel inverters, total harmonic content, Cuckoo Algorithm

Procedia PDF Downloads 508
167 Evaluation of a 50MW Two-Axis Tracking Photovoltaic Power Plant for Al-Jagbob, Libya: Energetic, Economic, and Environmental Impact Analysis

Authors: Yasser Aldali, Farag Ahwide

Abstract:

This paper investigates the application of large scale (LS-PV) two-axis tracking photovoltaic power plant in Al-Jagbob, Libya. A 50MW PV-grid connected (two-axis tracking) power plant design in Al-Jagbob, Libya has been carried out presently. A hetero-junction with intrinsic thin layer (HIT) type PV module has been selected and modeled. A Microsoft Excel-VBA program has been constructed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency for this system, for tracking system. The results for energy production show that the total energy output is 128.5 GWh/year. The average module efficiency is 16.6%. The electricity generation capacity factor (CF) and solar capacity factor (SCF) were found to be 29.3% and 70.4% respectively. A 50MW two axis tracking power plant with a total energy output of 128.5 GWh/year would reduce CO2 pollution by 85,581 tonnes of each year. The payback time for the proposed LS-PV photovoltaic power plant was found to be 4 years.

Keywords: large PV power plant, solar energy, environmental impact, dual-axis tracking system

Procedia PDF Downloads 374
166 Nilsson Model Performance in Estimating Bed Load Sediment, Case Study: Tale Zang Station

Authors: Nader Parsazadeh

Abstract:

The variety of bed sediment load relationships, insufficient information and data, and the influence of river conditions make the selection of an optimum relationship for a given river extremely difficult. Hence, in order to select the best formulae, the bed load equations should be evaluated. The affecting factors need to be scrutinized, and equations should be verified. Also, re-evaluation may be needed. In this research, sediment bed load of Dez Dam at Tal-e Zang Station has been studied. After reviewing the available references, the most common formulae were selected that included Meir-Peter and Muller, using MS Excel to compute and evaluate data. Then, 52 series of already measured data at the station were re-measured, and the sediment bed load was determined. 1. The calculated bed load obtained by different equations showed a great difference with that of measured data. 2. r difference ratio from 0.5 to 2.00 was 0% for all equations except for Nilsson and Shields equations while it was 61.5 and 59.6% for Nilsson and Shields equations, respectively. 3. By reviewing results and discarding probably erroneous measured data measurements (by human or machine), one may use Nilsson Equation due to its r value higher than 1 as an effective equation for estimating bed load at Tal-e Zang Station in order to predict activities that depend upon bed sediment load estimate to be determined. Also, since only few studies have been conducted so far, these results may be of assistance to the operators and consulting companies.

Keywords: bed load, empirical relation ship, sediment, Tale Zang Station

Procedia PDF Downloads 343
165 FLIME - Fast Low Light Image Enhancement for Real-Time Video

Authors: Vinay P., Srinivas K. S.

Abstract:

Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.

Keywords: low light image enhancement, real-time video, computer vision, machine learning

Procedia PDF Downloads 170
164 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement

Authors: Rhadinia Tayag-Relanes, Felina C. Young

Abstract:

This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.

Keywords: production, continuous improvement, process, operations, PDCA

Procedia PDF Downloads 31
163 Non-Parametric Changepoint Approximation for Road Devices

Authors: Loïc Warscotte, Jehan Boreux

Abstract:

The scientific literature of changepoint detection is vast. Today, a lot of methods are available to detect abrupt changes or slight drift in a signal, based on CUSUM or EWMA charts, for example. However, these methods rely on strong assumptions, such as the stationarity of the stochastic underlying process, or even the independence and Gaussian distributed noise at each time. Recently, the breakthrough research on locally stationary processes widens the class of studied stochastic processes with almost no assumptions on the signals and the nature of the changepoint. Despite the accurate description of the mathematical aspects, this methodology quickly suffers from impractical time and space complexity concerning the signals with high-rate data collection, if the characteristics of the process are completely unknown. In this paper, we then addressed the problem of making this theory usable to our purpose, which is monitoring a high-speed weigh-in-motion system (HS-WIM) towards direct enforcement without supervision. To this end, we first compute bounded approximations of the initial detection theory. Secondly, these approximating bounds are empirically validated by generating many independent long-run stochastic processes. The abrupt changes and the drift are both tested. Finally, this relaxed methodology is tested on real signals coming from a HS-WIM device in Belgium, collected over several months.

Keywords: changepoint, weigh-in-motion, process, non-parametric

Procedia PDF Downloads 42
162 Estimating View-Through Ad Attribution from User Surveys Using Convex Optimization

Authors: Yuhan Lin, Rohan Kekatpure, Cassidy Yeung

Abstract:

In Digital Marketing, robust quantification of View-through attribution (VTA) is necessary for evaluating channel effectiveness. VTA occurs when a product purchase is aided by an Ad but without an explicit click (e.g. a TV ad). A lack of a tracking mechanism makes VTA estimation challenging. Most prevalent VTA estimation techniques rely on post-purchase in-product user surveys. User surveys enable the calculation of channel multipliers, which are the ratio of the view-attributed to the click-attributed purchases of each marketing channel. Channel multipliers thus provide a way to estimate the unknown VTA for a channel from its known click attribution. In this work, we use Convex Optimization to compute channel multipliers in a way that enables a mathematical encoding of the expected channel behavior. Large fluctuations in channel attributions often result from overfitting the calculations to user surveys. Casting channel attribution as a Convex Optimization problem allows an introduction of constraints that limit such fluctuations. The result of our study is a distribution of channel multipliers across the entire marketing funnel, with important implications for marketing spend optimization. Our technique can be broadly applied to estimate Ad effectiveness in a privacy-centric world that increasingly limits user tracking.

Keywords: digital marketing, survey analysis, operational research, convex optimization, channel attribution

Procedia PDF Downloads 142
161 Closed Form Solution for 4-D Potential Integrals for Arbitrary Coplanar Polygonal Surfaces

Authors: Damir Latypov

Abstract:

A closed-form solution for 4-D double surface integrals arising in boundary integrals equations of a potential theory is obtained for arbitrary coplanar polygonal surfaces. The solution method is based on the construction of exact differential forms followed by the application of Stokes' theorem for each surface integral. As a result, the 4-D double surface integral is reduced to a 2-D double line integral. By an appropriate change of variables, the integrand is transformed into a separable function of integration variables. The closed-form solutions to the corresponding 1-D integrals are readily available in the integration tables. Previously closed-form solutions were known only for the case of coincident triangle surfaces and coplanar rectangles. Solutions for these cases were obtained by surface-specific ad-hoc methods, while the present method is general. The method also works for non-polygonal surfaces. As an example, we compute in closed form the 4-D integral for the case of coincident surfaces in the shape of a circular disk. For an arbitrarily shaped surface, the proposed method provides an efficient quadrature rule. Extensions of the method for non-coplanar surfaces and other than 1/R integral kernels are also discussed.

Keywords: boundary integral equations, differential forms, integration, stokes' theorem

Procedia PDF Downloads 282
160 Investigation of Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection: The Modified Voltammetry Technique

Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behaviour of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP, which was only applied on two of the three coupons at the protection potential -0.8 V vs Cu/CuSO₄ for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP, while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from the ohmic drop. Voltammetry was finally performed on the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduced the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect from the decreased potential and an induced effect associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy

Procedia PDF Downloads 42
159 A Predictive Analytics Approach to Project Management: Reducing Project Failures in Web and Software Development Projects

Authors: Tazeen Fatima

Abstract:

Use of project management in web & software development projects is very significant. It has been observed that even with the application of effective project management, projects usually do not complete their lifecycle and fail. To minimize these failures, key performance indicators have been introduced in previous studies to counter project failures. However, there are always gaps and problems in the KPIs identified. Despite of incessant efforts at technical and managerial levels, projects still fail. There is no substantial approach to identify and avoid these failures in the very beginning of the project lifecycle. In this study, we aim to answer these research problems by analyzing the concept of predictive analytics which is a specialized technology and is very easy to use in this era of computation. Project organizations can use data gathering, compute power, and modern tools to render efficient Predictions. The research aims to identify such a predictive analytics approach. The core objective of the study was to reduce failures and introduce effective implementation of project management principles. Existing predictive analytics methodologies, tools and solution providers were also analyzed. Relevant data was gathered from projects and was analyzed via predictive techniques to make predictions well advance in time to render effective project management in web & software development industry.

Keywords: project management, predictive analytics, predictive analytics methodology, project failures

Procedia PDF Downloads 308
158 Real-Time Path Planning for Unmanned Air Vehicles Using Improved Rapidly-Exploring Random Tree and Iterative Trajectory Optimization

Authors: A. Ramalho, L. Romeiro, R. Ventura, A. Suleman

Abstract:

A real-time path planning framework for Unmanned Air Vehicles, and in particular multi-rotors is proposed. The framework is designed to provide feasible trajectories from the current UAV position to a goal state, taking into account constraints such as obstacle avoidance, problem kinematics, and vehicle limitations such as maximum speed and maximum acceleration. The framework computes feasible paths online, allowing to avoid new, unknown, dynamic obstacles without fully re-computing the trajectory. These features are achieved using an iterative process in which the robot computes and optimizes the trajectory while performing the mission objectives. A first trajectory is computed using a modified Rapidly-Exploring Random Tree (RRT) algorithm, that provides trajectories that respect a maximum curvature constraint. The trajectory optimization is accomplished using the Interior Point Optimizer (IPOPT) as a solver. The framework has proven to be able to compute a trajectory and optimize to a locally optimal with computational efficiency making it feasible for real-time operations.

Keywords: interior point optimization, multi-rotors, online path planning, rapidly exploring random trees, trajectory optimization

Procedia PDF Downloads 117
157 Theoretical Analysis of the Solid State and Optical Characteristics of Calcium Sulpide Thin Film

Authors: Emmanuel Ifeanyi Ugwu

Abstract:

Calcium Sulphide which is one of Chalcogenide group of thin films has been analyzed in this work using a theoretical approach in which a scalar wave was propagated through the material thin film medium deposited on a glass substrate with the assumption that the dielectric medium has homogenous reference dielectric constant term, and a perturbed dielectric function, representing the deposited thin film medium on the surface of the glass substrate as represented in this work. These were substituted into a defined scalar wave equation that was solved first of all by transforming it into Volterra equation of second type and solved using the method of separation of variable on scalar wave and subsequently, Green’s function technique was introduced to obtain a model equation of wave propagating through the thin film that was invariably used in computing the propagated field, for different input wavelengths representing UV, Visible and Near-infrared regions of field considering the influence of the dielectric constants of the thin film on the propagating field. The results obtained were used in turn to compute the band gaps, solid state and optical properties of the thin film.

Keywords: scalar wave, dielectric constant, calcium sulphide, solid state, optical properties

Procedia PDF Downloads 74
156 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow

Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam

Abstract:

Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.

Keywords: water hammer, hydraulic transient, pipe systems, characteristics method

Procedia PDF Downloads 107
155 Effect of Wind and Humidity on Microwave Links in Al-Khoms City-Libya

Authors: Mustafa S. Agha, Asma M. Eshahriy

Abstract:

The propagation of electromagnetic waves in millimeter band is severely affected by rain, and dust particles in terms of attenuation and de-polarization. The computations of dust and/or sand storms require knowledge of electrical properties of the scattering particles and climate conditions at the studied region in the west north region of Libya. (Al -Khoms) To compute the effect of dust and sand particles on the propagation of electromagnetic waves, it is required to collect the sand particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The main object of this paper is to study the effect of sand and dust storms on wireless communication, such as microwave links, in the north region of Libya (Al -Khoms) of Libya (Nagaza stations, Al-khoms center stations, Al-khoms gateway stations) by determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change due to the effect of sand and dust storms on wireless communication systems (GSM signal). The result showed that there is some consideration that has to be taken into account in the communication power budget .

Keywords: attenuation, scattering, transmission loss, electromagnetic waves

Procedia PDF Downloads 408
154 Estimation of Adult Patient Doses for Chest X-Ray Diagnostic Examinations in a Tertiary Institution Health Centre

Authors: G. E. Okungbowa, H. O. Adams, S. E. Eze

Abstract:

This study is on the estimation of adult patient doses for Chest X-ray diagnostic examinations of new admitted undergraduate students attending a tertiary institution health centre as part of their routine clearance and check up on admitted into the institution. A total of 531 newly admitted undergraduate students were recruited for this survey in the first quarter of 2016 (January to March, 2016). CALDOSE_X 5.0 software was used to compute the Entrance Surface Dose (ESD) and Effective Dose (ED); while the Statistical Package for Social Sciences (SPSS) version 21.0 was used to carry out the statistical analyses. The basic patients' data and exposure parameters required for the software are age, sex, examination type, projection posture, tube potential and current-time product. The mean Entrance Surface Dose and Effective Doses of the undergraduate students were calculated using the software, and the values were compared with existing literature and internationally established diagnostic reference levels. The mean ESD calculated is 0.29 mGy, and the mean effective dose is 0.04 mSv. The values of ESD and ED obtained are below the internationally established diagnostic reference levels, which could be attributed to good radiographic techniques employed during the chest X-ray procedure for these students.

Keywords: x-ray, dose, examination, chest

Procedia PDF Downloads 157