Search results for: chemical equilibria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4428

Search results for: chemical equilibria

738 Humans’ Physical Strength Capacities on Different Handwheel Diameters and Angles

Authors: Saif K. Al-Qaisi, Jad R. Mansour, Aseel W. Sakka, Yousef Al-Abdallat

Abstract:

Handwheels are common to numerous industries, such as power generation plants, oil refineries, and chemical processing plants. The forces required to manually turn handwheels have been shown to exceed operators’ physical strengths, posing risks for injuries. Therefore, the objectives of this research were twofold: (1) to determine humans’ physical strengths on handwheels of different sizes and angles and (2) to subsequently propose recommended torque limits (RTLs) that accommodate the strengths of even the weaker segment of the population. Thirty male and thirty female participants were recruited from a university student population. Participants were asked to exert their maximum possible forces in a counter-clockwise direction on handwheels of different sizes (35 cm, 45 cm, 60 cm, and 70 cm) and angles (0°-horizontal, 45°-slanted, and 90°-vertical). The participant’s posture was controlled by adjusting the handwheel to be at the elbow level of each participant, requiring the participant to stand erect, and restricting the hand placements to be in the 10-11 o’clock position for the left hand and the 4-5 o’clock position for the right hand. A torque transducer (Futek TDF600) was used to measure the maximum torques generated by the human. Three repetitions were performed for each handwheel condition, and the average was computed. Results showed that, at all handwheel angles, as the handwheel diameter increased, the maximum torques generated also increased, while the underlying forces decreased. In controlling the handwheel diameter, the 0° handwheel was associated with the largest torques and forces, and the 45° handwheel was associated with the lowest torques and forces. Hence, a larger handwheel diameter –as large as 70 cm– in a 0° angle is favored for increasing the torque production capacities of users. Also, it was recognized that, regardless of the handwheel diameter size and angle, the torque demands in the field are much greater than humans’ torque production capabilities. As such, this research proposed RTLs for the different handwheel conditions by using the 25th percentile values of the females’ torque strengths. The proposed recommendations may serve future standard developers in defining torque limits that accommodate humans’ strengths.

Keywords: handwheel angle, handwheel diameter, humans’ torque production strengths, recommended torque limits

Procedia PDF Downloads 87
737 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution

Procedia PDF Downloads 402
736 Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation

Authors: Feixiong Chen, Naoufel Haddour, Marie Frenea-Robin, Yves MéRieux, Yann Chevolot, Virginie Monnier

Abstract:

Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets.

Keywords: Magnetic Nanoparticles , Electroactive Molecules, Antibody, Platelet

Procedia PDF Downloads 239
735 Chemically Enhanced Primary Treatment: Full Scale Trial Results Conducted at a South African Wastewater Works

Authors: Priyanka Govender, S. Mtshali, Theresa Moonsamy, Zanele Mkwanazi, L. Mthembu

Abstract:

Chemically enhanced primary treatment (CEPT) can be used at wastewater works to improve the quality of the final effluent discharge, provided that the plant has spare anaerobic digestion capacity. CEPT can transfer part of the organic load to the digesters thereby effectively relieving the hydraulic loading on the plant and in this way can allow the plant to continue operating long after the hydraulic capacity of the plant has been exceeded. This can allow a plant to continue operating well beyond its original design capacity, requiring only fairly simple and inexpensive modifications to the primary settling tanks as well as additional chemical costs, thereby delaying or even avoiding the need for expensive capital upgrades. CEPT can also be effective at plants where high organic loadings prevent the wastewater discharge from meeting discharge standards, especially in the case of COD, phosphates and suspended solids. By increasing removals of these pollutants in the primary settling tanks, CEPT can enable the plant to conform to specifications without the need for costly upgrades. Laboratory trials were carried out recently at the Umbilo WWTW in Durban and these were followed by a baseline assessment of the current plant performance and a subsequent full scale trial on the Conventional plant i.e. West Plant. The operating conditions of the plant are described and the improvements obtained in COD, phosphate and suspended solids, are discussed. The PST and plant overall suspended solids removal efficiency increased by approximately 6% during the trial. Details regarding the effect that CEPT had on sludge production and the digesters are also provided. The cost implications of CEPT are discussed in terms of capital costs as well as operation and maintenance costs and the impact of Ferric chloride on the infrastructure was also studied and found to be minimal. It was concluded that CEPT improves the final quality of the discharge effluent, thereby improving the compliance of this effluent with the discharge license. It could also allow for a delay in upgrades to the plant, allowing the plant to operate above its design capacity. This will be elaborated further upon presentation.

Keywords: chemically enhanced, ferric, wastewater, primary

Procedia PDF Downloads 270
734 An Ethno-Scientific Approach for Restoration of South Indian Heritage Rice Varieties

Authors: A. Sathya, C. Manojkumar, D. Visithra

Abstract:

The South Indian peninsula has rich diversity of both heritage and conventional rice varieties. With the prime focus set on high yield and increased productivity, a number of traditional/heritage rice varieties have dwindled into the forgotten past. At present, in the face of climate change, the hybrids and conventional varieties struggle for sustainable yield. The need of copious irrigation and high nutrient inputs for the hybrids and conventional varieties have cornered the farming and research community to resort to heritage rice varieties for their sturdy survival capability. An ethno-scientific effort has been taken in the Cauvery delta tracts of South India to restore these traditional/heritage rice varieties. A closer field level performance evaluation under organic condition has been undertaken for 10 heritage rice varieties. The morpho-agronomic characterization across vegetative and reproductive stages have revealed a pattern of variation in duration, plant height, number of tillers, productive tillers, etc. The shortest duration was recorded for a variety with the vernacular name of ‘Arubadaam kuruvai’. A traditional rice variety called ‘Maapillai samba’ is claimed to impart instant energy. The supernatant water of the overnight soaked cooked rice of Maapillai samba is a source of instant energy. The physico-chemical analysis of this variety is being explored for its instant nutritional boosting ability. Wide spectrum of nutritional characters including palatability and marketability preferences has also been analyzed for all these 10 heritage rice varieties. A ‘Farmer’s harvest day festival’ was organized, providing opportunity for the ‘Cauvery delta farmers’ to identify the special features and exchange their views on these standing golden ripe paddy varieties directly. The airing of their ethnic knowledge pooled with interesting scientific investigations of these 10 rich heritage rice varieties of South India undertaken will be elaborately discussed enlightening the perspectives on the pathway of resurrection and restoration of this heritage of the past.

Keywords: biodiversity, conservation, heritage, rice, traditional, varieties

Procedia PDF Downloads 396
733 Energy Reclamation in Micro Cavitating Flow

Authors: Morteza Ghorbani, Reza Ghorbani

Abstract:

Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.

Keywords: cavitation, energy, harvesting, micro scale

Procedia PDF Downloads 167
732 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health

Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang

Abstract:

The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.

Keywords: climate change, health impact, health adaptation, Erren River Basin

Procedia PDF Downloads 282
731 Properties of Magnesium-Based Hydrogen Storage Alloy Added with Palladium and Titanium Hydride

Authors: Jun Ying Lin, Tzu Hsiang Yen, Cha'o Kuang Chen

Abstract:

Nowadays, the great majority believe that there is great potentiality in hydrogen storage alloy storing hydrogen by physical and chemical absorption. However, the hydrogen storage alloy is limited by high operation temperature. Scientists find that adding transition elements can improve the properties of hydrogen storage alloy. In this research, outstanding improvements of kinetic and thermal properties are given by the addition of Palladium and Titanium hydride to Magnesium-based hydrogen storage alloy. Magnesium-based alloy is the main material, into which TiH2 / Pd are added separately. Following that, materials are milled by a Planetary Ball Miller at 650 rpm. TGA/DSC and PCT measure the capacity, spending time and temperature of abs/des-orption. Additionally, SEM and XRD analyze the structures and components of material. It is clearly shown that Pd is beneficial to kinetic properties. 2MgH2-0.1Pd has the highest capacity of all the alloys listed, approximately 5.5 wt%. Secondly, there are not any new Ti-related compounds found from XRD analysis. Thus, TiH2, considered as the catalyst, leads to the condition of 2MgH2-TiH2 and 2MgH2-TiH2-0.1Pd efficiently absorbing hydrogen in low temperature. 2MgH2-TiH2 can reach roughly 3.0 wt% in 82.4 minutes at 50°C and 8 minutes at 100°C, while2MgH2-TiH2-0.1Pd can reach 2.0 wt% in 400 minutes at 50°C and in 48 minutes at 100°C. The lowest temperature of 2MgH2-0.1Pd and 2MgH2-TiH2 is similar (320°C), otherwise the lowest temperature of 2MgH2-TiH2-0.1Pd decrease by 20°C. From XRD, it can be observed that PdTi2 and Pd3Ti are produced by mechanical alloying when adding Pd as well as TiH2 into MgH2. Due to the synergistic effects between Pd and TiH2, 2MgH2-TiH2-0.1Pd owns the lowest dehydrogenation temperature. Furthermore, the Pressure-Composition-Temperature (PCT) curve of 2MgH2-TiH2-0.1Pd is measured at different temperature, 370°C, 350°C, 320°C and 300°C separately. The plateau pressure is given form the PCT curves above. In accordance to different plateau pressures, enthalpy and entropy in the Van’t Hoff equation can be solved. In 2MgH2-TiH2-0.1Pd, the enthalpy is 74.9 KJ/mol and the entropy is 122.9 J/mol. Activation means that hydrogen storage alloy undergoes repeat abs/des-orpting processes. It plays an important role in the abs/des-orption. Activation shortens the abs/des-orption time because of the increase in surface area. From SEM, it is clear that the grain size and surface become smaller and rougher

Keywords: hydrogen storage materials, magnesium hydride, abs-/des-orption performance, Plateau pressure

Procedia PDF Downloads 228
730 Public Health Campaign to Eradicate Hepatitis C Virus during the Covid-19 Emergency in the North-East of Italy

Authors: Emanuela Zilli, Antonio Madia, Milvia Marchiori, Paola Anello, Chiara Cabbia, Emanuela Velo, Delia Campagnolo, Michele Scomazzon, Emanuela Salvatico, S. Tikvina, Antonio Miotti

Abstract:

Hepatitis C is an inflammation of the liver caused by the hepatitis C virus (HCV). Antiviral medicines can cure more than 95% of cases of hepatitis C infection, but access to diagnosis and treatment remains low. The ULSS 6 Euganea – Health Trust has implemented a campaign to eradicate hepatitis C in the province of Padua (North-East of Italy), which can be subdivided into three areas: North (300.000 inhabitants), Centre (400.000) and South (300.000). In September 2021, the project was launched in the Northern area; a set of brochures was distributed in outpatient services, general practitioners’ clinics and offices, community pharmacy services, social health districts, and through social networks. The Hepatology Service contacted 460 patients selected by the Clinical Laboratory (positivity for HCV antibodies): 83 patients (18.0%) had been already cured of HCV infection, missing or deceased; 377 patients (82.0%) met the criteria to be eligible for HCV eradication therapy and were therefore included in a Day Service specific agenda and followed by a multidisciplinary team of healthcare professionals, with a dedicated telephone line. Haemato-chemical tests, general medical check-ups and ultrasound tests with fibroscan were performed. Patients were tested for Sars-CoV-2 positivity; those not yet vaccinated against Covid-19 were encouraged to complete the vaccination scheme. All 377 patients (100%) received HCV eradication therapy at the community pharmacy service; a detailed explanation of how to take their medication was provided. At the end of the first phase, Covid-19 vaccination rate was 100% (377/377), including patients already vaccinated and new-vaccinated. Check-up appointments were arranged after 2 or 3 months, according to the treatment plan. The awareness campaign and the organization of HCV eradication therapy service by ULSS 6 Euganea are proving to be effective; the project is now going to be applied to Central and Southern areas of the province (1.132 patients).

Keywords: public health, HCV-eradication, Covid-19 emergency, health communication strategies

Procedia PDF Downloads 74
729 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 415
728 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles

Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu

Abstract:

The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.

Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation

Procedia PDF Downloads 283
727 Remediation of Oil and Gas Exploration and Production (O&G E&P) Wastes Using Soil-Poultry Dropping Amendment

Authors: Ofonime U. M. John, Justina I. R. Udotong, Victor O. Nwaugo, Ime R. Udotong

Abstract:

Oily wastes from oil and gas exploration and production (O&G E&P) activities were remediated for twelve weeks using Soil-Poultry dropping amendment. Culture-dependent microbiological, chemical and enzymatic techniques were employed to assess the efficacy of remediation process. Microbiological activities of the remediated wastes showed increased hydrocarbonoclastic microbial populations with increased remediation time; 2.7±0.1 x 105cfu/g to 8.3 ± 0.04 x106cfu/g for hydrocarbon utilizing bacteria, 1.7 ± 0.2 x103cfu/g to 6.0 ± 0.01 x 104cfu/g for hydrocarbon utilizing fungi and 2.2 ± 0.1 x 102cfu/g to 6.7 ± 0.1 x 103cfu/g for hydrocarbon utilizing actinomycetes. Bacteria associated with the remediated wastes after the remediation period included the genera Bacillus, Psuedomonas, Beijerinckia, Acinetobacter, Alcaligenes and Serratia. Fungal isolates included species of Penicillium, Aspergillus and Cladosporium, while the Actinomycetes included species of Rhodococcus, Nocardia and Streptomyces. Slight fluctuations in pH values between 6.5± 0.2 and 7.1 ± 0.08 were recorded throughout the process, while total petroleum hydrocarbon (TPH) content decreased from 89, 900 ± 0.03mg/kg to 425 ± 0.1 mg/kg after twelve weeks of remediation. The polycyclic aromatic hydrocarbon (PAH) levels decreased with increased remediation time; naphthalene, flourene, pheneanthrene, anthracene, pyrene, chrysene and benzo(b)flouranthene showed decreased values < 0.01 after twelve weeks of remediation. Enzyme activities revealed increased dehydrogenase and urease activities with increased remediation time and decreased phenol oxidase activity with increased remediation period. There was a positive linear correlation between densities of hydrocarbonoclastic microbes and dehydrogenase activity. On the contrary, phenol oxidase and urease activities showed negative correlation with microbial population. Results of this study confirmed that remediation of oily wastes using soil-poultry dropping amendment can result in eco-friendly O&G E&P wastes. It also indicates that urease and phenol oxidase activities can be reliable indices/tools to monitor PAH levels and rates of petroleum hydrocarbon degradation.

Keywords: dehydrogenase activity, oily wastes, remediation, soil-poultry dropping amendment

Procedia PDF Downloads 290
726 Recirculated Sedimentation Method to Control Contamination for Algal Biomass Production

Authors: Ismail S. Bostanci, Ebru Akkaya

Abstract:

Microalgae-derived biodiesel, fertilizer or industrial chemicals' production with wastewater has great potential. Especially water from a municipal wastewater treatment plant is a very important nutrient source for biofuel production. Microalgae biomass production in open ponds system is lower cost culture systems. There are many hurdles for commercial algal biomass production in large scale. One of the important technical bottlenecks for microalgae production in open system is culture contamination. The algae culture contaminants can generally be described as invading organisms which could cause pond crash. These invading organisms can be competitors, parasites, and predators. Contamination is unavoidable in open systems. Potential contaminant organisms are already inoculated if wastewater is utilized for algal biomass cultivation. Especially, it is important to control contaminants to retain in acceptable level in order to reach true potential of algal biofuel production. There are several contamination management methods in algae industry, ranging from mechanical, chemical, biological and growth condition change applications. However, none of them are accepted as a suitable contamination control method. This experiment describes an innovative contamination control method, 'Recirculated Sedimentation Method', to manage contamination to avoid pond cash. The method can be used for the production of algal biofuel, fertilizer etc. and algal wastewater treatment. To evaluate the performance of the method on algal culture, an experiment was conducted for 90 days at a lab-scale raceway (60 L) reactor with the use of non-sterilized and non-filtered wastewater (secondary effluent and centrate of anaerobic digestion). The application of the method provided the following; removing contaminants (predators and diatoms) and other debris from reactor without discharging the culture (with microscopic evidence), increasing raceway tank’s suspended solids holding capacity (770 mg L-1), increasing ammonium removal rate (29.83 mg L-1 d-1), decreasing algal and microbial biofilm formation on inner walls of reactor, washing out generated nitrifier from reactor to prevent ammonium consumption.

Keywords: contamination control, microalgae culture contamination, pond crash, predator control

Procedia PDF Downloads 178
725 State of Conservation of the British Colonial Architectural Heritage of Karachi: Case Study of Damage Mapping of Empress Market Building

Authors: Tania Ali Soomro

Abstract:

In 1839, the British, after the annexation of the port city of Karachi, established a new urban centre consisting of various quarters and introduced new settlements there. These quarters were out of the boundaries of fortified native old area and now contain much of the oldest parts of the city and signify the colonial history of Karachi, in particular the Saddar Bazaar and the neighboring areas of Kharadar and Mithadar. These quarters bestow a mix of functional typology built in a hybrid form of construction - an adaptation of the western architectural attributes to regional requirements and characteristics. This approach is referred to as the Anglo Vernacular, Colonial or the Domestic Gothic architectural form. This research paper investigates the historical and architectural value of one such property: the Empress Market designed by then Municipal Architect, Ar. James Strachan in 1889 as a commemorative monument for the jubilee of Her Majesty the Queen Victoria; Empress of British India, at that time. This paper presents information on the present conservation status of the market building and highlights its role as a catalyst to the community interconnection. This building has survived to present day and functioned well, despite undergoing numerous transformations. A detailed analysis of the bio-degradation (Natural-Chemical dissolution of material) and the bio-deterioration (Manmade-Negative state change of the material) of the building, based on the examination of the prevailing causes of these bio-alterations is carried out, and is presented in form of a damage atlas containing both the categories of bio-alteration/ changes occurred to the building over the time. The research methodology followed in this paper starts with the available archival analysis, physical observation, photographic documentation, the statistics review and the interviews with the direct and indirect stakeholders. The results and findings of this research portray that these bio-alterations and changes are the essential part of the life cycle of Empress Market building which illustrate the historic development of the premise and therefore ought to be given due importance (depending upon their condition) while developing the conservation plan for the building.

Keywords: British colonial architecture, bio-alteration, bio-degradation, bio-deterioration, domestic gothic architectural form

Procedia PDF Downloads 123
724 Mongolian Water Quality Problem and Health of Free-Grazing Sheep

Authors: Yu Yoshihara, Chika Tada, Moe Takada, Nyam-Osor Purevdorj, Khorolmaa Chimedtseren, Yutaka Nakai

Abstract:

Water pollution from animal waste and its influence on grazing animals is a current concern regarding Mongolian grazing lands. We allocated 32 free-grazing lambs to four groups and provided each with water from a different source (upper stream, lower stream, well, and pond) for 49 days. We recorded the amount of water consumed by the lambs, as well as their body weight, behavior, white blood cell count, acute phase (haptoglobin) protein level, and fecal condition. We measured the chemical and biological qualities of the four types of water, and we detected enteropathogenic and enterohemorrhagic Escherichia coli in fecal samples by using a genetic approach. Pond water contained high levels of nitrogen and minerals, and well water contained high levels of bacteria. The odor concentration index decreased in order from pond water to upper stream, lower stream, and well. On day 15 of the experiment, the following parameters were the highest in lambs drinking water from the following sources: water intake (pond or lower stream), body weight gain (pond), WBC count (lower stream), haptoglobin concentration (well), and enteropathogenic E. coli infection rate (lower stream). Lambs that drank well water spent more time lying down and less time grazing than the others, and lambs that drank pond water spent more time standing and less time lying down. Lambs given upper or lower stream water exhibited more severe diarrhea on day 15 of the experiment than before the experiment. Mongolian sheep seemed to adapt to chemically contaminated water: their productivity benefited the most from pond water, likely owing to its rich mineral content. Lambs that drank lower stream water showed increases in enteropathogenic E. coli infection, clinical diarrhea, and WBC count. Lambs that drank well water, which was bacteriologically contaminated, had increased serum acute phase protein levels and poor physical condition; they were thus at increased risk of negative health and production effects.

Keywords: DNA, Escherichia coli, fecal sample, lower stream, well water

Procedia PDF Downloads 440
723 Formulation and In vivo Evaluation of Venlafaxine Hydrochloride Long Acting Tablet

Authors: Abdulwahhab Khedr, Tamer Shehata, Hanaa El-Ghamry

Abstract:

Venlafaxine HCl is a novel antidepressant drug used in the treatment of major depressive disorder, generalized anxiety disorder, social anxiety disorder and panic disorder. Conventional therapeutic regimens with venlafaxine HCl immediate-release dosage forms require frequent dosing due to short elimination half-life of the drug and reduced bioavailability. Hence, this study was carried out to develop sustained-release dosage forms of venlafaxine HCl to reduce its dosing frequency, to improve patient compliance and to reduce side effects of the drug. The polymers used were hydroxypropylmethyl cellulose, xanthan gum, sodium alginate, sodium carboxymethyl cellulose, Carbopol 940 and ethyl cellulose. The physical properties of the prepared tablets including tablet thickness, diameter, weight uniformity, content uniformity, hardness and friability were evaluated. Also, the in-vitro release of venlafaxine HCl from different matrix tablets was studied. Based on physical characters and in-vitro release profiles, certain formulae showing promising sustained-release profiles were subjected to film coating with 15% w/v EC in dichloromethane/ethanol mixture (1:1 ratio) using 1% w/v HPMC as pore former and 30% w/w dibutyl phthalate as plasticizer. The optimized formulations were investigated for drug-excipient compatibility using FTIR and DSC studies. Physical evaluation of the prepared tablets fulfilled the pharmacopoeial requirements for tablet friability test, where the weight loss of the prepared formulae did not exceed 1% of the weight of the tested tablets. Moderate release was obtained from tablets containing HPMC. FTIR and DSC studies for such formulae revealed the absence of any type of chemical interaction between venlafaxine HCl and the used polymers or excipients. Forced swimming test in rats was used to evaluate the antidepressant activity of the selected matrix tablets of venlafaxine HCl. Results showed that formulations significantly decreased the duration of animals’ immobility during the 24 hr-period of the test compared to non-treated group.

Keywords: antidepressant, sustained-release, matrix tablet, venlafaxine hydrochloride

Procedia PDF Downloads 202
722 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.

Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 253
721 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 475
720 Effects of Sensory Integration Techniques in Science Education of Autistic Students

Authors: Joanna Estkowska

Abstract:

Sensory integration methods are very useful and improve daily functioning autistic and mentally disabled children. Autism is a neurobiological disorder that impairs one's ability to communicate with and relate to others as well as their sensory system. Children with autism, even highly functioning kids, can find it difficult to process language with surrounding noise or smells. They are hypersensitive to things we can ignore such as sight, sounds and touch. Adolescents with highly functioning autism or Asperger Syndrome can study Science and Math but the social aspect is difficult for them. Nature science is an area of study that attracts many of these kids. It is a systematic field in which the children can focus on a small aspect. If you follow these rules you can come up with an expected result. Sensory integration program and systematic classroom observation are quantitative methods of measuring classroom functioning and behaviors from direct observations. These methods specify both the events and behaviors that are to be observed and how they are to be recorded. Our students with and without autism attended the lessons in the classroom of nature science in the school and in the laboratory of University of Science and Technology in Bydgoszcz. The aim of this study is investigation the effects of sensory integration methods in teaching to students with autism. They were observed during experimental lessons in the classroom and in the laboratory. Their physical characteristics, sensory dysfunction, and behavior in class were taken into consideration by comparing their similarities and differences. In the chemistry classroom, every autistic student is paired with a mentor from their school. In the laboratory, the children are expected to wear goggles, gloves and a lab coat. The chemistry classes in the laboratory were held for four hours with a lunch break, and according to the assistants, the children were engaged the whole time. In classroom of nature science, the students are encouraged to use the interactive exhibition of chemical, physical and mathematical models constructed by the author of this paper. Our students with and without autism attended the lessons in those laboratories. The teacher's goals are: to assist the child in inhibiting and modulating sensory information and support the child in processing a response to sensory stimulation.

Keywords: autism spectrum disorder, science education, sensory integration techniques, student with special educational needs

Procedia PDF Downloads 169
719 Effects of Turmeric on Uterine Tissue in Rats with Metabolic Syndrome Induced by High Fructose Diet

Authors: Mesih Kocamuftuoglu, Gonca Ozan, Enver Ozan, Nalan Kaya, Sema Temizer Ozan

Abstract:

Metabolic Syndrome, one of the common metabolic disorder, occurs with co-development of insulin resistance, obesity, dislipidemia and hypertension problems. Insulin resistance appears to play a pathogenic role in the metabolic syndrome. Also, there is a relationship between insulin resistance and infertility as known. Turmeric (Curcuma longa L.) a polyphenolic chemical is widely used for its coloring, flavoring, and medicinal properties, and exhibits a strong antioxidant activity. In this study, we assess the effects of turmeric on rat uterine tissue in metabolic syndrome model induced by high fructose diet. Thirty-two adult female Wistar rats weighing 220±20 g were randomly divided into four groups (n=8) as follows; control, fructose, turmeric, and fructose plus turmeric. Metabolic syndrome was induced by fructose solution 20% (w/v) in tap water, and turmeric (C.Longa) administered at the dose of 80 mg/kg body weight every other day by oral gavage. After the experimental period of 8 weeks, rats were decapitated, serum and uterine tissues were removed. Serum lipid profile, glucose, insülin levels were measured. Uterine tissues were fixed for histological analyzes. The uterine tissue sections were stained with hematoxylin-eosin (H & E) stain, then examined and photographed on a light microscope (Novel N-800Mx20). As a result, fructose consumption effected serum lipids, insulin levels, and insulin resistance significantly. Endometrium and myometrium layers were observed in normal structure in control group of uterine tissues. Perivascular edema, peri glandular fibrosis, and inflammatory cell increase were detected in fructose group. Sections of the fructose plus turmeric group showed a significant improvement in findings when compared to the fructose group. Turmeric group cell structures were observed similar with the control group. These results demonstrated that high-fructose consumption could change the structure of the uterine tissue. On the other hand, turmeric administration has beneficial effects on uterine tissue at that dose and duration when administered with fructose.

Keywords: metabolic syndrome, rat, turmeric, uterus

Procedia PDF Downloads 152
718 Reactive Transport Modeling in Carbonate Rocks: A Single Pore Model

Authors: Priyanka Agrawal, Janou Koskamp, Amir Raoof, Mariette Wolthers

Abstract:

Calcite is the main mineral found in carbonate rocks, which form significant hydrocarbon reservoirs and subsurface repositories for CO2 sequestration. The injected CO2 mixes with the reservoir fluid and disturbs the geochemical equilibrium, triggering calcite dissolution. Different combinations of fluid chemistry and injection rate may therefore result in different evolution of porosity, permeability and dissolution patterns. To model the changes in porosity and permeability Kozeny-Carman equation K∝〖(∅)〗^n is used, where K is permeability and ∅ is porosity. The value of n is mostly based on experimental data or pore network models. In pore network models, this derivation is based on accuracy of relation used for conductivity and pore volume change. In fact, at a single pore scale, this relationship is the result of the pore shape development due to dissolution. We have prepared a new reactive transport model for a single pore which simulates the complex chemical reaction of carbonic-acid induced calcite dissolution and subsequent pore-geometry evolution at a single pore scale. We use COMSOL Multiphysics package 5.3 for the simulation. COMSOL utilizes the arbitary-Lagrangian Eulerian (ALE) method for the free-moving domain boundary. We examined the effect of flow rate on the evolution of single pore shape profiles due to calcite dissolution. We used three flow rates to cover diffusion dominated and advection-dominated transport regimes. The fluid in diffusion dominated flow (Pe number 0.037 and 0.37) becomes less reactive along the pore length and thus produced non-uniform pore shapes. However, for the advection-dominated flow (Pe number 3.75), the fast velocity of the fluid keeps the fluid relatively more reactive towards the end of the pore length, thus yielding uniform pore shape. Different pore shapes in terms of inlet opening vs overall pore opening will have an impact on the relation between changing volumes and conductivity. We have related the shape of pore with the Pe number which controls the transport regimes. For every Pe number, we have derived the relation between conductivity and porosity. These relations will be used in the pore network model to get the porosity and permeability variation.

Keywords: single pore, reactive transport, calcite system, moving boundary

Procedia PDF Downloads 342
717 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder

Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini

Abstract:

Silica aerogels are well-known meso-porous materials with high specific surface area (500–1000 m2/g), high porosity (80–99.8%), and low density (0.003–0.8 g/cm3). However, the silica aerogels generally are highly brittle due to their nanoporous nature. Physical and mechanical properties of the silica aerogels can be enhanced by compounding with the fibers. Although some reports presented incorporation of the fibers into the sol, followed by further modification and drying stages, no information regarding the aerogel powders as filler in the polymeric fibers is available. In this research, waterglass based aerogel powder was prepared in the following steps: sol–gel process to prepare a gel, followed by subsequent washing with propan-2-ol, n-Hexane, and TMCS, then ambient pressure drying, and ball milling. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nano fibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, sliding angle, heat transfer, FTIR, BET and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nano fibers to control surface roughness for manipulating superhydrophobic nanowebs with sliding angle of 5˚ and water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nano fibers surface irregularity in presence of the aerogels while a laye of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nano fibers without any aerogel powder to 8% for the nano fibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energy-saving practices.

Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.

Procedia PDF Downloads 304
716 An Ecofriendly Approach for the Management of Aedes aegypti L (Diptera: Culicidae) by Ocimum sanctum

Authors: Mohd Shazad, Kamal Kumar Gupta

Abstract:

Aedes aegypti (Diptera: Culicidae), commonly known as tiger mosquito is the vector of dengue fever, yellow fever, chikungunya and zika virus. In the absence of any effective vaccine against these diseases, control the mosquito population is the only promising mean to prevent the diseases. Currently used chemical insecticides cause environmental contamination, high mammalian toxicity and hazards to non-target organisms, insecticide resistance and vector resurgence. Present research work aimed to explore the potentials of phytochemicals present in the Ocimum sanctum in management of mosquito population. The leaves of Ocimum were extracted with ethanol by ‘cold extraction method’. 0-24h old fourth instar larvae of Aedes aegypti were treated with the extract of concentrations 50ppm, 100ppm, 200ppm and 400ppm for 24h. Survival, growth and development of the treated larvae were evaluated. The adults emerged from the treated larvae were used for the reproductive fitness studies. Our results indicate 77.2% mortality in the larvae exposed to 400 ppm. At lower doses, although there was no significant reduction in the survival after 24h however, it decreased during subsequent days of observations. In control experiments, no mortality was observed. It was also observed that the larvae survived after treatment showed severe growth and developmental abnormalities. There was significant increase in larval duration. In control, fourth instar moulted into pupa after 3 days while larvae treated with 400 ppm extract were moulted after 4.6 days. Larva-pupa intermediates and the pupa-adult intermediates were observed in many cases. The adults emerged from the treated larvae showed impaired mating and oviposition behaviour. The females exhibited longer preoviposition period, reduced oviposition rate and decreased egg output. GCMS analysis of the ethanol extract revealed presence of JH mimics and intermediates of JH biosynthetic pathway. Potentials of Ocimum sanctum in integrated vector management programme of Aedes aegypti were discussed.

Keywords: Aedes aegypti, Ocimum sanctum, oviposition, survival

Procedia PDF Downloads 158
715 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method

Procedia PDF Downloads 227
714 Cost-Effective and Optimal Control Analysis for Mitigation Strategy to Chocolate Spot Disease of Faba Bean

Authors: Haileyesus Tessema Alemneh, Abiyu Enyew Molla, Oluwole Daniel Makinde

Abstract:

Introduction: Faba bean is one of the most important grown plants worldwide for humans and animals. Several biotic and abiotic elements have limited the output of faba beans, irrespective of their diverse significance. Many faba bean pathogens have been reported so far, of which the most important yield-limiting disease is chocolate spot disease (Botrytis fabae). The dynamics of disease transmission and decision-making processes for intervention programs for disease control are now better understood through the use of mathematical modeling. Currently, a lot of mathematical modeling researchers are interested in plant disease modeling. Objective: In this paper, a deterministic mathematical model for chocolate spot disease (CSD) on faba bean plant with an optimal control model was developed and analyzed to examine the best strategy for controlling CSD. Methodology: Three control interventions, quarantine (u2), chemical control (u3), and prevention (u1), are employed that would establish the optimal control model. The optimality system, characterization of controls, the adjoint variables, and the Hamiltonian are all generated employing Pontryagin’s maximum principle. A cost-effective approach is chosen from a set of possible integrated strategies using the incremental cost-effectiveness ratio (ICER). The forward-backward sweep iterative approach is used to run numerical simulations. Results: The Hamiltonian, the optimality system, the characterization of the controls, and the adjoint variables were established. The numerical results demonstrate that each integrated strategy can reduce the diseases within the specified period. However, due to limited resources, an integrated strategy of prevention and uprooting was found to be the best cost-effective strategy to combat CSD. Conclusion: Therefore, attention should be given to the integrated cost-effective and environmentally eco-friendly strategy by stakeholders and policymakers to control CSD and disseminate the integrated intervention to the farmers in order to fight the spread of CSD in the Faba bean population and produce the expected yield from the field.

Keywords: CSD, optimal control theory, Pontryagin’s maximum principle, numerical simulation, cost-effectiveness analysis

Procedia PDF Downloads 41
713 Food Losses Reducing by Extending the Minimum Durability Date of Thermally Processed Products

Authors: Dorota Zielińska, Monika Trząskowska, Anna Łepecka, Katarzyna Neffe-Skocińska, Beata Bilska, Marzena Tomaszewska, Danuta Kołożyn-Krajewska

Abstract:

Minimum durability date (MDD) labeled food is known to have a long shelf life. A properly stored or transported food retains its physical, chemical, microbiological, and sensory properties up to MDD. The aim of the study was to assess the sensory quality and microbiological safety of selected thermally processed products,i.e., mayonnaise, jam, and canned tuna within and after MDD. The scope of the study was to determine the markers of microbiological quality, i.e., the total viable count (TVC), the Enterobacteriaceae count and the total yeast and mold (TYMC) count on the last day of MDD and after 1 and 3 months of storage, after the MDD expired. In addition, the presence of Salmonella and Listeria monocytogenes was examined on the last day of MDD. The sensory quality of products was assessed by quantitative descriptive analysis (QDA), the intensity of differentiators (quality features), and overall quality were defined and determined. It was found that during three months storage of tested food products, after the MDD expired, the microbiological quality slightly decreased, however, regardless of the tested sample, TVC was at the level of <3 log cfu/g, similarly, the Enterobacretiaceae, what indicates the good microbiological quality of the tested foods. The TYMC increased during storage but did not exceed 2 logs cfu/g of product. Salmonella and Listeria monocytogenes were not found in any of the tested food samples. The sensory quality of mayonnaise negatively changed during storage. After three months from the expiry of MDD, a decrease in the "fat" and "egg" taste and aroma intensity, as well as the "density" were found. The "sour" taste intensity of blueberry jam after three months of storage was slightly higher, compared to the jam tested on the last day of MDD, without affecting the overall quality. In the case of tuna samples, an increase in the "fishy" taste and aroma intensity was observed during storage, and the overall quality did not change. Tested thermally processed products (mayonnaise, jam, and canned tuna) were characterized by good microbiological and sensory quality on the last day of MDD, as well as after three months of storage under conditions recommended by the producer. These findings indicate the possibility of reducing food losses by extending or completely abolishing the MDD of selected thermal processed food products.

Keywords: food wastes, food quality and safety, mayonnaise, jam, tuna

Procedia PDF Downloads 98
712 Insecticidal Effect of a Botanical Plant Extracts (Ultra Act®) on Bactrocera oleae (Diptera:Tephritidae) Preimaginal Development and Pupa Survival

Authors: Imen Blibech, Mohieddine Ksantini, Manohar Shete

Abstract:

Bactrocera oleae is one of the most economically damaging insects of olive in Tunisia and other producing countries of olive trees. As a reliable alternative to synthetic chemical insecticides, botanical insecticides are considered natural control methods safe for the environment and human health. The certified botanical insecticide ULTRA-ACT® effectively on large scale of insects is approved per Indian and International organic standards certified organic pesticides. Olives with signs of olive fly infestation were collected from productive olive trees in three Sahel localities of Tunisia. Infested fruits were separated daily for larval stage control purposes, into new rearing boxes under microclimatic conditions at 75% R.H, 25 ± 3°C and 8 L-16D. Treatment with ULTRA-ACT® extract solutions was made by dipping methods; each fruit was pipetted in 5 mL of extract for 10 seconds then air- dried. Five doses of ULTRA-ACT® were used for a bioassay, plus a water-only control. A total of 200 infested olive fruits were treated in separate dishes with a proportion of 10 olives per dish. A total of 20 dishes were used for each concentration treatment as well as 20 dished utilized as control. The bioassay was conducted with 3 replicates. The development of the larval and pupal stages was recorded since the egg hatching until emergence of adults. It was determined that ULTRA-ACT® extracts on succeeding concentrations; 0.25, 0.5, 1 and 2% show significant effect on the biology of the pest. Increased concentration decreased significantly adult emergence from pupae and affect the egg hatchability percentage. Therefore, larval mortality increased insignificantly with the increase of the product concentration. The 2nd instar larvae were more susceptible to the product and after 72 hours the maximum mortality (75%) was observed with ULTRA-ACT® 2%. The present work aimed to give a possible and efficient alternative solution for B. oleae biological control with a promising botanical insecticide.

Keywords: Bactrocera oleae, olive insect pest, Ultra Act®, larval mortality, pupal emergency, biological control

Procedia PDF Downloads 106
711 Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company

Authors: Juan S. Vera, Miguel A. Gomez, Omar Gelvez

Abstract:

Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser.

Keywords: mechanical vapor compression, distillation, wastewater, design, construction, evaluation

Procedia PDF Downloads 135
710 Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids

Authors: Antoine Karam, Lotfi Khiari, Bruno Breton, Alfred Jaouich

Abstract:

Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil.

Keywords: metal, recycling, sewage sludge, trace element

Procedia PDF Downloads 254
709 Soil with Carbonate Accumulation in Tensift Al Haouz Lowland (Morocco): Characterization, Genesis and the Environmental Significance

Authors: Lahcen Daoudi, Soukaina Elidrissi, Nathalie Fagel

Abstract:

The calcareous accumulations in the surface formations of the soil, are a very widespread phenomenon in the arid and semi-arid regions. Many aspects of physical and chemical evolution of these soils were debated for more than one century. The last two decades have witnessed a remarkable interest in the study of the calcrete. In Morocco, as in most Mediterranean countries, soils with carbonate accumulation cover large areas of the territory. The isohumic subtropical soils and red Mediterranean soils include always a horizon of calcrete accumulation. In the lowland of Tensift Al Haouz located in the central part of Morocco, the arable lands are underlain by indurate pedogenic calcrete of various thicknesses; this constitutes a serious handicap for agricultural development in the region. Our aims in this study is to analyze the characteristics of the crusts developed in this area in order to identify the various facies, their geographic distribution and the factors that played a significant role in the differentiation of these calcareous accumulations. The characterizations were based on various techniques including field observations, X-ray diffraction analysis (XRD) for both raw materials and clay fractions, SEM analysis, Calcimetry and Loss On Ignition (LOI). The analysis of encrusting calcrete in a rich and varied observation field as the region of Tensift Al Haouz enabled us to specify the important types of accumulations: diffuse, nodular and massive encrusting. The shape of encrusting as well as their consistency and hardness is clearly related to the contents of CaCO3 of the profiles. Among these facies, the hardpan which results from a complex succession of processes is certainly the most morphologically advanced form of encrusting. The vertical and lateral distribution of these forms in the Tensift Al Haouz area indicates that they do not appear randomly but seem related to well defined environmental conditions. The differentiation and evolution of encrusting is under the influence of two major factors: 1) the availability of carbonate rich solution which is controlled by the topography, the nature and texture of underlying host rock and the detrital processes; 2) the climate which is responsible for the evaporation and crystallization of carbonate.

Keywords: soil calcrete, characterization, morphology, Tensift Al Haouz, Morocco

Procedia PDF Downloads 368